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Abstract

We consider a Neumann problem for the fractional Laplacian involving a nonlocal
Choquard-type nonlinearity and Sobolev–Hardy exponent. Under suitable assumptions
on the data and using the Nehari manifold method, we discuss the existence problem in
several subcritical and critical cases.

Keywords: Neumann boundary condition; Nehari manifold; fractional Laplacian; critical
Sobolev–Hardy exponent

1. Introduction and Results
Let Ω ⊂ RN be a smooth bounded domain with smooth boundary ∂Ω. In this paper,

we study the following parametric Sobolev–Hardy problem:
(−△)α φ − κ

φ

|x|2α
= h(x)

∫
Ω

|φ|p
|x − y|µ dy|φ|p−2 φ, x ∈ Ω,

∂φ

∂n
= λ f (x)

|φ|q−2 φ

|x|β
, x ∈ ∂Ω, λ > 0.

(1)

Given α ∈ (0, 1), in this problem, (−△)α φ is the fractional Laplacian operator, also
known as the Riesz fractional derivative, defined by

(−∆)α φ(x) = C(N, α)p.v.
∫
RN

φ(x)− φ(y)
|x − y|N+2α

dy,

where p.v. is the Cauchy principal value of the integral, and C(N, α) is the normalization
constant given as

C(N, α) = 22α−1π− N
2

Γ(N+2α
2 )

|Γ(−α)| ,

where Γ denotes the Gamma function, see, for example, Frank–Lieb–Seiringer ([1],
Lemma 3.1). The constant exponents involved in (1) have to satisfy the following re-
quirements: 0 ≤ β ≤ 2α < N, 0 < µ < N, 1 < 2p < 2, 1 < q ≤ 2∗β,α = 2(N − β)/(N − 2α),
and 2 < 2∗β,α < 2∗α = 2N/(N − 2α), where 2∗β,α is the fractional critical Hardy–Sobolev
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exponent. If κ0 denotes the best Hardy constant in the fractional Hardy inequality (see
Section 2, and the discussion in [1] too), we assume

0 < κ < κ0 = 4α Γ2( n+2α
4 )

Γ2( n−2α
4 )

.

Further, h(x) ∈ L∞(Ω) and f (x) ∈ L∞(∂Ω) are the reaction coefficient and the boundary
coefficient, respectively. In the boundary condition, ∂/∂n denotes the generalized direc-
tional derivative (conormal derivative) of φ, with n(·) being the outward unit normal
on ∂Ω. Such a directional derivative is dictated by the nonlinear Green’s identity (see,
for example, Gasiński and Papageorgiou [2]).

If r ∈ (1,+∞), the study of elliptic r-Laplacian problems (driven by the operator
△r φ = div (|∇u|r−2∇u) for all u ∈ W1,r

0 (Ω)) with competing nonlinearities under different
boundary conditions has been largely refined in recent decades, for example, we mention
the works by Cherfils and Il’yasov [3] (for the sum of two r-Laplacian operators with
different exponents) and Papageorgiou et al. [4] (for the double-phase operator). Such
problems are considered useful models in the analysis of electrorheological fluids, in image
processing, and in the context of nonlinear elasticity theory; hence, the reader can refer
to Acerbi and Mingione [5] and Afrouzi and Ghorbani [6] and the references therein.
In the case of a single Laplacian operator (r = 2), Chen [7] focused on the following
Dirichlet problem  −△φ − µ

|x|2 φ = |φ|2∗−2 φ + λφ, x ∈ Ω,

φ(x) = 0, x ∈ ∂Ω,
(2)

where 2∗ = 2N
N−2 , 0 ≤ µ < µ̄ =

(
N−2

2

)2
, and λ > 0 is a parameter. The main source of

difficulty here is in the lack of compactness for the Palais–Smale sequences ((PS)-sequences
for short) of the functional associated with (2). This way, variational methods cannot
be applied directly; hence, the approach to the existence problem in [7] is based on the
Linking theorem and delicate energy estimates for the functional. The similar problem
is investigated by Cao and Peng [8] to conclude the existence of sign-changing solutions
by using Ljusternik–Schnirelman theory (see Zeidler [9]) and an (subcritical) approximating
problem to (2).

