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Abstract

Defect detection in lithium-ion battery (LIB) welding presents unique challenges, including
scale heterogeneity, subtle texture variations, and severe class imbalance. We propose a
multi-scale convolutional framework that integrates EfficientNet-B0 for lightweight rep-
resentation learning, PANet for cross-scale feature aggregation, and a YOLOv8 detection
head augmented with multi-head attention. Parallel dilated convolutions are employed to
approximate self-similar receptive fields, enabling simultaneous sensitivity to fine-grained
microstructural anomalies and large-scale geometric irregularities. The approach is val-
idated on three datasets including RIAWELC, GC10-DET, and an industrial LIB defects
dataset, where it consistently outperforms competitive baselines, achieving 8–10% im-
provements in recall and F1-score while preserving real-time inference on GPU. Ablation
experiments and statistical significance tests isolate the contributions of attention and
multi-scale design, confirming their role in reducing false negatives. Attention-based visu-
alizations further enhance interpretability by exposing spatial regions driving predictions.
Limitations remain regarding fixed imaging conditions and partial reliance on synthetic
augmentation, but the framework establishes a principled direction toward efficient, inter-
pretable, and scalable defect inspection in industrial manufacturing.

Keywords: multi-scale feature processing; YOLO; transfer learning; industrial defect
detection; inline inspection systems; intelligent manufacturing

1. Introduction
To meet the growing demand for electric vehicles (EVs) and renewable energy storage

solutions, the production of lithium-ion batteries is growing exponentially. Ultrasonic
welding is a key step in many of the phases of the manufacturing of lithium-ion batteries;
one of them is the TAB welding where it connects the battery’s metal electrode sheets
(usually copper and aluminum electrodes) to the polar supports (terminals), thus forming
the negative and positive terminals of the battery as illustrated in Figure 1. Subsequently,
several industries use this welding technique to weld different metal parts together without
generating excessive heat; thus, in LIBs manufacturing, it is used while preserving the
integrity of sensitive battery components and ensuring high structural performance [1].
However, ultrasonic welding can also cause defects such as poor joints, shear, and misalign-
ment, etc., which can harm battery performance and pose safety risks [2]. Accurate and
rapid identification of these defects is essential to prevent damaged batteries from entering
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the market, which may bring concerns of human safety if any accident happens while
driving. Traditional quality control methods in lithium-ion battery manufacturing typically
rely on manual inspections and offline testing, which are ineffective and inconsistent in
detecting critical defects. With advances in computer vision and artificial intelligence
(AI), automated real-time defect detection has become reliable for using computer vision
algorithms in ultrasonic weld monitoring systems to improve the accuracy, consistency,
and speed of defect classification [3]. Typical defects include porosity, burns, cracks, and
incomplete welding, etc., which negatively affect battery conductivity and battery life, but
are often difficult to detect accurately using traditional methods [4]. These challenges can
be addressed using advanced computer vision techniques, such as convolutional neural
networks (CNNs). Due to their high accuracy and scalability, these models are widely used
in several real-time deep learning applications [5,6].

Figure 1. (a) Shows the industrial setting for cell after the weld defect detection; (b) shows block
diagram of cell’s TAB welded with busbar using ultrasonic welding; (c) shows the OK type situation
after ultrasonic welding.

Recent research has shown that machine learning (ML) and computer vision can effec-
tively automate defect classification in manufacturing. Deep learning models, including
CNNs and vision transformers, are commonly used for real-time applications; some of them
have been used to identify surface inconsistencies during welding and assess structural
integrity and these architectures enable accurate distinction between flawless and defective
welds across large datasets [7]. For example, Fan et al. [8] developed an image-feature-based
system for laser weld seam failure detection in automotive components, while Basamakis
et al. [9] proposed a deep semantic segmentation framework to detect seam gaps in fixtured
workpieces with high accuracy. Despite these advances, ultrasonic weld inspection in LIB
production remains uniquely challenging. Defects vary in size, shape, and appearance,
and visual cues are often subtle against complex weld textures. Moreover, inspection
must operate in real time to match high-throughput production lines. To address this, we
introduce a deep learning-based framework tailored for LIB weld defects that balances
accuracy, interpretability, and efficiency. EfficientNet serves as the lightweight backbone for
feature extraction [10], while multi-head attention enhances sensitivity to small or occluded
defects [11].
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To bridge the need for real-time, high-accuracy defect detection in LIB manufactur-
ing, we propose a lightweight, multi-scale, attention-enhanced CNN integrated into the
YOLOv8 framework. Unlike prior methods, our model balances detection granularity and
inference speed, making it suitable for deployment in high-throughput battery inspection
lines. We adopt a single-stage detector with an anchor-free head due to its streamlined
integration with our multi-scale feature pipeline and stable performance on weld imagery.
Empirically, this choice offers comparable accuracy to newer iterations while simplifying
model customization and training. Our experiments therefore prioritize a stable detector
that integrates cleanly with our multi-scale feature stack and transfer learning procedure,
allowing the paper to focus on the core contribution. We adopt YOLOv8 as the founda-
tional detector [12–15], condensing its comparison with later versions into a single practical
justification: YOLOv8 offers a stable, anchor-free design that integrates cleanly with our
multi-scale attention modules, delivering reliable performance without unnecessary archi-
tectural complexity. This balance enables deployment on industrial inspection lines where
both speed and precision are critical.

Unlike transformer-heavy detectors that achieve accuracy at high computational cost,
or lightweight CNNs that sacrifice sensitivity to delicate defects, our approach targets a
multi-scale, real-time, and interpretable solution by enabling inline inspection without
specialized heavy GPU infrastructure. The remainder of this paper is structured as follows:
Section 2 provides a detailed review of related work, highlighting existing approaches
to defect detection in industrial welding and LIB manufacturing. Section 3 outlines the
proposed methodology, describing the integration of EfficientNet, multi-head attention,
and YOLOv8, along with our training and transfer learning strategy, as well as the dataset
preparation process, including data collection, annotation standards, and augmentation
techniques. Section 4 details the experimental setup and quantitative and qualitative results,
including performance comparisons and ablation studies.

2. Related Work
In manufacturing lithium-ion batteries (LIBs), usually ultrasonic welding is a preferred

technique to bond dissimilar metals, such as copper and aluminum, at the battery terminals.
Ensuring weld quality in LIB production is traditionally performed with non-destructive
testing (NDT) methods such as phased-array ultrasonics and laser ultrasonics [4,16]. These
approaches provide high-resolution internal imaging but are limited in scalability, as they
require costly instrumentation, expert interpretation, and cannot be seamlessly integrated
into high-throughput production environments [17]. Their reliance on specialized sensing
pipelines restricts inline applicability, highlighting the need for automated visual inspection.

Traditional inspection of weld quality has relied on feature-based and handcrafted
approaches. For instance, Fan et al. [8] proposed an image-feature extraction method to
detect laser weld seam failures in automotive brake joints. Such methods demonstrate
feasibility but are sensitive to noise, hand-engineering choices, and cannot scale to the
complexity of LIB ultrasonic welds. Deep learning has brought significant advances.
Basamakis et al. [9] introduced a semantic segmentation framework for seam gap detection
in laser welding, demonstrating accurate spatial localization of defects. Li et al. [18]
extended this trend with a semi-supervised segmentation strategy for robotic welding,
addressing limited labels but requiring computationally intensive training pipelines. These
works illustrate the strengths of CNN-based architectures but also their limitations: while
effective for coarse weld anomalies, CNNs struggle with subtle localization of micro-defects
such as porosity or boundary cracks in ultrasonic weld imagery.

Similarly, broader AI reviews such as Rahman et al. [19] emphasize that while domain-
specific progress is rapid, translating heavy architectures into real-time industrial pipelines
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remains unresolved. More sophisticated networks have been proposed. More recently,
transformer-based detectors [20] have demonstrated strong accuracy by modeling long-
range dependencies through global self-attention. Wang et al. [21] presented 3DWDC-Net,
a 3D CNN enhanced with separable structure and global attention, achieving high ac-
curacy for weld defect classification from phased-array ultrasonic tomography. While
promising, these transformer-like attention models and volumetric CNNs are computa-
tionally expensive and unsuitable for inline inspection, where inference must operate at
production-line speeds.

Multi-Scale and Attention-Driven Architectures

Prior detectors for weld and steel-surface defects frequently rely on single-scale or
narrow-band receptive fields, which limit sensitivity to subtle micro-textures and larger
geometric patterns; few works report consistent per-class gains across both weld and steel
benchmarks, and explainability is rarely quantified. Our approach directly addresses these
gaps by (i) engineering parallel dilations that approximate scale-continuous, multi-scale
receptive fields, or robust multi-scale coverage, (ii) reporting class-wise results on weld
(RIAWELC) and steel (GC10-DET) alongside an industrial dataset, and (iii) validating
attention to defect regions with gradient-guided localization maps [22,23]. Collectively,
these design and evaluation choices provide scale-aware accuracy and this combination
improves class-wise detection (e.g., crease, fold) and provides interpretable evidence for
industrial quality engineering.

