
Academic Editors: Ziyang Wang and

Chengjun Wang

Received: 10 September 2025

Revised: 18 September 2025

Accepted: 19 September 2025

Published: 22 September 2025

Citation: Lin, J.; Huang, L.; Ding, L.;

Yan, S. Deep Brain Tumor Lesion

Classification Network: A Hybrid

Method Optimizing ResNet50 and

EfficientNetB0 for Enhanced Feature

Extraction. Fractal Fract. 2025, 9, 614.

https://doi.org/10.3390/

fractalfract9090614

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Deep Brain Tumor Lesion Classification Network: A Hybrid
Method Optimizing ResNet50 and EfficientNetB0 for Enhanced
Feature Extraction
Jing Lin 1 , Longhua Huang 1,*, Liming Ding 1 and Shen Yan 2,*

1 School of Computer and Artificial Intelligence (School of Software), Huaihua University,
Huaihua 418000, China; linjing@hhtc.edu.cn (J.L.)

2 College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
* Correspondence: huanglh@hhtc.edu.cn (L.H.); yanshen@njfu.edu.cn (S.Y.)

Abstract

Brain tumors usually appear as masses formed by localized abnormal cell proliferation.
Although complete removal of tumors is an ideal treatment goal, this process faces many
challenges due to the aggressive nature of malignant tumors and the need to protect
normal brain tissue. Therefore, early diagnosis is crucial to mitigate the harm posed by
brain tumors. In this study, the classification accuracy is improved by improving the
ResNet50 model. Specifically, the image is preprocessed and enhanced firstly, and the
image is denoised by fractional calculus; then, transfer learning technology is adopted, the
ECA attention mechanism is introduced, the convolutional layer in the residual block is
optimized, and the multi-scale convolutional layer is fused. These optimization measures
not only enhance the model’s ability to grasp the overall details but also improve its
ability to recognize micro and macro features. This allows the model to understand
data features more comprehensively and process image details more efficiently, thereby
improving processing accuracy. In addition, the improved ResNet50 model is combined
with EfficientNetB0 to further optimize performance and improve classification accuracy
by utilizing EfficientNetB0’s efficient feature extraction capabilities through feature fusion.
In this study, we used a brain tumor image dataset containing 5712 training images and
1311 validation images. The optimized ResNet50 model achieves a verification accuracy
of 98.78%, which is 3.51% higher than the original model, and the Kappa value is also
increased by 4.7%. At the same time, the lightweight design of the EfficientNetB0 improves
performance while reducing uptime. These improvements can help diagnose brain tumors
earlier and more accurately, thereby improving patient outcomes and survival rates.

Keywords: brain tumor detection; ResNet50 optimization; biomedical image processing;
fractional calculus denoising; EfficientNetB0 integration

1. Introduction
Brain tumors are among the most destructive and life-threatening malignant nervous

system tumors. They have high incidence and mortality rates. These tumors severely
impact patient health [1,2]. Due to the rapid growth of tumor cells, thousands of people die
every year [3]. Surgical removal of brain tumors is a crucial treatment method. However,
due to the complexity of brain tissue and the unique growth patterns of tumors, achieving
complete resection presents numerous challenges. Therefore, accurate and rapid iden-
tification of brain tumors is critical for planning treatment, predicting disease direction,
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and tracking outcomes [4,5]. In the process of classifying brain tumors, the symmetrical
or asymmetrical nature of the tumor serves as a crucial basis for diagnosis. From a mor-
phological standpoint, tumors with symmetrical features are usually categorized as benign
or low-grade. In contrast, tumors with asymmetrical features are more often identified as
high-grade malignancies. Specifically, symmetrical tumors generally exhibit slow growth
and a lower likelihood of dissemination within the brain. Magnetic resonance imaging
(MRI) is a medical examination technique, which uses magnetic fields and radio waves to
generate images of the body’s internal structures. It produces detailed images by detecting
the reaction of water molecules in the human body in a strong magnetic field. It plays
a crucial role in detecting and diagnosing brain tumors and aids physicians in clearly
identifying the location, size, and nature of the tumors [6,7]. Currently, MRI stands out
as the premier approach for early identification of brain tumors in clinical diagnosis [8].
However, the method of manual judgment is often due to too few experienced doctors and
too many patients, which is prone to misjudgment and missed judgment [9]. The study
examines four types of brain tumor lesions: glioma, meningioma, no tumor, and pituitary.
Glioma is a highly malignant tumor that originates from the brain’s glial cells and typically
has a poor prognosis. Meningioma is a benign tumor that originates from the meninges,
characterized by slow growth and the potential to compress brain tissue. The “no tumor”
category indicates the absence of any tumor. Pituitary tumors originate from the pituitary
gland and are mostly benign. These four types of brain tumors are depicted in Figure 1.

(a) (b)

(c) (d)

Figure 1. Four types of brain tumors exist: (a) glioma, (b) meningioma, (c) no tumor, and (d) pituitary.

In recent times, the advent of computer-aided diagnosis (CAD) technology, particularly
deep learning approaches, has revolutionized clinical image interpretation and disease
diagnosis [10]. The reason is that convolutional neural networks (CNNs) can autonomously
detect intricate patterns in images and accurately identify lesions with their powerful
feature extraction capabilities. With the help of multi-layer convolution and pooling
operations, CNNs analyze images layer by layer, extracting features from basic local details
to more complex, high-level representations. Ultimately, they accomplish the classification
task through the fully connected layer [11].
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For example, in breast tumor classification tasks, CNNs significantly outperform tradi-
tional methods with their strong feature extraction capabilities [12]. In the classification task
of diabetic retinopathy (DR), Ref. [13] employs a multi-step approach. First, fractal analysis
is used to identify the chaotic characteristics of fundus images. Next, features are extracted
using two-dimensional steady-state wavelet transformation. Key features are then screened
using chaotic particle swarm optimization combined with KNN. Finally, the classification
is completed using a recurrent neural network with long short-term memory.

Owing to the robust feature extraction capacity of CNNs, these networks have found
extensive application in brain tumor classification tasks [14,15]. For instance, Ref. [16]
introduced the CerebralNet architecture, which uses MobileNetV2 as its backbone and
integrates an Atrous module to enhance feature extraction. This architecture also incorpo-
rates a probability-enhanced strategy to simulate artifacts, achieving over 91% accuracy in
the original dataset (BM) and 96% in the enhanced dataset (ABM). This makes it a highly
effective method for brain tumor detection. To address the limited feature extraction ability
of single deep learning architectures in brain tumor classification, Ref. [17] proposed a
hybrid model framework (FCBTC) based on feature splicing. By fusing the feature vectors
of three pre-trained models—ResNet50, VGG16, and DenseNet121—the model’s ability
to capture complex patterns is enhanced, thereby improving classification performance.
Ref. [18] proposes a multitask CNN for predicting overall survival (OS) in patients with
glioblastoma (GBM) from preoperative multimodal MRI data. This method significantly im-
proves prediction accuracy by simultaneously predicting tumor genotype and OS. Ref. [19]
proposes a novel framework leveraging transfer learning to achieve high-accuracy clas-
sification of brain tumors in MRI images. Evaluations with pre-trained architectures like
ResNet, AlexNet, and VGG16 show that the enhanced ResNet 50 model attains 99.30% and
98.40% precision in classifying benign and malignant tumors, respectively. These results
surpass existing techniques, enhancing image fusion quality and facilitating more accurate
diagnoses. Lastly, Ref. [20] uses the YOLO NAS model to detect and classify pituitary tu-
mors, meningiomas, gliomas, and non-neoplastic tumors from MRI images of brain tumors.
The study utilizes the Rembrandt Repository’s MRI image database, preprocessing images
with hybrid anisotropic diffusion filtering (HADF) and segmenting them using U-Net and
EfficientNet-based encoder–decoder networks (En–DeNet). The final classification model
is developed using YOLO NAS technology.