Given α ∈ (0, 1), Bhakta et al. [10] considered the following fractional Hardy–Sobolev
equation

(−△)α φ − γ
φ

|x|2α
= K(x)

|φ|2∗α(t)−2 φ

|x|t + f (x), x ∈ RN , (3)

where N > 2α, 0 ≤ t < 2α < N, 2∗α(t) = 2(N−t)
N−2α , 0 < γ < γN,α, here γN,α is the best

Hardy constant in the fractional Hardy inequality. Hence, they obtained the existence
and multiplicity results for constant sign solutions (more precisely, positive solutions).
The approach is based on the classification of certain (PS)-sequences for the functional
associated to (3), performing a profile decomposition of the (PS)-sequence in general
Hilbert spaces (to overcome the already mentioned lack of compactness). Further, un-
der a Neumann nonlocal boundary condition, Irzi and Kefi [11] studied the existence of
solution to a fractional r̄-Laplacian problem (r̄ = r(·, ·) is a suitable continuous function
defined on a smooth bounded domain of RN). Regarding the study of fractional operator
theory, Muslih et al. [12,13] effectively resolved linear and specific nonlinear problems in
fractional-dimensional spaces through Fourier transform methods, while Lima et al. [14]
established a geometric interpretation of the relationship between critical exponents and
fractal dimensions. Differently from the previous works, this time, the approach is based
on the Ekeland principle, together with variational tools. Another interesting contribution
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is due to Fan [15], who showed the existence of nontrivial weak solutions to fractional
Choquard problems of the form

(−△)α φ = f (x)|φ|q−2 φ +
∫

Ω

|φ|p
|x − y|µ dy|φ|p−2 φ, x ∈ Ω,

φ = 0, x ∈ RN \ Ω,

(4)

where 0 < α < 1, (2N − µ)/N ≤ p ≤ 2∗µ,s/(N − 2α), and 0 < µ < N. By using variational
tools and the Nehari manifold method, the author investigated both subcritical and critical
nonlinearities, and obtained the results stated in Theorems 1.2 and 1.3, respectively. Fan [16]
also established similar results in the case of a fractional Choquard equation with Kirchhoff
weight, to underline the effectiveness of the strategy in dealing with various classes of
differential problems. Turning to the non-fractional setting, some contributions in this
direction are the works by Brown and Zhang [17], where both existence and non-existence
results for positive solutions to a semilinear elliptic boundary value problem with a sign
changing weight function are discussed, de Albuquerque and Silva [18], where the Nehari
manifold method is applied to a class of Schrödinger equations with indefinite weight
functions, and Gasiński and Winkert [19], where a double phase problem is investigated to
obtain the existence and multiplicity results.

Inspired by these works, the purpose of our paper is in discussing the existence and
multiplicity of weak solutions, with sign information, to problem (1) by using the Nehari
manifold method. Differently from the previous works (recall (2)–(4)), the features of our
problem are the presence of the Hardy term, together with a Choquard-type nonlinearity
and a Neumann boundary condition, which makes the proof that the energy functional
satisfies the correlation property and the associated parameter settings difficult. Further,
we distinguish the subcritical case (q < 2∗β,α) and the critical case (q = 2∗β,α). Specifically,
the critical case presents greater challenges, as it necessitates information regarding the
asymptotic behavior of solutions to the limiting problem at both zero and infinity. More
precisely, we establish the following theorems.

Theorem 1. If 0 < α < 1, 0 < µ < N, 0 ≤ β ≤ 2α < N, 0 < κ < κ0 and 1 < 2p < 2 < q <

2∗β,α < 2∗α, then there exists λ̄ > 0 such that problem (1) has at least two positive solutions for all
λ ∈ (0, λ̄).

Theorem 2. If 0 < α < 1, 0 < µ < N, and 0 ≤ β ≤ 2α < N, 0 < κ < κ0 and 1 < 2p < 2 <

q = 2∗β,α < 2∗α, then there exists λ̄∗ > 0 such that problem (1) has at least two positive solutions for
all λ ∈ (0, λ̄∗).

The rest of the paper is organized as follows. In Section 2, we collect the mathematical
background. In Section 3, we discuss the Nehari manifold for the energy functional
associated with problem (1). In Sections 4 and 5, we present the proofs of Theorem 1 and
Theorem 2, respectively.