Multi-scale modeling has been widely adopted in defect detection, where strategies
such as atrous convolutions [24] and feature pyramids [25] aim to capture features across
resolutions. However, these methods often lack explicit validation on industrial weld
images, where both micro-textures and macro-geometry matter. Our work leverages a
structured multi-scale representation with self-similar receptive fields to better accommo-
date the heterogeneous scales of LIB weld defects. Real-time deployment in industrial QA
requires balancing accuracy with efficiency. Lightweight detectors such as SSD, MobileNet-
based variants, and recent evolutions like PP-YOLOE-S [26] provide speed but have not
demonstrated consistent performance on high-resolution weld defects. Our approach main-
tains a low-parameter footprint while sustaining accuracy on both public and industrial
datasets, demonstrating suitability for deployment in high-throughput LIB manufacturing
lines. Transformer-based detectors such as DETR, Deformable DETR, and RT-DETR have
introduced powerful self-attention mechanisms for object detection [27–29]. While these
models excel on large-scale benchmarks, their heavy computational cost hinders indus-
trial deployment. By integrating a multi-head attention block within a lightweight CNN
framework, we achieve transformer-level feature refinement while retaining YOLO-level
inference speed.

Taken together, prior work highlights three limitation: feature-engineering methods
are not scalable for LIB ultrasonic welds, CNN-based detectors are efficient but insufficiently
sensitive to subtle localization, and transformer-based or 3D CNN models are too heavy
for inline deployment. Our contribution directly addresses these gaps by introducing a
lightweight, multi-scale architecture. Through parallel dilated convolutions that emulate
scale-continuous receptive fields, PANet-based cross-scale fusion, and multi-head attention
refinement, our framework achieves real-time, interpretable, and scale-aware weld defect
detection suitable for industrial LIB manufacturing.

3. Methodology
In this section, we propose a pipeline using EfficientNet for feature extraction, YOLOv8

for real-time detection, and multi-head attention to achieve more refined features to detect
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welding defects during ultrasonic welds in vehicle LIBs manufacturing. While the advanced
version of YOLO offers potential enhancements, at the time of model development and
experimentation for this research, YOLOv8 represented a thoroughly validated and stable
detection framework, extensively documented and benchmarked across diverse industrial
applications. YOLOv8’s stability ensured reliable integration with our custom modules
(such as EfficientNet backbone and multi-head attention mechanisms), significantly reduc-
ing experimental risk in industrial environments. The proposed model represents a defect
detection algorithm grounded in deep neural networks. Its most prominent attribute lies in
its high-speed operational capabilities, rendering it particularly suited for real-time systems.
Subsequent sections provide proper step-by-step deployment details about the method.

3.1. Model Overview

In this study we proposed an EfficientNet with multi-head attention-based YOLOv8
defect detection model for detection of defects in vehicle LIB ultrasonic welds, presenting
unique challenges, including the need to identify small-scale anomalies (e.g., micro-cracks
or fold) or other larger structural defects like shear and porosity. Achieving this balance of
fine-grained detection and computational efficiency requires a model that can generalize
across varying defect types while remaining adaptable to new defect scenarios introduced
during production. In the first phase, the model used EfficientNet, which efficiently
captures multi-scale features; it ensures that the system remains reliable under diverse
manufacturing conditions. Therefore, EfficientNet-B0 [30] is utilized as a backbone network
that attempts to achieve feature representation through its lightweight model that enables
its use in edge devices and provides real-time quality assurance without loss; it is therefore
a perfect backbone network for real-time detection. EfficientNet’s architecture utilizes a
combination of depthwise convolutions, inverted residual bottlenecks, and channel-wise
attention (Squeeze-and-Excitation) modules, effectively capturing hierarchical representa-
tions from weld images. Additionally, to address the multi-scale and fractal-like complexity
of real-world defects, our model integrates multi-scale dilated convolution blocks within
the feature extraction process. Each of these blocks runs parallel convolutional filters with
dilation rates of 1, 2, and 5, aggregating their outputs to emulate the behavior of a fractional
integral operator. While our multi-branch convolutional design exhibits self-similarity
and multi-scale dilation patterns, we do not claim a formal fractal construct. Instead,
we leverage architectural intuition from prior works like FractalNet to efficiently capture
spatial hierarchies across multiple receptive fields. This fractal-inspired design expands the
effective receptive field and enriches features across scales, all without increasing parameter
count, supporting both computational efficiency and superior sensitivity to diverse defect
morphologies. Grounded in fractional-order systems theory and aligned with the latest
advances in fractal neural network, the features extraction flows are as follows:

Low-Level Features (initial layers): capture fundamental image attributes such as
edges, textures, and subtle gradients, which are crucial for recognizing simple yet critical
defect markers, such as edges of cracks or porosity boundaries.

Mid-Level Features (intermediate layers): identify structured features like shapes,
sizes, and continuity disruptions critical for differentiating complex structural defects (e.g.,
fold and crease).

High-Level Features (final layers before attention module): extract semantic informa-
tion, enabling the model to understand defect-specific patterns, distinguishing nuanced
defect types, and generalizing across diverse defect representations.

To represent the structure of EfficientNet-B0, we use the short form ‘Conv, MBConv1,
MBConv6’, where Conv is the first convolutional layer. The upper and lower layers of
our EfficientNet were trained with the RIAWELC dataset and GC10-DET dataset, respec-
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tively [31–34]. MBConv1 and MBConv6 are the variable kernel sizes and variable blocks of
the convolutional layer, AvgPool is the average pooling layer, and fully connect is the fully
connected linear layer, as shown in Figure 2.

Figure 2. Overview of the proposed architecture combining EfficientNet as backbone, PANet for
feature aggregation, and transformer-style multi-head self-attention for enhanced defect localization.
The AvgPooling layer prepares flattened tokens for attention, improving model focus on small,
occluded, or boundary defects. Final predictions are produced by a YOLOv8-style decoupled
detection head.

The multi-head attention mechanism, situated after feature extraction, significantly en-
hances the interpretability and discrimination capability of the model. Unlike conventional
convolutional methods that primarily operate locally, multi-head attention explicitly calcu-
lates global dependencies between spatial regions, effectively highlighting specific image
areas contributing most significantly to defect classification. The multi-head attention layer
is located between the EfficientNet-B0 pooling and the Softmax layer. Adding multi-head
attention is to drag the model into high-risk areas and increase sensitivity of detection
that traditional techniques might run undetected. This attention mechanism improves the
model’s accuracy by enhancing focus on regions most likely to contain defects, thereby
reducing false negatives in challenging inspection scenarios. The use of multiple atten-
tion heads allows the model to focus on both fine-grained details (e.g., micro-cracks) and
larger-scale patterns (e.g., cracks and porosity), providing a comprehensive understanding
of the defect landscape. Weld defects, such as cracks or porosity, can occur in irregular
and unpredictable patterns; therefore, multi-head attention effectively models such spa-
tial relationships, ensuring that critical regions receive greater emphasis. Each attention
head independently computes a refined representation of the feature map, focusing on a
specific subset of the feature space. Softmax function learnable weights are used to project
input features into lower-dimensional query, key, and value spaces, while optimizing the
attention mechanism for computational efficiency. The parallel processing of multiple
attention heads improves the robustness of the model, particularly in scenarios where
defects exhibit high variability in size, shape, or texture. The refined feature map generated
by the multi-head attention mechanism is seamlessly integrated with the input of YOLOv8,
creating a unified framework for ultrasonic weld defect detection.

The model utilizes YOLOv8 as its foundational architecture due to its efficient single-
pass detection capabilities, which allow real-time operation essential for high-speed LIB
production environments. A pivotal aspect of our methodology is the incorporation of the
multi-head attention mechanism to enhance feature discrimination and defect localization.
YOLOv8 provided simpler, well-documented, and modular architecture that facilitated
straightforward integration with attention modules, thus ensuring rapid and error-free
model customization. Its architecture processes the entire image in a single forward pass,
balancing accuracy and speed. Each image is divided into an S × S grid, and for each cell,
bounding boxes are predicted alongside confidence scores and class probabilities, enabling
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real-time analysis. Vanilla Yolov8 incorporates with the CSPDarknet53 [35], as the backbone
network, but we used EfficientNet as the backbone network with Mish activation function
as shown in Figure 2. Based on this configuration, we adopted the path aggregation
network (PANet) into the neck module of YOLOv8. To ensure optimal feature aggregation
and activation dynamics, we evaluated three neck-activation configurations: FPN + ReLU
(baseline), BiFPN + SiLU, and PANet + Mish. Our final design having PANet with Mish
demonstrated superior multi-scale fusion and smoother gradient propagation, yielding the
best balance between accuracy (78.4% mAP, 79.4% F1, 79.8% recall) and inference speed
(57.5 FPS), making it the most effective choice for our weld defect detection pipeline.

In this configuration, a universal network structure is built, which is coordinated
between top-down and bottom-up modules, and shallow location information and deep
semantic information are combined through feature fusion to increase the feature breadth
and depth. A ‘decoupled header’ is used in the main structure of YOLOv8, and distributed
focus loss (DFL) [36] is used for bounding box regression and object classification prediction.
The single-stage architecture, which does not employ the RPN, allows YOLO to achieve
a faster inference with simple architecture compared to the two-stage process, making
it suitable for applications requiring real-time or near-real-time performance in objects.
This YOLO variant optimizes the loss function by using the VFL loss (vertical federated
learning loss) [37] for classification and the CIoU (Complete Intersection over Union)
loss [38] and the DFL loss for regression, both of which have specific characteristics. The
YOLOv8 model is further enhanced by a tailored transfer learning strategy, utilizing pre-
trained weights from welding defect datasets to enhance detection accuracy for LIB-specific
defects. By pre-training on this domain-relevant dataset, the model acquires foundational
features that are then fine-tuned on LIB-specific data, reducing training time and increasing
detection robustness.