Attention mechanisms can be used in computer vision tasks to capture fine-grained
features and are widely used in image classification. For example, Ref. [21] proposes a cross-
amplified attention mechanism named CroMAM to forecast the genetic profile and survival
prognosis of glioma. The model uses Swin Transformer and Vision Transformer to extract
features by fusing multi-magnification information and designs a cross-magnification
attention analysis method to improve interpretability. The experimental results indicate that
the model demonstrates outstanding performance in the prediction task. Ref. [22] proposed
a Transformer model calles ConvAttenMixer, which combines a convolutional layer and
two attention mechanisms (self-attention and external attention) for brain tumor MRI image
classification. The experiments show that ConvAttenMixer outperforms other baselines,
and the accuracy can be improved by about 4.7% compared with the accuracy of the baseline.
Ref. [23] introduces a brain tumor MRI classification framework leveraging a dual-branch
global–local parallel architecture, integrating macroscopic context and detailed features.
Categorical attention blocks are incorporated to address sample imbalance. The evaluation
outcomes reveal that the micro-average AUC reaches 0.989, surpassing several established
pre-trained CNN architectures, thereby validating the efficacy of the proposed approach.

While CNN technology has advanced notably in recent times, with its classification
accuracy improving, this progress is not without its cost. Specifically, with the increase in
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network structure complexity and the substantial rise in model parameter count, the run-
time of CNN models also shows a marked upward trend. This phenomenon not only
poses a challenge to application scenarios with high real-time requirements but also limits
its widespread deployment in resource-constrained computing environments to a certain
extent. Therefore, how to effectively optimize the running efficiency of models while
maintaining high accuracy has become one of the central challenges in the domain of
deep learning [24]. To aid in the early detection and classification of tumors, Ref. [25]
utilizes a pre-trained GoogLeNet to extract features from brain MRI images and applied
softmax, SVM, and K-NN classifiers for classification. The method has been validated
on multiple datasets, proving that the training speed and accuracy are far superior to
existing models. Ref. [26] introduces a hierarchical classification framework for brain tumor
images, integrating EfficientNet and a multi-head attention network. This framework
employs a pre-trained EfficientNetB4 for feature extraction, refines features via multi-route
convolution, and concludes with classification using a fully connected dual-dense network.
The model achieves excellent accuracy and running speed on the TCIA dataset, which is
better than the EfficientNetB4 model. Ref. [27] introduces the MK-YOLOv8 framework,
a compact deep learning architecture for real-time identification and categorization of brain
tumors in MRI imagery. The model integrates lightweight convolutions and modules like
Ghost convolution and C3Ghost to boost feature extraction efficacy, lower computational
demands, and augment the detection of small tumors.

In addition to incorporating attention mechanisms, lightweight modules, and trans-
fer learning to enhance model effectiveness, brain tumor images often exhibit challenges
such as suboptimal visual clarity and significant scale variations. Addressing these issues,
image preprocessing is conducted using the canonical ResNet50 architecture. Specifically,
an enhanced attention module is integrated to substitute the standard 3 × 3 convolution in
the residual framework of the adapted ResNet50, and multi-scale convolution is incorpo-
rated into the residual pathway. This modification transforms the residual pathway from
a straightforward linear mapping to a more intricate feature extraction process, thereby
boosting the model’s training performance metrics. The main improvements are as follows:

(1) The quality of the pictures is improved so that the model can better deal with the
phenomenon of uneven pictures in the brain tumor dataset.

(2) The performance index of the model is enhanced through the application of an ECA
module and multi-scale convolution, and the expression capability of the model is
enriched by optimizing the residual connection.

(3) Improve model training efficiency, improve accuracy, and shorten training time.

The remainder of the manuscript is structured as follows. Section 2 introduces the
research methods used for brain tumor classification. The study utilizes a public dataset con-
taining MRI images of four types of brain tumors, and the images undergo preprocessing
and augmentation. In terms of the model, optimization is based on ResNet50, incorporating
the ECA attention mechanism, multi-scale convolution, and fractional calculus denoising,
along with feature fusion with EfficientNetB0 to enhance performance. Additionally, trans-
fer learning techniques are employed, with detailed explanations of evaluation metrics and
hyperparameter settings. In Section 3, some definitions of Grünwald–Letnikov Fractional
Derivative and the denoising effect of this method and the existing method are provided.
Section 4 presents the experimental results obtained from optimizing the ResNet50 model
in conjunction with the EfficientNetB0 model for the brain tumor classification task, includ-
ing improvements in performance metrics, the effects of different optimization modules,
and visual analysis of the models. Section 5 discusses the reasons for the performance
improvements after model optimization and fusion, including contributions from the
ECA attention mechanism, multi-scale convolution, transfer learning, and EfficientNetB0,



Fractal Fract. 2025, 9, 614 5 of 26

as well as the limitations of the model and future research directions. Section 6 covers
the conclusion.

2. Materials and Methods
2.1. Materials

In the current research, brain tumor images are derived from two existing public
datasets on Kaggle, the Brain Tumor MRI dataset and the Brain Tumor Classification dataset
(MRI), provided by multiple medical institutions, and the download links are https://
www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data (accessed
on 1 January 2021) and https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-
classification-mri (accessed on 1 August 2025). The dataset comprises dual-modality
high-definition images captured via MRI, encompassing four classifications: glioma, menin-
gioma, no tumor, and pituitary. In the Brain Tumor MRI dataset, there are 300 images of
glioma, 306 images of meningioma, 405 images of notumor, and 300 images of pituitary.
In the Brain Tumor Classification dataset, there are 100 images of glioma, 115 images of
meningioma, 105 images of notumor, and 74 images of pituitary. The total image numbers
of Brain Tumor MRI dataset and Brain Tumor Classification dataset are 1311 and 394,
respectively, and the details are given in Table 1.

Table 1. Raw brain tumor dataset.

Category Brain Tumor MRI
Dataset

Brain Tumor
Classification Total

glioma 300 100 400
meningioma 306 115 421

notumor 405 105 510
pituitary 300 74 374

Total 1311 394 1705

2.2. Methods

The main goal of this paper is to utilize the ResNet50 deep learning model for early
brain tumor detection [28] and to enhance the model’s precision and computational effi-
ciency through network structure modifications, transfer learning, and integration of the
EfficientNetB0 lightweight module. However, the original medical images have problems
such as asymmetric image size, poor image quality, and insufficient contrast, which lead
to the inability to directly feed the images to the model or affect the training performance
of the model. In addition, brain tumor datasets are often limited in number; as shown
in Table 1, two datasets are selected but only 1705 images are selected, resulting in the
model being susceptible to overfitting and the validation performance being diminished.
The workflow of the brain tumor identification framework is depicted in Figure 2, which
includes five steps as image selection, categories of brain tumors, image preprocessing,
model training, and model evaluation.