2. Functional Setting
The analysis of problem (1) requires the use of fractional Sobolev spaces. A comprehen-

sive presentation of such spaces can be found in the monographies of Di Nezza et al. [20]
and Molica Bisci et al. [21]. Given α ∈ (0, 1), we define the fractional Sobolev space
Wα,2(Ω) = Hα(Ω) as follows

Hα(Ω) =

{
φ ∈ L2(Ω) :

∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy < +∞
}

.
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This vector space is equipped with the norm given by

∥φ∥Hα(Ω) = ∥φ∥L2(Ω) +

(∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy
) 1

2

,

where the first term is the usual norm for the space Lr(Ω) (here r = 2), that is ∥φ∥r =(∫
Ω |φ|rdx

) 1
r , and the second term is the so-called “Gagliardo (semi)norm” of φ. Then,

Hα(Ω) becomes a Banach space.
For α ∈ (0, 1), the fractional Sobolev space Hα can also be defined as the completion

of C∞
c (RN) under the norm

∥φ∥2
Hα(Ω) =

∫
Ω
|2πζ|2α|Fφ(ζ)|2dζ

=
∫

Ω
|(−∆)

α
2 φ|2dx = C(N, s)

∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy,

where F φ(x) = 1

(2π)
N
2

∫
Ω e−iζx φ(x)dx is the Fourier transform of φ, see ([20], Proposi-

tions 3.4 and 3.6) and also Servadei-Valdinoci [22]. Hence, for N > 2α and α ∈ (0, 1),
the fractional Hardy inequality is the following

κ0

∫
Ω

|φ|2
|x|2α

dx ≤
∫

Ω
|2πζ|2α|Fφ(ζ)|2dζ = C(N, s)

∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy, (5)

where φ ∈ C∞
0 (RN).

In the sequel, we will also use the space

X :=
{

φ ∈ Hα : κ
∫

Ω

φ

|x|2α
dx < +∞

}
,

endowed with the above mentioned Gagliardo semi-norm, that is

∥φ∥X =

(∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy
) 1

2

.

Therefore, (X, ∥ · ∥X) is a Hilbert space with topological dual denoted by X∗, and the scalar
product for φ, u ∈ X is defined by

⟨φ, u⟩ =
∫

Ω

∫
Ω

(φ(x)− φ(y))(u(x)− u(y))
|x − y|N+2α

dxdy.

Recall that φ ∈ X is a weak solution to (1) if

C(N, α)
∫

Ω

∫
Ω

(φ(x)− φ(y))(ϕ(x)− ϕ(y))
|x − y|N+2α

dxdy − κ
∫

Ω

φϕ

|x|2α
dx

=
1

2p

∫
Ω

∫
Ω

h(x)
|φ(y)|p|φ(x)|p−2 φ(x)ϕ(x)

|x − y|µ dxdy +
λ

q

∫
∂Ω

f (x)
|φ|q−1ϕ

|x|β
ds,

for all ϕ ∈ X.
Using the Hardy–Littlewood–Sobolev inequality∫

RN

∫
RN

g̃(x)g(y)
|x − y|µ dxdy ≤ C(N, γ̃, µ, ϑ̃)∥g̃∥γ̃∥g∥ϑ̃,

1
γ̃
+

µ

N
+

1
ϑ̃
= 2, γ̃, ϑ̃, g̃ ∈ Lγ̃(RN), g ∈ Lϑ̃(RN),

(6)

we deduce that
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∫
Ω

∫
Ω

|φ(x)|2
∗
µ,α |φ(y)|2

∗
µ,α

|x − y|µ dxdy ≤ C(N, µ)∥φ∥22∗µ,α
2∗α

, (7)

where 2∗µ,α = (2N − µ)/(N − 2α). For 0 ̸= φ ∈ X, we define

Λ0 = inf
φ∈X\{0}

∫
Ω

∫
Ω

|φ(x)−φ(y)|2
|x−y|N+2α dxdy(∫

Ω |φ|2∗α dx
) 2

2∗α

,

and

Λ1 = inf
φ∈X\{0}

∫
Ω

∫
Ω

|φ(x)−φ(y)|2
|x−y|N+2α dxdy(∫

Ω

∫
Ω

|φ(x)|2
∗
µ,α |φ(y)|2

∗
µ,α

|x−y|µ dxdy
) 1

2∗µ,α

.