3.2. Dataset Preparation and Processing

In constructing a robust defect detection model, a well-curated and representative
dataset is essential. Our industrial dataset was carefully assembled to capture the range
of defects caused during ultrasonic welding, typically encountered in LIB production,
while ensuring the model’s ability to generalize across real-world conditions. The dataset
includes both real-world defect images and synthetic images generated through a Gen-
erative Adversarial Network (GAN), which extends the dataset’s diversity and enhances
the model’s defect recognition capabilities. The dataset exhibits moderate imbalance, with
shear and clean classes being more frequent than fold and crease. To address this, we ap-
plied class-balanced augmentation and GAN-based synthesis for underrepresented classes,
ensuring more uniform training distributions as detailed in Table 1. To maximize model
robustness and ensure adaptability across varying real-world conditions, extensive data
preprocessing and augmentation steps were applied to each image in the dataset. We also
employed the RIAWELC dataset and GC10-DET dataset in the transfer learning process,
which allow the model to generalize across a range of defect types and shapes. The prepro-
cessing pipeline consisted of resizing, normalization, and augmentation transformations
tailored to the nature of LIB welding defect detection, which is discussed in subsequent
sections. For the industrial LIB dataset, we adopted an 80/20 stratified train–test split. To
further confirm the robustness of our results, a 5-fold cross-validation protocol was applied
during ablation and hyperparameter tuning. Public datasets RIAWELC and GC10-DET
followed their respective official splits.
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Table 1. Summary of datasets used in this study, including native resolution, number of images per
class, and splits.

Dataset Images Resolution Classes Used Here Notes and Split

RIAWELC 24,407 224 × 224 LP, Porosity, Crack,
No-Defect

Used for
pre-training/transfer;

weld radiography.

GC10-DET 2300 2048 × 1000
10 total (we use punching
hole, weld line, inclusion,

waist folding)

Industrial steel defects;
class imbalance.

Industrial LIB (ours) 6000 + (after aug.) high-res (var.)

Shear (2000), Porosity
(1500), Crease (1200), Fold

(800), Crack (500),
OK type (5000)

Real + GAN synthesis; 80/20

To address class imbalance and expand the representation of rare defect categories,
we employed a Deep Convolutional GAN (DCGAN). The generator comprised four trans-
posed convolutional layers with batch normalization and LeakyReLU activations, while
the discriminator was structured symmetrically with convolutional layers and dropout
regularization. Training was conducted for 200 epochs using the Adam optimizer (learning
rate = 2 × 10−4, β1 = 0.5, batch size = 64). Convergence was monitored through loss stabi-
lization and qualitative inspection of generated images. Synthetic images were generated
using DCGAN and integrated only into the training set.

3.2.1. Data Collection Methods and Labeling Standards

The industrial dataset was systematically collected from an operational industrial set-
ting during the actual ultrasonic welding process for lithium-ion battery (LIB) production.
High-resolution images were captured using industrial-grade vision systems strategically
positioned along the automated manufacturing lines. The imaging devices maintained
consistent lighting conditions and fixed positions relative to the welding apparatus, en-
suring uniformity and minimizing variability unrelated to weld defects. Captured images
underwent immediate preliminary quality checks to filter out unusable or unclear cap-
tures, thus ensuring that all dataset images were consistently high clarity and relevant to
defect detection tasks. Domain experts from the production team, who were thoroughly
trained in recognizing various ultrasonic weld defects, conducted the labeling process. The
labeling strictly adhered to clearly defined guidelines that were specifically established
for this research. The defect labeling standards were based on internationally recognized
weld defect criteria, modified slightly to accommodate LIB-specific features. Each expert
annotator was required to do the following:

Identifying defect type: clearly classify each defect into predefined categories (cracks,
porosity, shear, fold, crease).

Precise bounding box labeling: accurately mark defect boundaries using bounding
boxes to ensure consistency in training YOLO-based detection models.

Cross-validation: Implement double-blind labeling, where two independent experts
annotate each image. Discrepancies were resolved through consensus discussions facilitated
by a senior quality assurance engineer.

Verification and Validation: 15% of the labeled dataset underwent rigorous random
audits by an independent senior engineer to verify annotation accuracy and consistency,
achieving an agreement rate exceeding 95%.

Additionally, synthetic data augmentation was performed using Generative Adver-
sarial Networks (GANs) to simulate rare or hard-to-capture defects. The GAN-generated
images were carefully validated by domain experts to ensure realism and relevance to
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actual defect scenarios, thereby enhancing dataset diversity and robustness. To verify the
realism of synthetic images, we computed Fréchet Inception Distance (FID) and Inception
Score (IS) [39,40], which were computed using the official PyTorch implementation from the
TorchMetrics library. All synthetic images generated by the GAN augmentation pipeline
were resized to match the input expectations of the Inception v3 network [41], which was
pre-trained on ImageNet-1k [42].

For FID computation, we extracted 2048-dimensional features from the pool3 layer of
Inception v3 and calculated the distance between real and synthetic distributions using 64-
bit double precision for stable covariance estimation. A sample size of 2000 synthetic images
and an equal number of real images from the training split were used. For IS computation,
the same 2000 synthetic images were evaluated. Each image was passed through Inception
v3, and the Softmax class probabilities were used to compute the KL divergence between
conditional and marginal label distributions, averaged over 10 splits. The synthetic samples
achieved an FID of 14.72 and an IS of 2.85, indicating close alignment with real defect
distributions. These evaluations, together with visual confirmation, demonstrate that the
augmented set enhances diversity without introducing significant domain shift.

3.2.2. RIAWELC Dataset

This is a radiographic image dataset for weld defects classification. The RIAWELC
dataset [31] collects 24,407 224 × 224 8-bit radiographic images digitalized in the.png
format with four classes of weld defects represented as lack of penetration (LP), porosity
(PO), cracks (CRs) and no defect (ND) as shown in Figure 3. It is used for initial training
to familiarize the model with defect types such as cracks and porosity. While it does not
contain ultrasonic-specific data, the common type in defects of cracks and porosity have
resemblance. Moreover, the dataset’s diverse defect types are essential for pre-training for
the model’s general structural anomaly recognition.

Figure 3. Representative samples from the RIAWELC dataset illustrating four defect categories: lack
of penetration (LP), porosity (PO), cracks (CRs), and no defect (ND). These examples highlight the
diversity of visual patterns used for pre-training.

3.2.3. GC10-DET Dataset

The GC10-DET dataset [33] was collected under actual industrial settings for extensive
metal surface defect identification. It includes a total of 2300 images with a resolution
of 2048 × 1000 pixels. The dataset includes ten types of defects found on the surface of
steel plates, in which we choose punching hole, weld line, inclusion, and waist folding for
transfer learning, which align with surface defects commonly encountered in ultrasonic
welding for the TABs of cell. Figure 4 displays some defect sample images with annotations.
With strong inter-class similarity and unbalanced sample distribution, the GC10-DET
dataset shows a substantial variance in the number of images for each type of defect.
Also, there could be multiple defect types in the same image, posing a challenge to defect
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detection algorithms due to the unbalanced data distribution. Together, the RIAWELC
dataset and GC10-DET dataset allow the model to generalize across a range of defect types
and shapes.

Figure 4. Example defect images from the GC10-DET dataset demonstrate the strong inter-class similarity.

3.2.4. Industrial Dataset for Industrial LIB Weld Images

This collection of industrial data consists of 1500 high-resolution images (native reso-
lution ≈ 2048 × 1000 pixels), acquired using production-line inspection cameras directly
from LIB manufacturing environments as shown in Figure 5. These images cover defect
types inherent to ultrasonic welding for TAB and busbar joints, including cracks, fold,
porosity, crease, and shear. Each image is meticulously annotated by domain experts of
production line to accurately label defect locations and types, ensuring high-quality labels
for supervised learning.

 

Figure 5. High-resolution images of ultrasonic weld defects from the industrial LIB dataset, covering
cracks, folds, porosity, creases, and shear defects.

To address class imbalance, we applied a GAN-based augmentation pipeline. The
generator G

(
z; θg

)
receives a latent input vector z ∼ N (0, 1) and produces a candidate weld-

defect image x̂. The discriminator D(z; θd) outputs a probability distribution estimating
whether input x is real or synthetic. Training follows the minimax formulation:

min
G

max
D

V(D, G) = Ex pdata(x)[log D(x)]+EZ pz(z)[log(1 − D(G(z)))] (1)
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The loss stabilizes adversarial updates by alternating between gradient steps on θd

and θg. For normalization, all samples are resized to 224 × 224, pixel values are scaled to
[0, 1], and standardized to zero mean and unit variance per channel:

x′ =
x − µ

σ
(2)

Hyperparameters include a batch size of 64, Adam optimizer with learning rate
2 × 10−42, β1 = 0.5, β2 = 0.999, and 200 training epochs. The generator uses transposed
convolutions with ReLU activations except at the output (Tanh), while the discriminator
applies strided convolutions with LeakyReLU (α = 0.2). Dropout (0.3) and spectral
normalization were added to improve convergence stability. Augmentation transformations
(rotation ± 15◦, scaling 0.9–1.1×, horizontal flip, contrast ± 20%) were applied to both
synthetic and real samples. Synthetic data expanded the industrial dataset from 3500
to ~6000 images, balancing defect categories: shear (2000), porosity (1500), crease (1200),
fold (800), crack (500), and clean (5000). The dataset was split 80/20 with stratification to
preserve per-class balance.