2.2.1. Picture Preprocessing

As depicted in Figure 1, due to the asymmetric image size of the kaggle dataset, the image
details are not clear, and image preprocessing is required. The dataset itself is an off-white
image, so there is no need to grayscale the image. For the asymmetry of the original image
size and the large resolution of some images, it not only occupies a large space but also leads
to slow model training, so the image size is uniformly adjusted to 224 × 224 [29]. Brain
tumor images under MRI imaging have become a core means of analyzing and diagnosing
tumor pathological features [30]. Since MRI images can have low contrast, especially be-

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset/data
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri
https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri


Fractal Fract. 2025, 9, 614 6 of 26

tween the brain tumor area and surrounding normal tissue, using Clahe equalization can
enhance the local contrast of the image, making the tumor’s boundaries and internal structures
clearer [31]. In order to clearly present the details of tumor boundaries and blood vessels
in MRI brain tumor images, highlight the differences between the lesion area and normal
tissue, facilitate doctors to diagnose more accurately, and optimize the diagnostic efficacy of
the automated detection system, Laplace sharpening filtering is utilized to augment the image
quality. The pre-processed image is depicted in Figure 3.

target data

Selection Category Pretreatment
1 2 3

sharpen flitering

Input Pretreatment

4

Output

5
Model Training

target data

Selection Category Pretreatment
1 2 3

sharpen flitering

Input Pretreatment

4

Output

5
Model Training

Improved

ResNet50

ResNet50

Efficient

NetB0

Feature 

Concat

Model 

Train

Evaluation

glioma meningioma

notumor pituitary

Original image Resize

Clahe

glioma
notumor
pituitary

meningioma

Figure 2. Comprehensive flowchart of the brain tumor identification framework.

           
           

 
                        (a)

           

           

                        (b)

           

           

                        
(c)

           

           

                        
(d)

Figure 3. Picture preprocessing: (a) original picture, (b) picture resize, (c) picture clahe equalization,
and (d) picture Laplace sharpening filter.

As you can see from Table 1, even if two different datasets are integrated, the total
number is still small, necessitating image augmentation. This paper employs several image
expansion strategies. Initially, the dataset is augmented by applying random rotations and
translations to the images, as well as adjusting the brightness of the pictures. However,
the overuse of these techniques may result in excessive conformity to training data, thereby
reducing the model’s ability to generalize. To address this, some novel augmentation
techniques such as CUTOUT, MIXUP, and Local Augment are used. The original dataset
is split into training and validation sets, and the dataset is enriched by a variety of image
augmentation strategies. Table 2 lists the expanded brain tumor dataset. The expanded
picture is depicted in Figure 4.
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(a)

 

(b)

 

(c)
 

(d)

Figure 4. Picture extension: (a) initial picture, (b) picture flip, (c) picture cropping, and (d) local augment.

As depicted in Figure 4, (a) is the original image of the pre-processed MRI, (b) is
the MRI image randomly flipped between [−180°–180°], (c) fills in the 0 pixel value of
1 × 1 to cut off part of the area in the MRI, and (d) crops the image into four parts, and
each part applies a different image enhancement technique. By applying different image
enhancement techniques to increase the variety of images, we avoid overfitting images and
improve the generalization ability.

Table 2. Brain tumor dataset following picture augmentation.

Category Training Set Validation Set Total

glioma 1321 300 1621
meningioma 1339 306 1645

notumor 1595 405 2000
pituitary 1457 300 1757

2.2.2. Fractional Calculus Denoising

In the field of image processing, fractional calculus has become an indispensable
technical means in key links such as denoising, edge detection, and feature extraction due
to its excellent performance [32]. It realizes the precise control of complex image structure
and noise by using non-integer derivatives and integration operations. In this study,
the Grünwald–Letnikov integral is employed to achieve fractional calculus denoising
to improve the presence of noise in the image. The Grünwald–Letnikov definition is
shown below.

3. Grünwald–Letnikov Fractional Derivative
1. In traditional calculus, first-order derivatives are approximated by differences. For a

function f (t), its first-order derivative can be expressed as

f (1)(t) = lim
h→0

f (t)− f (t − h)
h

, (1)
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where f (1)(t) represents the first-order derivative of the function f (t) at point t, and h
is the differential step. This definition approximates the rate of change of the function
at point t by calculating the difference between the function value at point t and its
neighbor point t − h and dividing this difference by the distance h between the two
points. This differential method is widely used in numerical calculations due to its
simplicity and efficiency.

2. For higher-order derivatives, the above definitions can be extended. For a function
f (t), its n-th order derivative can be expressed as

f (n)(t) = lim
h→0

1
hn

n

∑
k=0

(−1)k
(

n
k

)
f (t − kh), (2)

where f (n)(t) is the n-th order derivative of f (t), h is the step size, and (n
k) is the

binomial coefficient.
3. Binomial coefficient is defined as(

n
k

)
=

n(n − 1)(n − 2) · · · (n − k + 1)
k!

, (3)

where (n
k) is the binomial coefficient, n is the order of the derivative, and k is the

index of summation. It expresses the number of combinations of k elements selected
from n elements. In the definition of derivatives, binomial coefficients are used to
assign weights to each point, allowing for a more accurate approximation of higher-
order derivatives.

4. The Grünwald–Letnikov fractional derivative is a method of approximating fractional
order derivatives by differential. It is based on the following definitions:

• Left-sided fractional derivative:

G
a Dα

t f (t) = lim
h→0+

1
hα

⌊ t−a
h ⌋

∑
k=0

(−1)k
(

α

k

)
f (t − kh), (4)

where G
a Dα

t f (t) is the left-sided α-th order Grünwald–Letnikov fractional deriva-
tive of f (t), a is the lower limit of the derivative, h is the step size, and ⌊·⌋
denotes the floor function. This definition is based on generalized binomial
coefficients assigning weights to different points, approximating the fractional
order change rate of the function by calculating the multi-point difference value,
and the left-end fractional order derivative focuses on the behavior to the left of
point t.

• Right-sided fractional derivative:

G
t Dα

b f (t) = lim
h→0+

1
hα

⌊ b−t
h ⌋

∑
k=0

(−1)k
(

α

k

)
f (t + kh), (5)

where G
t Dα

b f (t) is the right-sided α-th order Grünwald–Letnikov fractional
derivative of f (t), b is the upper limit of the derivative, h is the step size, and ⌊·⌋
denotes the floor function. The right-end fractional derivative is similar to the
left-end fractional derivative, but in the opposite direction, and is primarily
concerned with the behavior of the function to the right of the t-point.

5. Laplace transform:

• When α ∈ [0, 1),
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L
[

G
0 Dα

t f (t)
]
= sαF(s), (6)

where L denotes the Laplace transform, s is the complex frequency variable,
and F(s) is the Laplace transform of f (t). Laplace transforms are an important
tool for analyzing fractional derivatives.

• When α > 1, the Laplace transform does not exist.

In the Grünwald–Letnikov definition of fractional derivatives, fractional derivatives
are approximated by a weighted sequence of differences. The weights in this differential
sequence are determined by the generalized binomial coefficients (α

k). These weights can
actually be seen as a kind of “integral weight” because they act like integrals in calculations.
Specifically, the calculation process of fractional derivatives can be seen as the weighted
summation of the values of the function f (t) at different points, and the distribution of
these weights is similar to that of integral kernels.

In this way, the fractional derivative contains not only the properties of differentiation
(approximating the derivative by difference) but also the property of integration (smoothing
the signal by weighted summing). This combination allows fractional derivatives to process
both high-frequency and low-frequency components of signals, excelling in denoising and
feature extraction.

The image of Grünwald–Letnikov after denoising is shown in Figure 5.

 

(a)

 

(b)

 

(c)

Figure 5. Picture extension: (a) initial picture, (b) noise picture, and (c) noise cancellation picture.

The denoising effects of bilateral filtering and Gaussian filtering are shown in Figure 6.
As can be seen from the above Figure 6, the denoising effect of bilateral filtering is not

very good. Although Gaussian filtering is effective in denoising, there are still some noises.
In contrast, the denoising effect of fractional calculus is better.