The fractional Hardy–Sobolev inequality is given in the following lemma ([23], see
Lemma 2.1 of Ghoussoub-Shakerian).

Lemma 1. If 0 < α < 1, 0 ≤ β ≤ 2α ≤ N, and 1 < q ≤ 2∗β,α, then we can find a positive

constant C̃ > 0 satisfying

C̃
(∫

∂Ω

|φ|q

|x|β
ds
) 2

q
≤ C(N, α)

∫
Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy − κ
∫

Ω

|φ|2
|x|2α

dx, φ ∈ X, (8)

for κ < κ0.

Further, the general best Hardy–Sobolev constant of (8) is defined by

Ξ = inf
φ∈X,φ ̸=0

C(N, α)
∫

Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy − κ
∫

Ω

|φ|2
|x|2α

dx(∫
∂Ω

|φ|q

|x|β
ds
) 2

q
, (9)

where 1 < q ≤ 2∗β,α and κ < κ0.
We note that the Hardy inequality (5) yields that the space X is continuously embedded

in the weighted space L2(Ω, |x|−2α). If κ < κ0, from (5) we consider the norm

∥φ∥ :=
(

C(N, α)
∫

Ω

∫
Ω

|φ(x)− φ(y)|2
|x − y|N+2α

dxdy − κ
∫

Ω

|φ|2
|x|2α

dx
) 1

2

,

which is well defined on X and equivalent to the norm ∥ · ∥X. From Fan, Zhao [24],
Deng [25], and Chen et al. [26], we recall some useful embedding results.

Lemma 2 ([24]). The following assertions are valid:

• The embedding X ↪→ Lr(Ω) is continuous for r ∈ [1, 2∗α];
• The embedding X ↪→ Lr(Ω) is compact for r ∈ [1, 2∗α).

Lemma 3 ([25,26]). Set 2∗b,α = 2(N−b)
N−2α . The following assertions are valid:

• The embedding X ↪→ Lγ(∂Ω, |x|−β) is continuous for γ ∈ (0, 2∗β,α];

• Suppose that 0 < b < 2α. If 1 ≤ γ < 2∗b,α and 0 ≤ β < αγ + N(1 − γ
2 ), the embedding

X ↪→ Lγ(∂Ω, |x|−β) is compact.

The starting point to study weak solutions of problem (1) is the analysis of the associ-
ated functional defined by
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Jλ(φ) :=
1
2
∥φ∥2 − 1

2p

∫
Ω

∫
Ω

h(x)
|φ(x)|p|φ(y)|p

|x − y|µ dxdy − λ

q

∫
∂Ω

f (x)
|φ|q

|x|β
ds

=
1
2
∥φ∥2 − 1

2p
P(φ)− λ

q
K(φ),

where
P(φ) =

∫
Ω

∫
Ω

h(x)
|φ(x)|p|φ(y)|p

|x − y|µ dxdy, K(φ) =
∫

∂Ω
f (x)

|φ|q

|x|β
ds.

Note that (2N − µ)/2N < p < 2∗µ,α, then the Hardy–Littlewood–Sobolev inequality,
together with the Hölder inequality, give us the a priori estimate

P(φ) =
∫

Ω

∫
Ω

h(x)
|φ(x)|p|φ(y)|p

|x − y|µ dxdy

≤ C(N, µ, p)∥h∥∞∥φ∥2p
pϑ

≤ C(N, µ, p)∥h∥∞|Ω|
2(2∗α−pϑ)

2∗αϑ ∥φ∥2p
2∗α

≤ C(N, µ, p)∥h∥∞|Ω|
2(2∗α−pϑ)

2∗αϑ Λ−p
0 ∥φ∥2p,

(10)

where ϑ = (2N)/(2N − µ), pϑ < 2∗α.