3.3. Feature Extraction Using EfficientNet

EfficientNet is used as a feature extraction network in the classification experiment.
EfficientNet uses a composite scaling mechanism to maintain a balance between resolution,
depth, and width, making the extracted features rich and computationally efficient. The
EfficientNet series includes 7 CNNs and is labeled as EfficientNet-B0 to EfficientNet-B7. In
this study, EfficientNet-B0 is used for feature extraction, which provides a balanced level of
computational efficiency and accuracy. We select EfficientNet-B0 because its compound
scaling (width, depth, resolution) and MBConv blocks with Squeeze-and-Excitation provide
high-quality features at low parameter cost. In our defect images, B0 offered the best
trade-off between small-object sensitivity and stability during transfer learning, while
avoiding the heavier footprint of larger backbones. This choice keeps the detector compact
without sacrificing the hierarchical detail needed for micro-crack, porosity, fold, and crease
discrimination. By inserting a multi-head attention layer between the pooling layer of
EfficientNet-B0 and the Softmax layer, EfficientNet-B0 can outperform a number of feature
extractors with fewer parameters at the same input resolution [42–45]. The high scalability
of EfficientNet-B0 can effectively extract meaningful features in ultrasonic weld images
whose complex structure contains defects. The specific structure of EfficientNet-B0 is shown
in Figure 6. It can be divided into seven blocks according to channel range, pass speed,
and filter size. To capture scale variation, we aggregate parallel dilated convolutions (e.g.,
dilation {1, 2, 5}) and sum the activations. This constructs receptive fields that function
like a fractional-order spatial operator, broadening context while retaining local sensitivity.
The result is a scale-spanning representation that enriches fine weld textures and larger
geometric irregularities without materially increasing parameters.

The initial input to the model is a high-resolution ultrasonic weld image I ∈ RH×W×C I,
where H, W, and C denote the image’s height, width, and channel count, respectively. These
images are often captured under constant lighting and environmental conditions of the
quick moving conveyer belt within the production line. To standardize the input, the
images are resized to a fixed resolution of 224 × 224 pixels and normalized to a [0, 1] range.
Resizing ensures compatibility with EfficientNet’s pre-trained weights, while normalization
reduces the influence of intensity variations. The process is expressed as follows:

I′ = Resize(I, (224, 224)),I′ =
I′ − µ

σ
(3)
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where µ and σ are the mean and standard deviation of the pixel intensities. Based on
MobileNet [46,47], the mobile inverted bottleneck (MBConv) is a key component of
EfficientNet-B0. EfficientNet processes the input images through a series of convolu-
tional layers, capturing hierarchical features ranging from low-level edges and textures to
high-level defect patterns. Each convolutional block produces a feature map Fl as follows:

Fl = σ(Wl ∗ Fl−1 + bl) (4)

where Wl and bl represent the weights and biases of the l − th layer, “*” denotes convolution,
and σ is the activation function. As shown in Figure 6, MBConv consists of two k1 × 1
convolutional layers, a depth convolutional layer, a Squeeze-and-Excitation (SE) [48,49]
module block, and a dropout layer. To improve the quality of the features, an SE module
is added in each convolutional block. It changes the size of the feature maps and distorts
the channels that are favorable for error detection. Channel expansion is performed over
the first k1 × 1 convolution layer. Deep convolution reduces the number of parameters.
By using SE blocks, one can focus specifically on the relationships between the channels
and assign variable weights to the channels instead of computing them uniformly. Channel
compression is completed via a k1 × 1 s convolution layer. The recalibration is achieved
through global average pooling, followed by a non-linear transformation:

F = Fl · Sigmoid(Ws · GlobalAvgPool(Fl) + bs) (5)

where Ws and bs are learnable parameters. This process ensures that defect-related features
are amplified, improving downstream detection accuracy. The final feature map F serves as
a rich representation of the input image, encapsulating spatial and semantic details critical
for identifying weld defects. These features are passed to Neck followed by avgpooling
before being fed into the multi-head attention module for further processing.

Figure 6. Illustrates in detail EfficientNet-B0 structure. (a) The proposed building block of EfficientNet-
B0 shows the mobile inverted bottleneck convolution (MBConv) with seven different blocks repre-
sented with different colors and (b) the proposed internal structure of MBConv.

3.4. Multi-Head Attention

The multi-head attention mechanism is a powerful extension of the self-attention
mechanism, designed to simultaneously focus on different aspects of the input feature
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map. In the context of ultrasonic welding defects detection, this mechanism is essential for
capturing the diverse spatial and contextual relationships that characterize various types
of defects. In this work, we use a multi-headed self-attention mechanism that handles
the attention of scale dot products [50]. In EfficientNet-B0, a multi-headed self-attention
layer is inserted between the pooling and Softmax layers. The multi-headed self-attention
mechanism allows the network to focus on important information in the image, so that
the network has many representation subspaces. The self-attention mechanism is able
to evaluate the different influences of the respective pixel positions and assign them
corresponding weights for classification. Thus, it is possible to evaluate the relationship of
a region to the surrounding area and determine its respective influence in many regions
based on the correlation. In similar cases such as defect detection in ultrasonic welding,
the influence on the environment often depends on the relationship to the surrounding.
Use the L×N matrix Y to represent a set of L to N dimensional objects. Y is the output of
the pooling layer, and the corresponding row Y is a separate object vector, as shown in
Figure 2.

The feature map F ∈ RH×W×C as a result of multi-head self-attention, the input
provided, undergoes a transformation into three distinct matrices as query Q, key K, and
value V:

Q = FWq, K = FWk, V = FWv (6)

where Wq, Wk, and Wv are learnable projection matrices that enable the model to focus
on specific feature subspaces. Such vectors can actually serve as an abstraction for the
calculation of attention. The similarities of the query and key vectors used to compute the
attention weights are calculated from the scaled dot product in the following equation:

Aij = so f tmax
(

Q · KT
√

dk

)
(7)

where Q and K represent query and key matrices derived from the feature map F, and
dk is the dimension of the keys. The Softmax function ensures that the attention weights
are normalized across all areas of the image, highlighting regions of high relevance. By
applying these computed attention weights to the value matrix V, the model recalibrates its
learned feature maps, effectively emphasizing crucial defect-specific regions (e.g., edges of
cracks, porosity clusters) and suppressing irrelevant or noisy features (e.g., non-defective
background textures). The attention weights A are applied to the value matrix V to produce
a refined attention-weighted feature map F′. The attention-weighted feature map F′ is then
given by

F′ = A · V (8)

Consequently, the recalibrated feature map F′ is enriched with explicit defect-location
and defect-type-specific contextual information, thereby directly enhancing interpretability
and classification performance. V allows the model to attend to critical defect features
while minimizing attention on irrelevant areas and amplifying features associated with
defects while suppressing irrelevant noise, such as background textures or other variations
in the terminal interface.

Self-attention enables the model to dynamically adapt its focus based on the unique
characteristics of each image. For example, it can prioritize features associated with a
crack’s initiation point while also capturing the progression of the crack across the weld.
For the case of multi-head self-attention, it linearly processes Q, K, and V multiple times
via different weight matrices and processes the input features through multiple parallel
attention heads, each focusing on a different aspect of the feature space as shown in
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Figure 7. Initially, for parallel attention computations, the input feature map F is split into
h subspaces, with each attention head independently computing a refined representation:

Fi
attention−head = so f tmax(

Q(i) · K(i)T
√

dk
)·V(i) (9)

where Qi,Ki, and Vi are the query, key, and value matrices specific to the i-th head. This
allows the model to observe the features from different attention heads, each learning
different aspects of the image. The output from each attention head is concatenated and
linearly transformed to generate the final attention-enhanced feature map Fmulti-head:

Fmulti−head = Concat
(

F1
attention−head , F2

attention−head, Fh
attention−head

)
Wo (10)

where Wo is a learnable weight matrix. Multi-head attention provides a comprehensive
representation of the input features, capturing both local details (e.g., micro-cracks) and
global context (e.g., uneven weld lines). We propose a network with an attention layer
that has 512 pixels at its output size and h = 3. This integration ensures that the contextual
enhancements provided by attention are effectively utilized in the final detection for the
YoloV8 model. Multi-head attention in our proposed model employs multiple parallel
attention heads, each independently focusing on distinct spatial or semantic aspects of
weld defects. This explicit differentiation is crucial for interpreting the model’s ability to
discriminate defect types, as detailed below:

 
Figure 7. Multi-head self-attention integration. (a) EfficientNet-B0 feature map is projected into query,
key, and value tensors. (b) Multiple heads attend to complementary spatial/semantic pattern, where
head outputs are concatenated and linearly fused to form an attention-enhanced feature map, which
is then fed to the detection head.

Fine-Grained Attention Heads: Certain attention heads specifically target small-scale
defects (e.g., micro-cracks and pores), capturing localized and subtle structural disconti-
nuities. These fine-grained attention heads effectively distinguish defects that are visually
minimal yet structurally critical.

Contextual Attention Heads: Other attention heads explicitly identify larger-scale
spatial patterns indicative of defects like shear and crease. By focusing on extended spatial
correlations and irregularities in larger regions, these heads provide interpretability into
the model’s decision process regarding extensive, structurally significant defects.
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Cross-Scale Attention Integration: Attention heads dynamically integrate features
across different scales, thereby comprehensively capturing defects exhibiting variable size
or texture patterns. This multi-scale interpretability ensures robust performance even in
highly varied industrial conditions.