 

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Denoise image: (a) noise picture, (b) bilateral filtered image, (c) noise picture, and (d) Gaus-
sian filtered image.

3.1. Model Structure

The advantage of selecting the ResNet50 architecture is its superior performance and
computational efficiency [33]. ResNet50 addresses issues related to vanishing and explod-
ing gradients in deep network training via residual connections, enabling the network
to capture more intricate feature representations and thereby significantly enhancing the
model’s precision and adaptability. Additionally, ResNet50 demonstrates strong perfor-
mance on multiple benchmark datasets, possesses robust transfer learning capabilities,
and can rapidly acclimate to diverse tasks and datasets. Consequently, this study utilizes
ResNet50 as the core framework, with the ResNet50 framework illustrated in Figure 7.

Figure 7. The ResNet50 framework.

In Figure 7, 7 × 7 denotes the size of the convolutional kernel, maxpool stands for
maximum pooling layer, /2 signifies that the stride length is 2, Bottleneck represents
bottleneck residual structure, and avgpool stands for average pooling layer. The ResNet50
architecture comprises several key components. Initially, the input layer receives a picture
with dimensions 224 × 224 × 3. This picture first undergoes a 7 × 7 convolutional layer with
a stride length of 2, producing 64 output channels. Subsequently, it is processed by a 3 × 3
max-pooling layer, which is a stride of 2 for dimensionality reduction. After downsampling,
it passes through four residual blocks; each residual block contains multiple residual units,
and each residual element is composed of three layers of convolution, specifically a 1 × 1
convolution. This architecture employs a 3 × 3 convolution for reducing the number of
dimensions, while a 1 × 1 convolution is utilized for extracting features and expanding the
dimensionality. After the final residual block, a global average pooling layer is applied to
compress the feature map into a fixed-size vector by lowering its dimensions. This vector is
subsequently fed into a fully connected layer, where the output size aligns with the number
of classes in the classification task. Eventually, the output from the fully connected layer
is processed through a Softmax function to generate classification probabilities. The two
ResNet50 residual structures are shown in Figure 8.



Fractal Fract. 2025, 9, 614 11 of 26

Figure 8a and Figure 8b show two different residual configurations: Basic residual
configurations and Bottleneck residual configurations, respectively. Both configurations are
core components of ResNet and are used to build networks at different depths. The base
residual block contains two convolutional layers with a 3 × 3 kernel, each followed by
a nonlinear activation function. The residual connection then adds the input directly to
the output of the convolutional layer and then activates the function through a nonlinear
operation. The residuals of the bottleneck residual structure are connected in the same way
as the basic residual block, and the convolutional layer includes three convolutional layers,
two convolutional layers with a 1 × 1 kernel and one convolutional layer with a 3 × 3 kernel.
Both residual structures require a 1 × 1 convolution to restore the original channel count
because a 1 × 1 convolution provides channel alignment for residual connections and other
structures, ensuring that the feature maps of different branches can be added correctly. The
1 × 1 convolution enhances feature expression ability while maintaining the channel count.

3×3，64

3×3，64

64-d

relu

relu

(a)

1×1，64

3×3，64

1×1，256

256-d

relu

relu

(b)

Figure 8. Residual configurations: (a) regular residual configuration and (b) bottleneck residual
configuration.

3.2. Model Improvements

Self-attention is a technique that allows the model to dynamically analyze the corre-
lation between elements of the input sequence. It generates feature representations with
contextual information by calculating the associative weight of each element in relation
to the others. The mechanism first converts the input into a query, key, and value vector,
then assesses the affinity between the query and the key to determine a weighting factor,
and ultimately applies this weight to the fusion value vector. This design is capable of
capturing both nearby and distant dependencies, avoiding the sequential computation
limitations of RNNs, and has become the core module of Transformer, widely used in the
field of deep learning [34]. The equation for the self-attention process is presented below.

A = softmax(QKT), (7)

Fout = AV. (8)

In Equation (7), the symbols Q, K, and T correspond to the query, key, and transpose
operations, respectively. Formula A = softmax(QKT) calculates the query matrix Q and the
transposed key matrix KT. The attention score is then normalized by the softmax function
to obtain the attention matrix A. In Equation (8), V denotes the value. Fout represents the
final output feature matrix of the self-attention mechanism. The self-attention mechanism
functions by transforming the input into three components: query, key, and value matrices.
These components are derived through linear transformations. The attention scores are
computed by taking the dot product of the query and key matrices, which results in an
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attention matrix. This matrix is then utilized to weight the value matrix, producing the
final output of the self-attention mechanism.

Nevertheless, despite its proficiency in modeling global relationships, self-attention
demands extensive data support and incurs high costs for structural modifications, ren-
dering it unsuitable for the small-scale dataset in this study. At the 2020 CVPR conference,
a new attention mechanism is proposed: the ECA attention mechanism. Compared with
the self-attention mechanism, the ECA attention mechanism dynamically calibrates the
importance of the channel through lightweight channel attention mechanisms (such as
1D convolution or cross-channel interaction), which directly enhances the model’s capac-
ity to discern details. Moreover, the ECA module is better adapted to computer vision
applications like image categorization and is more accommodating to limited data com-
pared to the self-attention mechanism. The equation for the ECA attention mechanism is
presented below.

g(x) =
1

H × W

H

∑
i=1

W

∑
j=1

Xi,j ∈ RC, (9)

k =

∥∥∥∥ log2(C)
γ

+
b
γ

∥∥∥∥
odd

, (10)

z = fk(g(x)) = σ
(
W ∗ δ(W ′ ∗ g(x))

)
, (11)

Y = X ⊙ σ(z). (12)

In Equation (9), C denotes the channel count of the input data, while H and W corre-
spond to the spatial dimensions (height and width) of the data. Xi,j indicates the values
of the data X at positions (i, j), and g(x) represents the output after applying global av-
erage pooling. Equation (9) describes a global average pooling (GAP) operation whose
purpose is to compress the spatial dimensions (height H and width W) of each channel
of the input feature graph X into a single value, resulting in the global descriptor g(x) for
each channel. In Equation (10), Y and b represent the hyperparameters used to control
the calculation of the size of the convolutional kernels. log2 denotes the logarithm func-
tion with base 2. The logarithm function log2(C) computes the logarithm of C to base 2.
This operation is commonly used for scaling or normalizing data. ∥·∥odd represents the
closest odd number as the convolutional kernel size usually needs to be odd. The goal
of Equation (10) is to dynamically determine the kernel length k for the 1D convolution
according to the channel count C of the input data. This avoids manually resizing con-
volutional cores. In Equation (11), fk(g(x)) represents the kth feature extraction function
applied to input g(x). Here, g(x) is the input feature, and fk is a function used to extract
a specific feature representation from the input feature. W ′ is the weight parameter of
the one-dimensional convolution, W ′ ∗ g(x) represents a one-dimensional convolution
operation on g(x) to generate an intermediate feature δ(W ′ ∗ g(x)), and δ represents the
activation function and is used to introduce nonlinearity. Equation (11) describes a one-
dimensional convolutional operation in the ECA attention mechanism to generate channel
attention weights z. In Equation (12), X is the input matrix, and Y is the output matrix.
σ(z) is the channel attention weight normalized by the Sigmoid activation function, and ⊙
represents element-wise multiplication operations. This means that each pixel value for
each channel is multiplied by the corresponding channel attention weight. Equation (12)
describes how to adjust the original feature map X using the channel attention weight
z; important features can be enhanced and unimportant features can be suppressed by
channel attention weight σ(z). Therefore, in order to optimize the performance of the
proposed model, the standard convolutional layer in the residual module is replaced by
the ECA attention module. This substitution addresses the limitations of the self-attention
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mechanism when dealing with limited data and improves the model’s ability to handle
fine-grained details. The design of residual blocks aims to effectively mitigate issues related
to vanishing gradients and network degradation in deep neural networks. By incorporating
residual branches, the network is able to focus on learning the differences between the
input and output (i.e., the residuals) instead of attempting to learn the entire mapping
relationship directly. The fundamental structure of the residual module is as follows:

y = F(x) + x, (13)

where F(x) is a feature extractor function, x represents the input data, and y indicates the
resulting feature. This design not only helps alleviate the vanishing gradient problem in
deep networks but also ensures that even when the output F(x) approaches zero, the input
data x can still be fully passed to the next layer, thus maintaining the flow of information
and learning capabilities in the network. Nevertheless, in certain scenarios, F(x) might fail
to effectively extract meaningful features, and its output could even approach zero. When
this occurs, the resultant feature y of the residual block is largely dictated by the input data
x, with F(x) making a minimal contribution. This, in turn, prevents F(x) from achieving
its maximum effectiveness. To tackle this challenge, multi-scale convolution is introduced
into the residual branch as a substitute for the traditional single-path feature extraction
method. Multi-scale convolution captures information across different scales of the input
features by employing convolutional kernels of various sizes in parallel, such as 1 × 1, 3 × 3,
and 5 × 5. Specifically, the single-layer convolution primarily serves to regulate the channel
dimensions and facilitate channel-wise dimensionality expansion or reduction. The 3 × 3
convolution focuses on extracting local features, while the 5 × 5 convolution, due to its
larger receptive field, captures global contextual information and long-range dependencies
in images. The core advantage of multi-scale convolution is that it can significantly improve
the network’s modeling ability of complex visual patterns by fusing the features of different
receptive fields in parallel. Once the multi-scale feature processing is finished, the outputs
from the multi-scale convolutions are combined along the channel axis using the concat
operation, merging features from various receptive fields. Subsequently, a 1 × 1 convolution
is applied to compress the concatenated high-dimensional features, ensuring they align
with the channel count required by the following network layers. This design ensures that
even when the F(x) output is nearly negligible, the multi-scale feature extraction layer
can capture valuable features across various scales, thereby enriching the feature details.
The improved residual connection is depicted in Figure 9.

1×1，64

ECA attention 

mechanism

1×1，256

256-d

relu

relu

3×3，64

relu

3×3，64 3×3，64

relu relu

Concat，768

3×3，64

Figure 9. Residual structure optimization.

Through the incorporation of multi-scale convolution, the network is capable of concur-
rently extracting multi-scale information from input features, thereby significantly boosting
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its ability to model complex visual patterns. Convolutional kernels of varying sizes—such
as 1 × 1, 3 × 3, and 5 × 5—each serve distinct roles in adjusting channel dimensions, extract-
ing local features, and grasping broad contextual details and extended-range relationships.
This fusion of multi-scale features not only enriches the feature representation but also
enhances the model’s flexibility in handling diverse visual patterns. In addition, multi-scale
convolution integrates features from various receptive fields via the concat operation and
employs a 1 × 1 convolution for channel compression to match the channel count required
by the following network layers. This approach enables efficient feature extraction and
representation without introducing excessive computational overhead. The fundamental
structure for enhancing the residual blocks is

y = F(x) + Conv1×1(Concat(Conv1×1(x), Conv3×3(x), Conv5×5(x))) (14)

where Concat denotes the Tensor Fusion Operation, which directly concatenates multiple
tensors (such as those resulting from 1 × 1, 3 × 3, and 5 × 5 convolutions) to increase the
feature dimension. Here, conv1×1(x), conv3×3(x), and conv5×5(x) correspond to the 1 × 1,
3 × 3, and 5 × 5 convolution operations performed on the input data x. The 1 × 1 convolution
serves to adjust the channel count; the 3 × 3 convolution is a typical convolution that
balances the receptive field and computational load while extracting local spatial features;
the 5 × 5 convolution is utilized to expand the receptive field to capture broader spatial
contexts. This design has advantages over residual connections because it can capture
spatial information at different scales simultaneously by merging features from convolution
kernels of different sizes, thereby enriching feature representation and enhancing the
model’s ability to perceive complex patterns.

3.3. Transfer Learning and Feature Fusion

While ResNet50 achieves high accuracy, it also entails significant computational com-
plexity, leading to extended computational durations. To enhance computational efficiency
while preserving strong performance, this paper employs the strategies of transfer learning
and the lightweight model EfficientNetB0. Specifically, transfer learning is performed on
the improved ResNet50 and EfficientNetB0 first, reducing the computational effort by freez-
ing the weights of the models. The features from both models are then integrated to fully
leverage the in-depth feature extraction strengths of ResNet50 and the compact nature of
EfficientNetB0. This fusion not only boosts the model’s effectiveness but also dramatically
cuts down on computational time, rendering it better suited for swift deployment and
streamlined operation in practical scenarios.

3.4. Evaluation Indicators

To assess the efficacy of the novel model on the brain tumor dataset, a range of evalua-
tion metrics are incorporated for model assessment, and the runtime is extended to compare
the training speed of various models. The metrics employed in the study encompassed
accuracy (Acc), precision (Pre), recall (Rec), specificity (Spe), and Kappa in addition to the
training and validation durations per round and the cumulative training and validation
times. TP (true positive) represents the number of samples correctly predicted as positive;
TN (true negative) represents the number of samples correctly predicted as negative; FP
(false positive) represents the number of negative samples incorrectly predicted as positive;
FN (false negative) represents the number of positive samples incorrectly predicted as
negative. These metrics are used to evaluate the performance of classification models and
help understand the model’s accuracy and errors across different categories.
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Acc represents the ratio of samples that the model predicts accurately. It is computed
by taking the sum of correctly identified positive and negative instances and dividing it by
the overall count of samples. The formula is as follows:

Acc =
TP + TN

TP + TN + FP + FN
(15)

Pre reflects the accuracy of the model in identifying positive cases. It is determined
by dividing the count of true positive cases by the total of true positive and false positive
cases. The formula is as follows:

Pre =
TP

TP + FP
(16)

Rec reflects the model’s accurate recognition rate of the actual positive sample, de-
termined by dividing the number of true examples by the total number of true and false
counterexamples. The formula is as follows:

Rec =
TP

TP + FN
(17)

Spe reflects the model’s capability in accurately recognizing negative instances. It is
obtained by dividing the count of true negative cases by the combined total of true negative
and false positive cases. The formula is as follows:

Spe =
TN

TN + FP
(18)

Kappa is a metric that assesses the consistency of classification models by contrasting
the model’s prediction outcomes with actual labels while accounting for the effect of
random guessing. The formula is

Kappa =
P0 − Pe

1 − Pe
, (19)

where P0 is the overall acc of the model, which represents the proportion of predictions
consistent with the real labels, and directly reflects the correctness of the model classification;
Pe represents the expected consistent proportion in the case of random guesses, calculated
by the edge distribution of real labels and predicted results, and the probability of excluding
blind pairs is calculated

Concurrently, to enhance the interpretability of the model, a confusion matrix has been
incorporated. Serving as a fundamental instrument for gauging the efficacy of classification
models, the confusion matrix visually presents the alignment between predicted outcomes
and actual labels in a matrix format. It offers a more holistic perspective on model per-
formance compared to relying on a single metric. The confusion matrix is displayed in
Table 3.

Table 3. Confusion matrix.