3. Nehari Manifold
In this section, we establish several preparatory results under the same assumptions

as in Theorems 1.1 and 1.2, namely, 1 < 2p < 2 < q. For every λ > 0, we introduce the
Nehari manifold for the energy functional associated with problem (1) defined by

Qλ = {φ ∈ X \ {0} : ⟨J ′
λ(φ), φ⟩ = 0},

and for the related minimization problem, we set

β0 := inf{Jλ(φ) : φ ∈ Qλ},

where ⟨·, ·⟩ denotes the duality brackets for the pair (X∗, X). Evidently, every critical point
of Jλ is contained in Qλ; hence, the condition φ ∈ Qλ equivalently states

⟨J ′
λ(φ), φ⟩ = ∥φ∥2 − P(φ)− λK(φ) = 0. (11)

We set
ϕφ(φ) := ⟨J ′

λ(φ), φ⟩,

so that we get
⟨ϕ′

φ(φ), φ⟩ =2∥φ∥2 − 2pP(φ)− λqK(φ)

=(2 − 2p)P(φ) + λ(2 − q)K(φ)

=(2 − 2p)∥φ∥2 − λ(q − 2p)K(φ)

=(2 − q)∥φ∥2 − (2p − q)P(φ).

(12)

In the sequel, it is helpful to decompose the Nehari manifold Qλ into three submanifolds,
corresponding to local minima, local maxima, and points of inflection, that is

Q+
λ = {φ ∈ Qλ : ⟨ϕ′

φ(φ), φ⟩ > 0};

Q−
λ = {φ ∈ Qλ : ⟨ϕ′

φ(φ), φ⟩ < 0};

Q0
λ = {φ ∈ Qλ : ⟨ϕ′

φ(φ), φ⟩ = 0}.

(13)
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Lemma 4. If φ is a local minimizer of Jλ on Qλ and ⟨ϕ′
(φ), φ⟩ ̸= 0, then J ′

λ(φ) = 0 in X∗.

Proof. The proof is similar to that of Brown and Zhang ([17], Theorem 2.3), and then we
omit the details.

Here, we revisit the definition of the Palais–Smale condition at level c.

Definition 1. Let h̃(x) ∈ C1(X,R) and c ∈ R. The function h̃(x) satisfies the (PS)c-condition if
any sequence {φn} ⊂ X such that

h̃(x)(φn) = c + o(1) and h̃(x)′(φn) = o(1) in X−1 as n → ∞,

admits a convergent subsequence.

Lemma 5. There exists a constant λ0 > 0 such that Q0
λ = ∅ for all 0 < λ < λ0.

Proof. We argue by contradiction, and suppose that Q0
λ ̸= ∅ for

0 < λ < λ0 =

(
2p − q
2 − q

C(N, µ, p)∥h∥∞|Ω|
2(2∗α−pϑ)

2∗αϑ Λ−p
0

) 2−q
2−2p 2 − 2p

q − 2p
A−1Ξ

q
2 , (14)

where A = ∥ f ∥∞. Then, for φ ∈ Q0
λ and (12), we have

0 = ⟨ϕ′
φ(φ), φ⟩ = (2 − 2p)∥φ∥2 − λ(q − 2p)K(φ). (15)

Combining (9) and (15), we obtain

∥φ∥2 = λ
q − 2p
2 − 2p

K(φ) = λ
q − 2p
2 − 2p

∫
∂Ω

f (x)
|φ|q

|x|β
ds ≤ λ

q − 2p
2 − 2p

AΞ− q
2 ∥φ∥q, (16)

which shows (
λ

q − 2p
2 − 2p

AΞ− q
2

)−1
≤ ∥φ∥q−2.

Then, (
2 − 2p

λ(q − 2p)
A−1Ξ

q
2

) 1
q−2

≤ ∥φ∥. (17)

Combining (10) and (15), we obtain

(2 − q)∥φ∥2 =(2p − q)P(φ) = (2p − q)
∫

Ω

∫
Ω

h(x)
|φ(x)|p|φ(y)|p

|x − y|µ dxdy

≥ (2p − q)C(N, µ, p)∥h∥∞|Ω|
2(2∗α−pϑ)

2∗αϑ Λ−p
0 ∥φ∥2p,

(18)

which means
∥φ∥2 ≤ 2p − q

2 − q
C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0 ∥φ∥2p. (19)

Therefore, we deduce that

∥φ∥ ≤
(

2p − q
2 − q

C(N, µ, p)∥h∥∞|Ω|
2(2∗α−pϑ)

2∗αϑ Λ−p
0

) 1
2−2p

. (20)

Now, combining the estimates (17) and (20), we obtain λ ≥ λ0, which leads to a contradic-
tion with the initial assumption (14) on λ. Hence, there exists a constant λ0 > 0 such that
Qλ = ∅ whenever 0 < λ < λ0.
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Now, we establish the coercivity of the functional on the Nehari manifold (that is,
Jλ(φ) → ∞ as ∥φ∥ → ∞).