To empirically support our selection of three attention heads with a 512-dimensional
embedding, we conducted an ablation study across different configurations. Using a single
attention head with a 256-dimensional output resulted in an mAP of 76.0%, precision of
75.1%, and recall of 76.8%, while maintaining high throughput at 62.5 FPS on an RTX 4090.
Increasing the number of heads to three and the embedding dimension to 512 boosted
the mAP to 78.4%, precision to 77.0%, and recall to 79.2%, with only a moderate drop in
FPS to 57.5 and a manageable parameter count of 30.1 million. Further increasing to six
heads and 768 dimensions yielded only marginal gains (mAP: 78.9%, recall: 79.5%), while
significantly degrading runtime speed to 52.1 FPS and increasing parameter count to 33.7
million. FLOPs grew from 92.4 GF (1-head) to 98.6 GF (3-head) and 108.9 GF (6-head),
respectively. This trade-off analysis confirms that the 3-head, 512-dim configuration offers
the optimal balance between accuracy and runtime performance, justifying its adoption in
our final model.

3.5. Detection Head Using YOLOv8

Following feature extraction with the multi-head mechanism, YOLOv8 is employed
as the detection head to locate and classify defects. YOLOv8 is a one-stage object detection
framework that achieves a balance between speed and accuracy, making it particularly
suited for high-throughput manufacturing environments. To ensure quality and safety,
defects such as cracks, porosity, folds, shears, and creases must be detected in real time.
During the manufacturing pipeline of vehicle LIBs production, a preliminary experimental
evaluation was performed which indicated that YOLOv8, with our EfficientNet-based fea-
ture extraction backbone and multi-head attention integration, offered superior robustness
and accuracy, specifically on our defect detection datasets (private LIB ultrasonic welding
dataset, GC10-DET, and RIAWELC). Although YOLOv10 showed promising results in gen-
eral object detection benchmarks, its incremental accuracy improvements were marginal
(less than 1–2% increase in mAP), specifically for subtle defect classes such as crease and
fold. Thus, YOLOv8 provided comparable practical accuracy without additional compu-
tational overhead as it offers excellent inference speed (~65 FPS on an RTX 4090 GPU)
and reliable detection accuracy, making it a strong industrial baseline for high-speed LIB
manufacturing lines. However, our deployment prioritizes real-time CPU-based inference.
In this environment, our model achieves 45 FPS on a standard Intel i5 CPU with 512 MB
RAM, significantly outperforming YOLOv8’s CPU performance (≈22 FPS from Ultralytics
benchmarks). Conversely, although YOLOv10 can achieve modest GPU speed gains (5–8%)
over YOLOv8 on certain tasks, it increases model complexity (2.3 M vs. 1.7 M parameters,
6.7 G vs. 3.2 G FLOPs). For inline industrial use, our model’s CPU-level performance and
reduced resource footprint offer decisive practical benefits.

The feature map Fmulti-head from the EfficientNet backbone with attention is fed into
YOLOv8’s detection module. This module refines the features and predicts bounding
boxes, confidence scores, and class probabilities for each defect. Later, YOLOv8 divides the
input feature map into a grid of S × S cells. Each cell predicts bounding boxes for objects
potentially located within its region, along with associated confidence scores and class
probabilities. The output for a single grid cell is represented as

Oij = {(x, y, w, h, c, p1, p2, . . . , pk)} (11)
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where (x, y) are the normalized center coordinates of the bounding box. w, h are the width
and height of the bounding box. c is the confidence score for the presence of a defect. pk is
the probability of the defect belonging to class k. Unlike earlier YOLO models, YOLOv8
adopts an anchor-free approach, simplifying the architecture and improving inference
speed. Instead of predefined anchor boxes, it predicts box centers and offsets directly:

∆x, ∆y, ∆w, ∆h = f (F) (12)

where f represents the prediction function. YOLOv8’s training process minimizes a com-
bined loss function, incorporating the following:

• Complete Intersection over Union (CIoU) loss for precise bounding box regression.
• Objectness loss (confidence score) based on Binary Cross-Entropy to distinguish be-

tween defect and background effectively.
• Classification loss based on Binary Cross-Entropy with logits for accurate defect

classification.

Formally, the combined loss function is represented as

LYOLO = λlocLCIoU + λcon fLcon f + λclsLcls (13)

where λcls = 1, λcon f = 1 and the localization loss Lloc measures the accuracy of the
bounding box predictions using the CIoU (Complete Intersection over Union) metric:

Lloc = 1 − CIoU
(

B, B̂
)

(14)

where B, B̂ are the predicted and ground truth bounding boxes. YOLOv8 generates predic-
tions at multiple scales to handle defects of varying sizes, from small crease patterns to large
cracks. This multi-scale capability ensures comprehensive detection across all defect types.
Lastly, the optimized YOLOv8 model with transfer learning undergoes further training
with a combination of real and augmented defect images. Stochastic gradient descent (SGD)
with momentum is used, hence improving training convergence and model stability, which
is explained in a further section. Momentum, m, helps in accelerating updates and reducing
oscillations in the gradient descent as follows:

∆wt = m · ∆wt−1 − η∆LYOLO+TL (15)

where ∆wt represents the weight update at iteration t.

4. Results and Experimentations
We thoroughly evaluate the proposed model for defects in lithium-ion battery’s TABs

due to ultrasonic welds, while conducting a series of experimental techniques. The aim is
to verify the accuracy of the model in terms of detected defects, localization, and efficiency
in a real LIB production environment. This section deals with the general experimental
setup, the generation of the dataset, transfer learning, evaluation, and critical analysis of
the results.

4.1. Evaluation Metrics

The effectiveness of the proposed model was evaluated using a set of key metrics
widely adopted in defect detection tasks:
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Precision (P): The proportion of correctly identified defects out of all predicted defects,
offering a measure of the model’s accuracy in defect detection. Precision was calculated as

Precision =
True positives

True positives + False positives
(16)

where TP represents true positives and FP denotes false positives.
Recall (R): The proportion of actual defects that were detected by the model, indicating

the model’s coverage in identifying defects. Recall was calculated as

Recall =
True positives

True positives + False negatives
(17)

where FN represents false negatives.
Average Precision (AP): in AP, the precision of the model is evaluated for a given

detection category by measuring the area under the precision–recall curve.

AP =
Precision + Recall

2
(18)

Mean Average Precision (mAP): in mAP is the averaged AP score across all categories,
and it provides a measurement of the overall detection accuracy, for N class.

mAP =
1
N ∑N

i=1 APi (19)

4.2. Experimentations

The results section evaluates the performance of the proposed model, focusing on
its effectiveness in detecting the defects that occurred during ultrasonic welds within
lithium-ion battery (LIB) manufacturing. Performance metrics including precision, recall,
average precision (AP), and mean average precision (mAP) were assessed on an industrial
dataset containing real and synthetic defect images. An ablation study confirmed the
critical contributions of the attention mechanism and transfer learning, with multi-head
attention enhancing defect localization and reducing false positives, and transfer learning
enabling faster convergence and improved generalization. Comparative baseline testing
further highlighted our model’s superiority over conventional CNNs, YOLOv5 and vanilla
YOLOv8, and other state-of-the-art methods, while our model proved to be significantly
better in performance across all metrics, underscoring its suitability for automated defect
detection for the LIB’s TAB ultrasonic welding defects.

4.2.1. Implementation Details

All experiments were conducted on a workstation equipped with NVIDIA RTX 4090
GPU (24 GB VRAM) and Intel i9-13900KF CPU, with PyTorch 1.13 and CUDA 11.7. The
industrial dataset consisted of high-resolution images (native resolution ≈ 2048 × 1000 pix-
els), acquired using production line inspection cameras. All images were subsequently
resized to 640 × 640 pixels for training and inference and the inference was conducted with
a fixed batch size of 16. Additionally, we employed TensorFlow 2.11 for preprocessing and
data augmentation. We also standardized inference resolution to 2048 × 1000 and batch
size to 16 across all benchmark models unless otherwise noted. The model architecture
was implemented in PyTorch 1.9.1 for the primary deep learning operations and used
during earlier stages of development, but benchmarking was completed using the compati-
ble stack without introducing modifications to the model structure or hyperparameters.
TensorFlow was used for preprocessing and data augmentation. The model’s training
strategy incorporated transfer learning with weights pre-trained on an ultrasonic weld
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defect dataset, which were then fine-tuned specifically for LIB weld defects. For the model
training, the dataset comprises two primary components; one is an industrial dataset that is
based on the industrial images directly captured during the manufacturing process and the
second is a publicly available dataset which is further discussed. To optimize the model’s
performance for defect detection, transfer learning is implemented using state-of-the-art
datasets which comprise annotated images of typical defects, such as cracks and porosity,
crease, fold, etc., closely with the characteristics found in lithium-ion batteries during TAB
with busbar welding.