Category Predict Positive Classes Predict Negative Classes

True positive class TP FN
True negative class FP TN

3.5. Parameter Settings

In deep learning, the configuration of hyperparameters is pivotal for optimizing
model performance. The experiment utilizes the Python 3.8.0 language in conjunction
with the PyTorch 1.13.1+cu116 framework. The step size for gradient updates is set to
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0.001, the regularization strength is 1 × 10−4, each training iteration processes 32 samples,
and the total number of training epochs is established at 100. Furthermore, the loss
function employed in this study is the cross-entropy loss, while the optimization process
is facilitated by the stochastic gradient descent (SGD) optimizer. To mitigate the risk of
overfitting, an early stopping mechanism has been incorporated, with the early stopping
threshold set at 20.

3.6. p-Value Calculation

In order to more scientifically assess the significance of the performance differences
between ResNet50 and the fusion model, the calculation of P-values is added. The two mod-
els are trained separately 10 times, the mean and standard deviation of the differences are
calculated, and then the t statistic is calculated. The p-value is calculated based on the t
statistic, as shown in the formula below.

Calculate the differences:

di = accuracyB,i − accuracyA,i, (20)

where di is the difference for the i-th sample, accuracyB,i is the performance of model B for
the i-th sample, and accuracyA,i is the performance of model A for the i-th sample.

Calculate the mean of the differences:

d̄ =
1
n

n

∑
i=1

di, (21)

where d̄ is the mean of the differences, and n is the number of samples.
Calculate the standard deviation of the differences:

sd =

√
1

n − 1

n

∑
i=1

(di − d̄)2, (22)

where sd is the standard deviation of the differences, and n is the number of samples.
Calculate the t-statistic:

t =
d̄

sd/
√

n
, (23)

and use the t distribution table to find the corresponding p-value.

4. Results
In this chapter, the performance comparison between the baseline model and the

enhanced model is conducted, while an ablation study is employed to evaluate the impact
of different components on the model’s performance. Finally, the Grad-CAM visualization
technique is used to enhance the interpretability of the model.

4.1. Experimental Results and Analysis

This section will conduct a comparative analysis from three dimensions. Firstly,
ResNet50 is compared with other classical deep learning models, aiming to verify the
significant advantages of ResNet50 model. Secondly, ResNet50 is compared with ResNet50
optimized for transfer learning to show significant improvements in the speed and accuracy
of the improved model. Finally, the features from the transfer-learning-optimized ResNet50
and the lightweight model EfficientNetB0 are fused and compared to emphasize the notable
benefits of the lightweight model regarding efficiency and precision.
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4.1.1. Comparative Analysis of Performance Metrics Between ResNet50 and Traditional
CNN Architectures

In this study, the effectiveness of three standard CNN architectures is evaluated for
classifying brain tumor MRI data. ResNet50 (a deep model leveraging residual connections),
VGG16 (a deep, uniform convolutional structure), and AlexNet (a pioneering, shallower
architecture). The outcomes of the experiments are detailed in Table 4 below (where per
round training time is denoted as PTT, total training time as TTT, minutes as M, and hour
as H).

The results in Table 4 indicate that ResNet50 surpasses VGG16 in terms of performance
metrics. The ResNet50 architecture effectively mitigates the vanishing gradient problem in
deep networks by using residual links. This approach significantly reduces the computa-
tional complexity of training and inference while maintaining high accuracy. In contrast,
VGG16, while excelling in certain tasks, is less computationally efficient due to its deep
structure and large number of fully connected layer parameters. Additionally, despite
its relatively straightforward architecture and quicker computational speed, AlexNet’s
accuracy falls notably short compared to ResNet50.

Table 4. Comparative analysis of performance metrics between ResNet50 and traditional
CNN architectures.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%) PTT (M) TTT (H)

ResNet50 95.27 95.40 95.32 98.43 93.66 2.14 3.57
VGG16 93.35 93.18 93.35 97.80 91.09 3.35 5.58
AlexNet 88.08 88.21 87.96 95.98 83.99 1.17 1.95

4.1.2. Comparative Analysis of the Enhanced ResNet50 Versus the Original Model

The ResNet50 architecture is enhanced by incorporating the ECA attention mechanism
and multi-scale convolution and subsequently integrating this optimized ResNet50 with
the lightweight EfficientNet B0 model. The model trained under transfer learning yields
validation set results presented in Table 5. The findings indicate that, relative to the original
model, the optimized model achieves respective improvements of 3.51% in validation
accuracy and 4.7% in Kappa, and the training time per round and the total training time
are reduced by 0.47 min and 0.78 h, respectively.

Table 5. The outcome of comparing the Fusion ResNet50 (referred to as F-ResNet50 in the table) with
the initial model.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%) PTT (M) TTT (H)

ResNet50 95.27 95.40 95.32 98.43 93.66 2.14 3.57
F-ResNet50 98.78 98.82 98.68 99.59 98.36 1.67 2.79

To vividly illustrate the classification performance of ResNet50 on brain tumor datasets
after fusion, Figure 10 depicts the variation trends of accuracy and loss for both the fused
ResNet50 model and the original ResNet50 model as the number of training epochs in-
creases, thereby visually highlighting the benefits of the enhanced model during training.
Moreover, the distinctions in classification performance between the original and fused
models are further examined through the confusion matrix presented in Figure 11, offering
a quantitative foundation for performance assessment.

As depicted in Figure 10, the validation accuracy and validation loss trajectories,
smoothed exponentially (with a smoothing factor of 5), vividly illustrate the fluctuations
in model performance. The improved model outperforms the original model in terms of
validation accuracy and validation loss. Specifically, after the residual structure optimiza-
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tion and the integration of the lightweight model EfficientNet-B0, the model’s validation
accuracy sees a notable enhancement, while the validation loss experiences a substan-
tial reduction.

From the confusion matrix, it is evident that the fused ResNet50 model demonstrates
enhanced performance across all classification tasks. Specifically, the diagonal elements
of the confusion matrix have notably increased, indicating a higher number of correctly
classified samples. The reduction in values at other positions in the matrix corresponds to
fewer misclassifications.
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Figure 10. Training and loss metrics: (a) validation performance plot for ResNet50 and model fusion
and (b) validation loss plot for ResNet50 and model fusion.
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Figure 11. Confusion matrix: (a) ResNet50 confusion matrix and (b) model fusion confusion matrix.

4.1.3. Performance Comparison Between Traditional CNN Architectures with and Without
the Optimization Fusion Module

To confirm the broad applicability of the enhanced fusion design, the effectiveness
of three well-known neural network models—ResNet50, VGG16, and AlexNet—is eval-
uated. Under the premise of keeping the model parameter configuration consistent with
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Section 3.5, the performance indicators before and after adding the optimized fusion struc-
ture are tested, respectively. The outcomes of the experiments are presented in Table 6.

Table 6. Validation set performance results for ResNet50, VGG16, AlexNet, and their respective
optimized fusion models.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%) PTT (M) TTT (H)

ResNet50 95.27 95.40 95.32 98.43 93.66 2.14 3.57
F-ResNet50 98.78 98.82 98.68 99.59 98.36 1.67 2.79
VGG16 93.35 93.18 93.35 97.80 91.09 3.35 5.58
F-VGG16 95.65 95.49 95.51 98.56 94.16 1.83 3.05
AlexNet 88.08 88.21 87.96 95.98 83.99 1.17 1.95
F-AlexNet 89.15 89.20 89.20 96.37 87.46 0.98 1.63

4.1.4. Performance Comparison Between the ECA Module and Other Attention Modules

In this study, the performance of the ECA module is compared with several other
popular attention modules to evaluate its effectiveness in brain tumor image classification
tasks. The selected comparison modules include the SE attention mechanism and the
CBAM attention mechanism. The comparison results are shown in Table 7.