Lemma 6. Jλ is bounded below and coercive on Qλ.

Proof. For 1 < 2p < 2 < q, we deduce by (11) that

Jλ(φ) =
1
2
∥φ∥2 − 1

2p
P(φ)− λ

q
K(φ)

= (
1
2
− 1

q
)∥φ∥2 + (

1
q
− 1

2p
)P(φ)

≥ (
1
2
− 1

q
)∥φ∥2 + (

1
q
− 1

2p
)C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0 ∥φ∥2p,

which implies that Jλ(φ) is bounded below on Qλ. From the last inequality and since
1 < 2p < 2 < q, we can conclude that Jλ is coercive on Qλ.

For 0 < λ < λ0, by Lemmas 5 and 6, we deduce that Qλ = Q+
λ ∪ Q−

λ and Jλ is
bounded from below on Q+

λ and Q−
λ . Thus, we set

β+
0 = inf

φ∈Q+
λ

Jλ(φ), β−
0 = inf

φ∈Q−
λ

Jλ(φ).

Then, we have the following results.

Lemma 7. The following assertions hold:

(i) If 0 < λ < λ0, then β0 ≤ β+
0 < 0;

(ii) If 0 < λ < λ̄0, then β−
0 > β∗ > 0 for some β∗ > 0.

Proof. (i) For φ ∈ Q+
λ , we have

2 − 2p
q − 2p

∥φ∥2 > λK(φ),

which gives us
Jλ(φ) =

1
2
∥φ∥2 − 1

2p
P(φ)− λ

q
K(φ)

= (
1
2
− 1

2p
)∥φ∥2 +

(
1

2p
− 1

q

)
λK(φ)

≤
(

p − 1
2p

+
2 − 2p

2pq

)
∥φ∥2

=
(q − 2)(p − 1)

2pq
∥φ∥2 < 0.

This shows that β0 ≤ β+
0 < 0.

(ii) For φ ∈ Q−
λ , we have

∥φ∥2 < λ
q − 2p
2 − 2p

K(φ),

which implies

∥φ∥ >

(
2 − 2p

λ(q − 2p)
A−1Ξ

q
2

) 1
q−2

.

Combining (10) and (11), we obtain
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Jλ(φ) =
1
2
∥φ∥2 − 1

2p
P(φ)− λ

q
K(φ)

≥
(

1
2
− 1

q

)
∥φ∥2 +

(
1
q
− 1

2p

)
C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0 ∥φ∥2p

= ∥φ∥2p
((

1
2
− 1

q

)
∥φ∥2−2p +

(
1
q
− 1

2p

)
C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0

)

> ∥φ∥2p

(1
2
− 1

q

)(
2 − 2p

λ(q − 2p)
A−1Ξ

q
2

) 2−2p
q−2

+

(
1
q
− 1

2p

)
C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0

)
.

If 0 < λ < λ0, then we obtain

Jλ(φ) > β∗, for all φ ∈ Q−
λ ,

for some constant β∗ = β∗(N, µ, p, q, ϑ, α, |Ω|, Λ0), and so the proof of assertion (ii) is
established.

Lemma 8. Let λ̃ = A−1Ξ
q
2

(
2−2p
q−2p

)(
q−2

q−2p

) q−2
2−2p

(
C(N, µ, p)∥h∥∞|Ω|

2(2∗α−pϑ)
2∗αϑ Λ−p

0

) q−2
2p−2

. Then,

for all φ ∈ X \ {0} and λ ∈ (0, λ̃), there exist unique t+ = t+(φ) > 0 and t− = t−(φ) > 0 such
that t+φ ∈ Q+

λ and t−φ ∈ Q−
λ and Q−

λ = {φ ∈ X \ {0} : t−( φ
∥φ∥ ) = ∥φ∥}. We have

t− > tmax = t0 =

(
(2 − 2p)∥φ∥2

(q − 2p)λK(φ)

) 1
q−2

> t+ ≥ 0,

and
Jλ(t+φ) = min

0≤t≤t−(φ)
Jλ(tφ), J (t−φ) = max

t>t0
J (tφ).