4.2.2. Pre-Training and Layer Freezing Unfreezing

The lower layers of the backbone network, which capture fundamental features like
edges, textures, and shapes, are pre-trained on the RIAWELC dataset and GC10-DET
dataset. This pre-training phase allows the network to learn features specifically relevant
to the defect weld domain, enhancing its ability to identify delicate defects caused during
welding. Formally, for an input image I ∈ RH×W×C, where H, W, and C represent the
image height, width, and channels, respectively, the pre-trained layers generate a feature
map which is F ∈ RH′×W ′×C′

; therefore,

F = f
(

I; θpre−trained

)
(20)

where f denotes the series of convolutional operations in the lower layers, and θpre-trained

signifies the weights learned from the RIAWELC dataset and GC10-DET dataset. After
pre-training, the upper layers of the features network, which are responsible for high-level
features and defect classification, are fine-tuned using our industrial dataset for lithium-ion
battery-specific defects. This fine-tuning adapts the model to detect the delicate defects of
battery terminal welds, such as specific crack or porosity formations or irregular bonding
patterns which may lie under folds or creases. The fine-tuning process optimizes the model’s
parameters by minimizing the adjusted YOLOv8 loss function, LYOLO + TL, expressed as

LYOLO+TL = λcoord∑S2

i=0 ∑B
j=0 1obj

ij

(
(xi − x̂i)

2 + (yi − ŷi)
2
)
+ λcon f ∑S2

i=0 1obj
i (ci − ĉi)

2 + λclass∑S2

i=0 ∑K
k=1 1obj

i

(
pik − p̂ik)

2 (21)

where λcoord, λconf, and λclass are scaling factors for localization, confidence, and classifi-
cation losses, respectively. 1obj

ij is an indicator function set to 1 if an object is present in
the cell, x̂, ŷ, ĉ, and p̂ are the ground truth values for the box coordinates, confidence, and
class probabilities. To avoid overfitting during the fine-tuning phase, a layer freezing and
gradual unfreezing strategy is implemented. Initially, the lower layers responsible for cap-
turing generalizable features are frozen. This stabilizes the network and ensures that only
the defect-specific layers are updated during early training epochs. Over time, the lower
layers are gradually unfrozen to allow the entire network to adapt to application-specific
defect patterns.

4.2.3. Hyperparameter Settings and Optimization Strategies

The training procedure employed a carefully structured optimization strategy to
ensure stable convergence and high generalization performance. The selection of these
parameters is discussed in detail in the following sections, allowing the model to learn
more efficiently, avoid underfitting and overfitting, and balance performance with compu-
tational resources.

i. Weight Initialization Regularization and Overfitting Mitigation

The lower layers of the EfficientNet backbone network, responsible for general feature
extraction such as edges and textures, were pre-trained on the RIAWELC and GC10-DET
datasets. The model weights obtained from this pre-training phase served as initial weights,
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significantly improving training efficiency and reducing convergence time. Subsequently,
the upper layers specific to defect detection were fine-tuned using the LIB-specific dataset
through supervised learning. Several regularization techniques were incorporated to
enhance model generalization and prevent overfitting, including dropout layers (with
dropout rate of 0.2 within MBConv blocks of EfficientNet) and early stopping criteria based
on validation loss. The early stopping strategy monitored validation loss improvement,
ceasing training once no significant decrease occurred for 10 consecutive epochs.

ii. Optimizer and Batch Size

Although both Adam and SGD optimizers were tested, SGD with momentum was
selected as it provided more stable convergence and superior generalization compared to
Adam, which tended to overfit despite faster initial convergence. Therefore, our model was
optimized using Stochastic Gradient Descent (SGD) enhanced by momentum to facilitate
smoother and faster convergence. The momentum parameter was set to 0.9, promoting
stability in training by reducing oscillations in gradient updates. We chose a batch size
of 16 to simultaneously process the training samples before updating the model’s internal
parameters, thereby striking a balance between memory efficiency and computational speed.
Batch sizes that are too small can result in noisy updates; very large batches can result in higher
memory requirements and slower convergence due to more frequent parameter changes.
Smaller batches allow SGD to generalize better due to noisier gradients but may slow down
convergence as the gradient steps may oscillate. Conversely, larger batches can smooth out the
gradient but have risk of overfitting if they do not capture enough variation. If we visualize
the batch size effect on convergence as shown in Figure 8a, smaller batch sizes typically exhibit
more oscillations in the loss function but can explore the error surface more thoroughly, while
larger batch sizes tend to converge smoothly but can become stuck in sharp local minima.

  
(a) (b) 

Figure 8. (a) Graph on the left shows the effect of varying batch sizes on training convergence,
with smaller batches leading to noisier but potentially more explorative learning. (b) Graph on the
right shows the decay in learning rate over epochs, where the learning rate decreases by a factor of
0.1 every 10 epochs.

iii. Learning Rate

The learning rate controls the size of the steps taken by the optimizer in the direction
of the gradient during training. For our model, an initial learning rate of 0.001 was
selected. This learning rate was found to provide a good balance, ensuring that the model
made substantial progress in each epoch without diverging due to too-large updates. As
training progresses, we apply a decay factor to the learning rate to allow for more refined
adjustments as the model approaches a local minimum. As in Figure 8b, the learning rate
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decay is applied every 10 epochs, reducing the learning rate by a factor of 0.1, which can be
mathematically represented as

ηt = η0·γ(
t
T ) (22)

where ηt is the learning rate at epoch t, η0 is the initial learning rate, γ is the decay factor (in
this case, 0.1), T is the total number of epochs for each decay interval (10 epochs here). This
gradual reduction helps stabilize convergence as the model’s parameters become closer to
optimal values, preventing the model from “overshooting” the optimal point. As it nears
convergence, a smaller learning rate fine-tunes the weights, and minimizes oscillations
around the minima, enabling the model to settle. This decay allows for sharper adjustments
early on and fine adjustments later, contributing to smoother convergence.

iv. Epoch setting for total training

Setting an appropriate number of epochs is crucial for achieving convergence without
overfitting. In this study, 50 epochs were chosen based on preliminary experiments, where
we observed that the model achieved stable convergence within this range.

The convergence of the loss function over epochs can be expressed as

L(θ) =
1
N ∑N

i=1ℓ(yi, f (xi; θ)) (23)

where L(θ) represents the overall loss as a function of model parameters θ, N is the dataset size,
ℓ denotes the individual loss for each training sample (xi, yi). During preliminary training,
we monitored the validation loss across epochs, noting that the model’s loss stabilized after
around 50 epochs. In practice, this corresponds to reaching a point where additional epochs
do not significantly reduce the validation loss, indicating that the model has captured the
necessary patterns without overfitting. The graph shown in Figure 9 illustrates the trend
observed in training and validation loss over epochs. Early epochs show rapid decreases in
loss as the model learns core patterns. Beyond 30–40 epochs, the rate of improvement slows,
with losses stabilizing near 50 epochs, suggesting optimal convergence as can be seen on
the figure on the left. In the right figure, the graph demonstrates how the model’s training
and validation losses converge over time. Initially, both losses decrease as the model learns.
Eventually, validation loss stabilizes, indicating that the model generalizes well to unseen
data, while training loss continues to decrease, signaling effective learning without overfitting.

(a) (b) 

Figure 9. Training dynamics of the proposed model: (a) learning rate decay schedule showing
reduction every 10 epochs, (b) convergence of training and validation losses over 50 epochs, indicating
stable generalization and effective convergence.
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4.3. Results

The results across the industrial LIB, RIAWELC, and GC10-DET datasets demonstrate
three central findings. First, integrating multi-head attention consistently enhances recall
by reducing false negatives, particularly for small or occluded defects. Second, adopting
PANet with Mish activation yields superior multi-scale fusion, balancing gradient stability
with feature refinement across defect sizes. Third, the three-head attention configuration
provides the optimal trade-off, delivering the highest F1-score improvements while preserv-
ing real-time inference speed. These observations highlight that the proposed architectural
choices are not incremental but strategically targeted to address the challenges of subtle
localization, scale heterogeneity, and efficiency in LIB weld defect detection.

4.3.1. Performance Evaluations and Comparison Analysis

For distinct defects like porosity and cracks, the model demonstrates strong perfor-
mance, achieving high precision and average precision (AP) scores of 78.5% and 80.1%,
respectively, can be seen in Figure 10.

Figure 10. Illustrates that our proposed model delivers robust detection and localization capabilities
on the custom LIB dataset, enabling accurate and efficient defect identification for real-time settings.

The better performance detecting porosity and cracks is largely due to the clear visual
markers these defects possess, allowing YOLOv8’s detection strength and EfficientNet-B0’s
feature extraction to be fully leveraged. However, detecting delicate defects like fold and
crease proved more challenging. These defects yielded lower recall rates, between 72.0%
and 75.3%, and AP scores ranging from 70.8% to 73.6%. The shear defect presents a middle
ground in detection difficulty since it is almost like cracks in appearance but with shear
from either side, with balanced performance metrics of precision at 80.4%, recall at 78.5%,
and an AP of 77.1%, highlighting the model’s moderate sensitivity to this defect type.
Since synthetic data may introduce a domain gap, we conducted an explicit cross-domain
validation by training on a mixture of real and GAN-generated samples and testing only
on real defect images. Averaged over five independent runs, augmentation improved
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recall by +3.4% and F1-score by +2.1%, while precision remained virtually unchanged
(fluctuations below ±0.2%). These results indicate that synthetic augmentation enhances
the model’s ability to recognize minority defect classes without compromising overall
reliability, reinforcing its suitability for industrial defect detection pipelines.