The comparison results shown in Table 7 of this study indicate that the ECA attention
mechanism outperforms the SE and CBAM attention mechanisms in brain tumor image
classification tasks. The ECA mechanism, with its unique channel attention strategy,
can more precisely identify and enhance key features in images, thereby improving the
model’s ability to grasp details, more effectively highlighting the lesion areas and increasing
classification accuracy. In contrast, although the SE mechanism can weight the channels, its
global pooling operation may lose local feature information, resulting in poor performance
in identifying complex lesions. The CBAM mechanism, while combining channel and
spatial attention, has not achieved the expected results in brain tumor image classification
tasks due to its complexity, which may not effectively coordinate the relationships between
channel and spatial features, thus affecting overall performance. Therefore, the ECA
mechanism outperforms the SE and CBAM mechanisms in key indicators such as accuracy,
recall, specificity, and Kappa coefficient, demonstrating its advantages in brain tumor image
classification tasks.

Table 7. Validation set performance results for ECA, SE, and CBAM.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%)

ECA 98.78 98.82 98.68 99.59 98.36
SE 96.16 96.09 96.26 98.72 94.85
CBAM 97.18 97.18 97.15 99.05 96.20

4.1.5. p-Value Calculation Result

In the 10 rounds of training conducted on model fusion and ResNet50, the performance
deviations of model fusion relative to ResNet50 are calculated after each training round,
yielding difference values of −3.51, −2.07, 1.57, −2.56, −2.32, −2.64, −0.53, −2.56, −4.43,
and −1.54. The mean of these differences is −2.059, with a standard deviation of 1.647. Based
on these data, the t-statistic is further calculated to be −3.953, with a corresponding p-value
of 0.0033. This p-value is far below the commonly used significance level of 0.05, indicating
that the performance difference between model fusion and ResNet50 is statistically significant,
meaning that the performance of model fusion is significantly better than that of ResNet50.
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4.1.6. Ablation Experiments

In this part, ablation experiments are conducted to demonstrate the effectiveness of
enhancing the residual structure and fusing ResNet50 with the EfficientNetB0 lightweight
model. The results of the ablation experiment are shown in Figure 12. Ablation experiments
are a systematic approach to evaluate the contribution of each component in a model by
progressively removing or modifying them. Figure 13 illustrates how the accuracy of the
modified model evolves with the number of training epochs. Table 8 presents the detailed
results of these experiments, including visual representations, and outlines the performance
metrics. Specifically, after incorporating the ECA attention mechanism and multi-scale
convolution, the accuracy (Acc) and Kappa coefficient of the model increased by 1.45% and
1.93%, respectively. After further feature fusion with the EfficientNetB0 lightweight model,
the Acc and Kappa coefficients increased by 2.06% and 2.77%, respectively. Regarding
the training time, the total training time of the model before fusion is 2.98 h, and after
fusion, it decreases to 2.79 h. The outcomes show that the propose enhancements not
only significantly improve the model’s performance but also reduce its running time.
The ECA attention mechanism enriches the model’s feature representation capabilities and
enhances its generalization by incorporating global information. Multi-scale convolution
improves the extraction of fine-grained features, enabling the model to handle details
with greater precision. Moreover, the use of transfer learning and lightweight models
increases training efficiency, minimizes resource usage, and accelerates model training.
These enhancements deliver excellent results on the validation data and substantially boost
the model’s applicability and practicality in real-world scenarios.

Table 8. Ablation study of optimized fusion of ResNet50 under the validation set.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%) PTT (M) TTT (H)

ResNet50 95.27 95.40 95.32 98.43 93.66 2.14 3.57
Optimized ResNet50 96.72 96.80 96.45 98.89 95.59 1.79 2.98
F-ResNet50 98.78 98.82 98.68 99.59 98.36 1.67 2.79
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Figure 12. Ablation study results visualized using bar charts.

From this figure, the highest validation accuracy of ResNet50 after 100 iterations is
95.27%. Optimized ResNet50 refers to the modification of the residual structure of ResNet50,
including the addition of the ECA attention mechanism and multi-scale convolution,
and it achieves the highest validation accuracy of 96.72% after 100 epochs. Model fusion
refers to the feature fusion of the optimized ResNet50 with the lightweight EfficientNetB0,
the highest validation accuracy of model fusion after running 100 rounds is 98.78%.
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Figure 13. The accuracy and iteration counts from the ablation experiments.

4.1.7. Visual Analytics

To visually illustrate the impact of model enhancement and fusion, Grad-CAM tech-
nology is employed for visual analysis. In the heatmap generated by Grad-CAM, different
colors represent the varying degrees of attention the model gives to different areas of the
input image. The red areas indicate the parts that the model pays the most attention to;
these areas contribute the most to the model’s decision and are typically where the model
identifies the most relevant features. The yellow areas indicate a moderate level of attention
from the model, contributing to the decision to some extent but not as significantly as the
red areas. The blue areas represent the parts with the lowest level of attention, contributing
the least to the decision, often consisting of background or unimportant feature areas.
Grad-CAM produces heat maps that pinpoint crucial regions in the model’s reasoning
process, shedding light on how it reacts to input data. To eliminate interference from
redundant black borders, the image is trimmed to remove the surplus areas. As depicted
in Figure 14, Column (a) displays the cropped brain tumor images, Column (b) shows the
corresponding Grad-CAM visualizations, and Column (c) presents the Grad-CAM images
following model optimization and fusion.

4.1.8. External Dataset Validation

In order to more comprehensively assess the model’s performance and generalization
capability, this study introduces the Ultralytics brain tumor dataset for external valida-
tion. This dataset contains two categories: negative (images without brain tumors) and
positive (images with brain tumors), with the training set consisting of 893 images and
the validation set consisting of 223 images. By validating on this independent dataset,
the model’s performance can be more objectively evaluated and its stability and accuracy
across different data distributions can be ensured. The dataset is shown in Table 9.

Validation is conducted on the ResNet50 and Model Fusion models using the Ultralyt-
ics brain tumor dataset, and the validation results are shown in Table 10.

As can be seen from Table 10, the improved model still shows good improvement
effects on external dataset, which fully demonstrates its stronger generalization ability and
diagnostic accuracy in brain tumor detection tasks, enabling it to more accurately identify
brain tumor images and provide more reliable auxiliary support for clinical diagnosis.
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(a) (b) (c)

Figure 14. Grad-CAM visualizations: (a) pre-processed brain tumor pictures, (b) Grad-CAM for
ResNet50 pictures, and (c) Grad-CAM for the enhanced ResNet50 pictures.

Table 9. Ultralytics brain tumor dataset.

Category Train Val

Feminine 419 142
Positive 459 81

Table 10. The validation results of ResNet50 and Model Fusion on the Ultralytics brain tumor dataset.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%)

ResNet50 95.07 96.48 95.80 96.14 89.31
F-ResNet50 97.76 98.59 97.90 98.25 95.14

In addition, this study also provides additional validation experiments using the
validation datasets provided by the Kaggle platform (https://www.kaggle.com/datasets/
tombackert/brain-tumor-mri-data) and the Hugging Face platform (accessed on 1 Novem-
ber 2024) (https://huggingface.co/datasets/Docty/Brain-Tumor-MRI (accessed on 1
November 2024)). Both datasets contain four categories: gliomas, meningiomas, non-
tumors, and pituitary tumors, which is consistent with the number of categories in the
extended dataset of this article. The weights obtained from training on the expanded
dataset in this paper were used to validate the validation set of the additional dataset.
The verification results are shown in Tables 11 and 12 below.