Table 2 benchmarks our lightweight model (1.7 M parameters, CPU-based, 45 FPS)
against top-tier methods applied to the RIAWELC radiographic weld dataset. Notably,
Weld-CNN achieved an outstanding 99.83% F1-score using ~5 M parameters. ResNet50-
CNN achieved 98.75% accuracy with ~25.6 M parameters; and SqueezeNet baseline deliv-
ered ~93% accuracy with just 1.24 M parameters. While our model records a mid-range
F1 of 81%, it operates in CPU-only environments and maintains real-time performance,
highlighting a compelling efficiency–accuracy compromise ideal for constrained industrial
deployment. To gain deeper insights into the nature of our model’s prediction errors, we
undertook a fractal-inspired analysis focusing on false positives (FPs) and false negatives
(FNs). For each defect class, we generated cumulative spatial heatmaps that reveal where
FPs and FNs occur most frequently across the test set. Interestingly, these error regions
displayed self-similar, clustered patterns that are reminiscent of the fractal geometries seen
in actual weld microstructures. To objectively quantify this observation, we calculated
the box-counting fractal dimension for both FP and FN masks. The results indicate that
the spatial complexity of these error distributions is strikingly close to the scale-invariant
properties of true defect regions. This finding suggests that model misclassifications are not
simply random events, but instead show systematic, multi-scale structure, a characteristic
that can be directly leveraged for further model refinement. Employing such fractal and
fractional analysis not only enhances the interpretability of error patterns, but also provides
a principled framework to guide targeted improvements in future defect detection systems.

Table 2. Model comparison across RIAWELC dataset.

Model Author(s) Backbone Params (M) Metric (F1 or Acc %)

Weld-CNN [51] Hoa et al. Custom CNN ~5.0 99.83 F1

ResNet50-CNN [52] Palma-Ramírez et al. ResNet50 ~25.6 98.75 Acc

SqueezeNet V1.1 [53] Totino et al. SqueezeNet V1.1 1.24 93 Acc

LF-YOLO [54] Liu et al. Lightweight YOLO ~4.3 92.9 mAP50

Defect Transformer [55] Wang et al. Hybrid DefT - Not reported

Our Proposed (This work) Lite custom 1.7 81 F1/78.9 mAP50

As shown in Table 3, our proposed lightweight model achieves a mean average
precision (mAP@0.5) of 78.9% on the GC10-DET dataset, significantly outperforming
several recent state-of-the-art approaches. Notably, it surpasses the FI2Net two-stage CNN
(70.3% mAP) and the FOHR-Net model (70.5% mAP), both of which rely on considerably
larger architectures. Enhanced one-stage methods such as the YOLOv5 channel-shuffled, a
hybrid Transformer-based SSM, and the PMSE-YOLO (~71% mAP) also fall short. Despite
having just 1.7 M parameters and operating at 45 FPS on CPU, our model not only closes
the gap to heavier, GPU-dependent architectures but sets a great benchmark for real-time,
resource-efficient industrial deployment.

Figure 11 illustrates the proportional distribution of total detection errors encompass-
ing both false positives and false negatives across all major defect classes in our industrial
weld dataset. Notably, the majority of errors are concentrated in the shear, crease, and fold
categories, each accounting for a significant share of the overall mistakes. This trend is in
line with known challenges in ultrasonic weld inspection, where the visual manifestations
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of shear, crease, and fold defects often overlap or exhibit ambiguous boundaries, increasing
the likelihood of both missed detections and spurious predictions. In contrast, crack defects,
despite being the least frequent in our dataset, contribute minimally to the total error
count, a testament to their relatively distinctive visual features, which the model is able
to reliably discern. The higher error rates for porosity and other subtle classes further
underscore the value of advanced data augmentation and GAN-based synthesis, as these
approaches enhance model robustness to rare or visually complex defect types. Collectively,
this graphical analysis provides actionable insights, directly guiding future refinements in
both data strategy and model architecture for industrial defect detection tasks.

Table 3. Model comparison on GC10-DET dataset.

Model Author(s) Backbone or Notes Params (M) Metric (%)

FI2Net [56] Lv et al. multi-stage CNN ~10 65.1 mAP

FOHR-Net [57] Chan et al. Custom CNN - 70.5 mAP

YOLOv5-CSShuffle [58] Yasir & Ahn YOLOv5 (CS-shuffle) - 70.18 mAP@0.5

Self-Adaptive Gamma SSM [59] Sun et al. Transformer-based SSM - +2.6\gain mAP@0.5

PMSE-YOLO [60] Zhou et al. YOLOv5 variant - ~55.5 mAP@0.5:0.95

WFRE-YOLOv8s [61] Yao et al. YOLO variant ~14 69.4 mAP@0.5

Our Proposed (This work) Custom lightweight 1.7 78.9 mAP@0.5

Figure 11. Illustrating the distribution of total errors (FP + FN) across each defect class (shear, porosity,
crease, fold, crack).

To further rigorously evaluate the effectiveness of the proposed model, its performance
was compared against widely recognized object detection frameworks using the industrial
dataset initially, which contains ultrasonic weld images specific to lithium-ion battery
manufacturing. Moreover, to show the effectiveness of the model, this subsection also
demonstrates the results on a publicly available dataset for the given five detection classes.
Table 4 provides a comprehensive comparison between our approach and prominent object
detection frameworks across standard metrics mAP, precision, recall, and F1-score on the
private ultrasonic weld defect dataset. The proposed model consistently outperforms
classical baselines such as SSD, RetinaNet, YOLOv5, and YOLOv8, as well as region-
based detectors including Faster R-CNN, Mask R-CNN, and Cascade R-CNN. We also
incorporated two more recent state-of-the-art methods, PP-YOLOE-S and RT-DETR (R50),
which achieved competitive results, with mAP values of 75.8% and 76.1%, respectively.
Nevertheless, our model surpasses all competitors, achieving the highest mAP of 78.4%
and superior per-class accuracy, particularly on challenging categories such as fold and
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crease. The corresponding F1-score of 79.4% further highlights the balanced improvement
in both detection sensitivity and specificity. This evidences the suitability of our method
for practical, high-throughput manufacturing settings where minimizing defect escapes
and false positives is paramount.

Table 4. Performance analysis for the industrial dataset using proposed model.

Model mAP (%) Shear (%) Porosity (%) Crack (%) Fold (%) Crease (%)

SSD 70.92 70.8 73.2 74.5 69 67.1

RetinaNet 70.98 73.5 75.6 76.8 70.3 68.7

YOLOv5 71.2 75 78.9 79.4 71.8 69.9

YOLOv8 72.84 72.9 78.2 79.5 68.5 65.1

Faster R-CNN 73.84 72.7 77.8 79.3 70.5 68.9

Mask R-CNN 73.36 71.9 77.2 78.5 70 68.2

Cascade R-CNN 75.58 74.2 79.5 81 72.5 70.8

DDN 74.7 74 78.5 80.2 71.5 69.5

PP-YOLOE-S 75.80 75.1 79.6 81.1 72.7 70.9

RT-DETR (R50) 76.10 75.4 80.0 81.8 73.0 71.4

Our Model 78.4 78.5 82.1 83.7 75.3 72

Then, comparison experiments were conducted for current advanced network models,
on the GC10-DET and RIAWELC datasets in which the five defect classes lie by using the
same one- and two-stage detectors, to further confirm the improved model’s robustness
and generalization ability. The comprehensive comparison results of defect accuracy and
mAP for each model on the following two public datasets are shown in Table 5.

Table 5. Comparison analysis of different state-of-the-art models and proposed model for GC10-DET
and RIAWELC datasets.

Model Dataset mAP (%) Porosity (%) Crack (%) Fold (%) Crease (%)

SSD
GC10-DET 68.05 - - 69 67.1

RIAWELC 73.85 74.5 73.2 - -

RetinaNet
GC10-DET 69.5 - - 70.3 68.7

RIAWELC 76.2 76.8 75.6 - -

YOLOv5
GC10-DET 70.85 - - 71.8 69.9

RIAWELC 79.15 78.9 79.4 - -

YOLOv8
GC10-DET 72.8 - - 73.5 72.1

RIAWELC 82.35 81.2 83.5 - -

Faster R-CNN
GC10-DET 69.7 - - 70.5 68.9

RIAWELC 78.55 77.8 79.3 - -

Mask R-CNN
GC10-DET 69.1 - - 70 68.2

RIAWELC 77.85 77.2 78.5 - -

Cascade R-CNN
GC10-DET 71.65 - - 72.5 70.8

RIAWELC 80.25 79.5 81 - -
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Table 5. Cont.

Model Dataset mAP (%) Porosity (%) Crack (%) Fold (%) Crease (%)

DDN
GC10-DET 70.5 - - 71.5 69.5

RIAWELC 79.35 78.5 80.2 - -

Our Model
GC10-DET 73.65 - - 75.3 72

RIAWELC 82.9 82.1 83.7 - -

In our comparison analysis, SSD demonstrated moderate detection capabilities, achiev-
ing an mAP of 70.9%, while it performed reasonably well for larger defects like cracks
and porosity. For RetinaNet, incorporating focal loss to address class imbalance showed
improved accuracy over SSD, achieving an mAP of 72.98%. YOLOv5 delivered higher
detection accuracy, achieving an mAP of 74.8%, with strong performance in detecting shear
and cracks. Vanilla YOLOv8, the latest in the YOLO series, outperformed its predecessors
by a significant margin, achieving an mAP of 75.45%. Its architectural enhancements,
including anchor-free detection and improved feature aggregation, resulted in superior
performance across all defect types, particularly porosity and cracks. Two-stage detectors,
which operate by generating region proposals before refining predictions, typically achieve
higher accuracy at the cost of slower inference speeds. Faster R-CNN, utilizing ResNet50 as
its backbone, achieved an mAP of 73.84%. While it excelled in detecting larger defects like
shear and cracks, its slower inference speed reduced its practicality for real-time applica-
tions. Mask R-CNN, known for its instance segmentation capabilities, achieved competitive
results, with an mAP of 73.36%, particularly excelling in porosity and cracks. Cascade
R-CNN, leveraging cascaded stages for improved detection accuracy, demonstrated strong
performance with an mAP of 75.58%. DDN (Dual Detection Network), designed specifically
for defect detection, achieved an mAP of 74.7%. While it showed a balanced performance
across defect categories, it fell short of our proposed model in precision and recall.