Table 11. The validation results of ResNet50 and Model Fusion on the Kaggle brain tumor dataset.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%)

ResNet50 93.30 94.57 93.78 94.45 91.11
F-ResNet50 96.17 96.88 96.70 97.05 94.23

For the validation on the dataset from Kaggle, the accuracy and Kappa value of F-
ResNet50 can be improved by 2.87% and 3.12%, respectively, compared to ResNet50.

https://www.kaggle.com/datasets/tombackert/brain-tumor-mri-data
https://www.kaggle.com/datasets/tombackert/brain-tumor-mri-data
https://huggingface.co/datasets/Docty/Brain-Tumor-MRI
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In addition, for Hugging Face dataset, the accuracy and Kappa value of F-ResNet50
improved by 2.34% and 2.43%, respectively. These validation results further confirm
the effectiveness of the weights obtained from training on the expanded dataset under
different data distributions.

Table 12. The validation results of ResNet50 and Model Fusion on the Hugging Face brain tu-
mor dataset.

Model Acc (%) Pre (%) Rec (%) Spe (%) Kappa (%)

ResNet50 94.55 95.62 94.78 95.53 92.23
F-ResNet50 96.89 97.45 97.33 97.48 94.66

5. Discussions
As can be observed from Table 10, the residual learning mechanism of ResNet50 makes

the training and inference process more efficient without losing accuracy. Therefore, this
paper chooses ResNet50 as the base model. The significant improvement in validation
accuracy and Kappa value of the optimized model, as well as the significant reduction in
training time, can be attributed to the following key factors: 1. ECA attention mechanism:
By adaptively adjusting the channel weight, the expression of key features is strengthened,
and the model’s capacity to identify crucial details is notably enhanced, which in turn
boosts classification accuracy. 2. Enhance the residual structure: Substituting the 1 × 1
convolution in the residual structure with multi-scale convolution (encompassing 1 × 1,
3 × 3, and 5 × 5 convolutions) can bolster the model’s proficiency in extracting features
across various scales. The 1 × 1 convolution is tasked with fusing channel information,
the 3 × 3 convolution is used for local feature extraction, and the 5 × 5 convolution cap-
tures broader contextual details. Additionally, the quantity of parameters is diminished
through the application of 1 × 1 convolution. 3. Transfer learning: By freezing model
parameters and subsequently fine-tuning based on pre-trained models, it significantly
reduces training time and computational resource consumption while swiftly adapting
to new tasks and enhancing model performance. 4. EfficientNetB0 lightweight model
feature fusion: EfficientNet-B0 achieves lightweight through the composite scaling method
(expanding depth, width, and resolution simultaneously), and its feature fusion mechanism
efficiently integrates multi-scale features, improving model performance while reducing
model running time. As shown in Figure 10, thanks to the influence of transfer learning,
the improved model exhibited a high initial validation accuracy early in the training phase.
This indicates that transfer learning significantly accelerated the model’s convergence
speed and endowed it with strong generalization capability right from the start of training.
As shown in Figure 11, the confusion matrix indicates that the ResNet50 model, enhanced
with the ECA module, multi-scale convolution, and lightweight feature fusion, excels in
managing intricate patterns and comprehensive data. It effectively distinguishes between
various types of data, significantly enhancing the model’s overall performance.

In Figure 14, Grad-CAM generates a heat map through gradient calculations, using
a “jet” color mapping where red, yellow, and blue represent high, medium, and low
contribution regions, respectively, highlighting key areas in the image for classification
decisions. From the images in Figure 14, it is seen that Figure 14a shows the cropped brain
tumor images, which have been preprocessed to remove excess black edges. Figure 14b
displays the Grad-CAM visualization results of the ResNet50 model in its original state. It
can be seen that the ResNet50 model mainly focuses on the lesion area, indicating that the
model is capable of recognizing key areas of the brain tumor. Specifically, the red and yellow
areas in the heat map are significantly concentrated in the tumor region, indicating that the
model has a high activation intensity in these areas, thus confirming the model’s ability to
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identify key features of brain tumors. This clustering phenomenon suggests that the model
has a high sensitivity for feature extraction of the tumor areas during the inference process,
effectively distinguishing tumor regions from non-tumor regions. Figure 14c shows a
broader area of attention with increased focus on the lesion area. It is noteworthy that areas
that were originally blue (indicating low attention) have transformed into yellow or red in
the enhanced model (indicating higher attention), while the originally yellow areas have
changed to red, demonstrating a significant increase in the model’s focus on these areas.
This transformation indicates that the optimized fusion has enhanced the model’s focusing
ability on the affected areas, thus improving the accuracy of brain tumor detection.

This study significantly improves the accuracy and efficiency of brain tumor classi-
fication by optimizing the ResNet50 model and combining it with the lightweight Effi-
cientNetB0 model. The optimized ResNet50 model achieves an accuracy of 98.78% on the
validation set, which is an improvement of 3.51% over the original model, with a Kappa
value increase of 4.7%. Meanwhile, the training efficiency of the model is also significantly
enhanced, reducing the training time per epoch from 2.14 min to 1.67 min and the total
training time from 3.57 h to 2.79 h. These improvements not only enhance the model’s
performance but also increase its feasibility in practical applications. By incorporating the
ECA attention mechanism and multi-scale convolutions, the model excels in recognizing
key features, particularly when dealing with complex patterns and comprehensive data.
Additionally, the lightweight design of EfficientNetB0 reduces the model’s runtime while
enhancing performance. These results indicate that the optimized model can diagnose
brain tumors earlier and more accurately, thereby improving treatment outcomes and
survival rates for patients. However, this study also has some limitations. First, the scale
of the experimental data is limited, and the model’s generalization ability on large-scale
datasets (on the order of 104–105) needs further validation. Second, although the ECA
attention mechanism demonstrates significant effects in this study, its performance advan-
tages require further confirmation through systematic comparisons with other attention
mechanisms (such as CBAM, SE, etc.). Moreover, the model’s performance may vary
when dealing with different types of brain tumors, which needs validation on more diverse
datasets. In addition, systematic evaluations of its inference speed, memory usage, and com-
putational efficiency on real clinical hardware (such as medical edge devices, embedded
systems, or hospital-grade servers) have not yet been conducted. In the future, we will seek
cooperation with some hospitals to verify the proposed model in clinical hardwares and
further optimize its accuracy. Finally, despite the improved interpretability of the model
through Grad-CAM technique, finding better ways to explain the model’s decision-making
process remains a challenge in practical applications. Future research will focus on further
validating the model’s generalization ability, optimizing the model architecture to enhance
its adaptability and feasibility, and exploring the model’s performance across different
types of brain tumors, aiming for applications in broader scenarios.

6. Conclusions
This study significantly improved the performance of brain tumor classification by op-

timizing the ResNet50 model and combining it with the lightweight EfficientNetB0 model.
The optimized model exhibited higher classification accuracy on the validation set while
greatly reducing training time and increasing training efficiency. These improvements
make the model more feasible for practical applications, allowing for earlier and more
accurate diagnosis of brain tumors, thereby enhancing patient treatment outcomes and sur-
vival rates. Additionally, the introduction of the ECA attention mechanism and multi-scale
convolution enhanced the model’s ability to recognize key features. The model particularly
showcased outstanding performance in handling complex patterns and comprehensive
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data. The lightweight design of EfficientNetB0 further enhanced the model’s performance
while reducing runtime. These achievements not only improved the model’s performance
but also strengthened its adaptability and feasibility in real-world applications, holding
significant clinical application value.
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