4.3.2. Ablation Study

An ablation study is conducted in order to identify some of the key contributions of
the proposed model, particularly its multi-head attention mechanism and transfer learning
effects. All models including YOLOv5s, YOLOv8, and our proposed architecture were
exported to the ONNX format and executed using native PyTorch and ONNX Runtime on
CPU, explicitly without TensorRT optimizations, to ensure a fair and consistent benchmark-
ing environment. Under this setup, the YOLOv5s model achieved a CPU inference speed of
24.6 FPS, with mAP, recall, and F1-scores of 75.8%, 76.5%, and 77.1%, respectively. YOLOv8
improved marginally with an mAP of 76.7%, recall of 77.9%, and F1 of 78.3%, albeit at
a slightly reduced speed of 21.5 FPS. In contrast, our proposed method demonstrated
superior accuracy, achieving an mAP of 78.4%, recall of 79.2%, and F1-score of 79.4%, while
maintaining a reasonable throughput of 20.1 FPS. These results confirm that the proposed
enhancements improve detection accuracy, especially for finer defects, without sacrificing
real-time viability for edge deployment.

Initially, to quantitatively validate our backbone selection, we benchmarked YOLOv8
against several efficient models frequently adopted for edge-oriented deployment, in-
cluding GhostNet, a highly efficient backbone noted for its mobile deployment efficiency.
GhostNet achieved 76.0% mAP and 76.8% recall at 61.3 FPS, demonstrating strong inference
speed but lower accuracy. By contrast, our YOLOv8-based backbone reached 78.4% mAP
and 79.2% recall at 57.5 FPS, highlighting the superior trade-off for LIB defect detection.

To systematically assess the contribution of each architectural component within our
proposed detection framework, we conducted a detailed ablation study. Beginning with a
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baseline model comprising an EfficientNet-B0 backbone and a standard YOLOv8 detection
head, we incrementally integrated our key design choices and measured their impact on
performance. Specifically, we evaluated the effect of (i) multi-scale dilated branches for
spatial context capture, (ii) multi-head self-attention for feature refinement, (iii) Squeeze-
and-Excitation (SE) modules for adaptive channel weighting, and (iv) layer normalization
for stable training convergence. As shown in Table 6, the inclusion of each module yielded
consistent improvements in both detection accuracy and robustness. The integration of
multi-scale branches and attention mechanisms led to notable gains in mAP and F1-score,
reflecting enhanced sensitivity to diverse defect patterns.

Table 6. Ablation study evaluating the incremental contribution of key architectural components to
detection performance on the private LIB weld defect dataset.

Model Variant mAP (%) Precision (%) FPS (GPU)

Baseline EfficientNet-B0 + YOLOv8 73.2 71.5 64.8

Add Multi-scale Dilation 75.1 73.0 62.0

Add Multi-head Attention 76.3 74.2 60.5

Add Squeeze-and-Excitation (SE) 77.4 75.0 59.7

Add Layer Normalization 78.0 76.2 58.2

Our Model (Complete Configuration) 78.4 77.0 57.5

Table 7 presents a focused ablation analysis of the proposed model, evaluating the
incremental impact of the multi-head attention mechanism and transfer learning. The
results quantified using mAP, precision, recall, and F1-score confirm that both components
yield clear improvements. Notably, integrating multi-head attention and transfer learning
in our full configuration led to an mAP of 78.4%, a precision of 80.4%, a recall of 78.5%,
and an F1-score of 79.4%, significantly surpassing the baseline. The absence of transfer
learning led to a longer convergence time and resulted in an mAP of 75.1%, compared to
78.4% with transfer learning. This confirms that pre-training on a related defect dataset
provides a valuable starting point, reducing the number of epochs needed for training while
achieving superior generalization across diverse defect types. This systematic breakdown
validates that our model’s architectural enhancements directly contribute to more reliable
and generalizable ultrasonic weld defect detection, which is critical for deployment in
dynamic manufacturing environments.

Table 7. Ablation study for various components of our model on various metrics.

Model mAP (%) Shear (%) Porosity (%) Crack (%) Fold (%) Crease (%)

Vanilla YOLOv8 (transfer learning) 72.84 72.9 78.2 79.5 68.5 65.1

Without Multi-Head Attention 73.46 73.2 79 80.1 69 66

All components (Without Transfer Learning) 75.1 76.7 80.6 82 72 68

Our Model (complete configuration) 78.4 78.5 82.1 83.7 75.3 72

In addition to performance benchmarks, we reinforced the statistical reliability of our
findings. Specifically, we report the mean and standard deviation of the mAP, recall, and
F1 metrics averaged over three independent runs using different random seeds. These
results are summarized in Table 8 and demonstrate consistent performance with minimal
variance, confirming the robustness of our model across runs. Furthermore, we performed
paired t-tests between the proposed model and the YOLOv8 baseline, validating that



Fractal Fract. 2025, 9, 611 27 of 31

the improvements observed are statistically significant (p < 0.05). This strengthens the
credibility of the performance claims and ensures reproducibility across hardware and
experimental conditions.

Table 8. Statistical consistency across multiple runs (mean ± std. dev over 3 seeds).

Model mAP (%) Recall (%) F1 (%)

YOLOv5s 75.8 ± 0.21 76.5 ± 0.28 77.1 ± 0.25

YOLOv8 76.7 ± 0.19 77.9 ± 0.22 78.3 ± 0.23

Proposed 78.4 ± 0.17 79.2 ± 0.20 79.4 ± 0.18

5. Discussion
The findings of this study underscore how lightweight, attention-enhanced CNNs

can transform industrial quality assurance in lithium-ion battery manufacturing. By in-
tegrating structured multi-scale fusion with transformer-style attention, the framework
shows that real-time inspection is achievable without reliance on computationally expen-
sive architectures. This balance between efficiency and accuracy directly addresses the
manufacturing sector’s need for scalable, inline solutions. A key implication lies in the
feasibility of cost-effective deployment. The framework achieves stable inference at ~45 FPS,
indicating that high-throughput inspection can be realized even in facilities without dedi-
cated GPUs. This lowers the barrier to adoption and makes automated defect detection
accessible to a wider range of production environments. Moreover, attention-based mod-
ules improve recall by reducing false negatives, critical for minimizing defect escapes in
safety-sensitive components.

At the same time, trade-offs must be acknowledged. Transformer-based detectors such
as DETR and Swin Transformer deliver state-of-the-art accuracy on benchmark datasets
but are constrained by high latency and computational demands. In contrast, the proposed
approach provides a middle ground, achieving competitive performance while maintaining
real-time inference, making it more appropriate for industrial lines where speed, cost, and
explainability are equally critical. Per-class error analysis reveals that defects such as
shear, crease, and fold remain difficult to separate due to low inter-class margins and
overlapping texture boundaries. These recurring errors point toward future refinements,
such as adaptive hierarchical attention or deformable sampling, to capture subtle weld
topologies more effectively. Deployment risks also persist: reliance on a fixed monocular
camera setup limits robustness under varying viewpoints or lighting, while GAN-based
augmentation, though improving minor class recall by 3–4%, does not fully eliminate the
domain gap between synthetic and real welds.

Looking forward, short-term improvements may explore expanding datasets with
new defect categories and multi-view capture strategies to reduce reliance on synthetic
augmentation. Long-term directions may investigate federated learning for cross-factory
generalization and multimodal fusion of ultrasonic and visual signals to strengthen robust-
ness and scalability. By distinguishing between immediate and strategic research avenues,
this work establishes a pathway toward lightweight, interpretable, and industrially deploy-
able defect detection systems.

6. Conclusions
This study proposed a fractal-inspired, multi-scale convolutional framework built on

YOLOv8 to address the challenges of weld defect detection in lithium-ion battery manufac-
turing. By organizing receptive fields through parallel dilated convolutions and refining
representations with multi-head attention, the model effectively captures both subtle defect



Fractal Fract. 2025, 9, 611 28 of 31

textures and broader structural patterns while maintaining a compact computational foot-
print. Comprehensive validation across three heterogeneous datasets—private industrial,
RIAWELC, and GC10-DET—showed consistent gains in recall and F1-score, underscoring
the framework’s ability to generalize across defect types and imaging conditions. These
improvements highlight the benefit of combining lightweight convolutional backbones
with structured multi-scale fusion and attention mechanisms, which together enhance sen-
sitivity to small and occluded defects without compromising efficiency. Equally important,
the architecture is designed with deployment in mind; achieving real-time inference speeds
on accessible hardware demonstrates that accurate and interpretable defect detection can
be integrated directly into production lines without heavy deployment costs. This balance
of accuracy, efficiency, and transparency positions the proposed approach as a practical and
scalable solution for industrial quality assurance in next-generation battery manufacturing.
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