Proof. Using (11) and (12), we obtain

ψ(t) := t2−2p∥φ∥2 − tq−2pλK(φ).

Clearly, for t > 0, tφ ∈ Qλ if and only if t is the solution of the equation

ψ(t) = P(φ).

Since q − 2p > 2 − 2p > 0, we know that function ψ(t) is initially increasing and eventu-

ally decreasing with a single turning point t0 =
(

(2−2p)∥φ∥2

(q−2p)λK(φ)

) 1
q−2

, that is, for the follow-
ing equation

ψ′(t) = (2 − 2p)t1−2p∥φ∥2 − (q − 2p)λtq−2p−1K(φ),

there is ψ′(t0) = 0, ψ′(t) > 0 for t ∈ [0, t0) and ψ′(t) < 0 for t ∈ (t0,+∞). Moreover,
by (10), we get

ψ(t0) =

(
q − 2

q − 2p

)(
2 − 2p
q − 2p

) 2−2p
q−2
(

∥φ∥2(q−2p)

(λK(φ))2−2p

) 1
q−2

≥
(

q − 2
q − 2p

)(
2 − 2p
q − 2p

) 2−2p
q−2

∥φ∥2p(λAΞ− q
2 )

− 2−2p
q−2 .

(21)

We now distinguish the cases when P(φ) ≤ 0 and P(φ) > 0.

(i) If P(φ) ≤ 0, then we can find a unique t− := t−(φ) > t0 such that
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ψ(t−) = P(φ) and ψ′(t−) < 0. (22)

We claim that t−φ ∈ Q−
λ . Clearly, from t−φ ∈ X and above equation, we have

⟨J ′
λ(t

−φ), t−φ⟩ = ∥t−φ∥2 − P(t−φ)− λK(t−φ)

= (t−)2p
(
(t−)2−2p∥φ∥2 − λ(t−)q−2pK(φ)− P(φ)

)
= (t−)2p(ψ(t−)− P(φ)

)
= 0,

and

⟨ϕ′
φ(t

−φ), t−φ⟩ = 2∥t−φ∥2 − 2pP(t−φ)− qλK(t−φ)

= (2 − 2p)∥t−φ∥2 − (q − 2p)λK(t−φ)

= (t−)2p+1
(
(2 − 2p)(t−)1−2p∥φ∥2 − λ(q − 2p)(t−)q−2p−1K(φ)

)
= (t−)2p+1ψ′(t−) < 0,

which show that t−φ ∈ Q−
λ . Next, we prove that Jλ(t−φ) = maxt≥tmax Jλ(tφ). It follows

from (22) that

d
dt

Jλ(t−φ) = t−∥φ∥2 − (t−)2p−1P(φ)− (t−)q−1λK(φ)

= (t−)2p−1
(
(t−)2−2p∥φ∥2 − P(φ)− λ(t−)q−2p−1K(φ)

)
= (t−)2p−1(ψ(t−)− P(φ)

)
= 0,

(23)

and

t2 d2

dt2 Jλ(t−φ) =∥t−φ∥2 − (2p − 1)P(t−φ)− (q − 1)λK(t−φ)

=(t−)2p+1
(
(2 − 2p)(t−)1−2p∥φ∥2 − λ(q − 2p)(t−)q−2p−1K(φ)

)
=(t−)2p+1ψ′(t−) < 0, for all t > tmax.

(24)

This proves the claim. Now, we consider the other case.

(ii) If P(φ) > 0, then from (21), we obtain

0 = ψ(0) < P ≤ C(N, µ, p)|Ω|
2(2∗α−pϑ)

2∗αϑ ∥h∥∞Λ−p
0 ∥φ∥2p

≤
(

q − 2
q − 2p

)(
2 − 2p
q − 2p

) 2−2p
q−2

∥φ∥2p(λAΞ− q
2 )

− 2−2p
q−2

≤ ψ(t0) for 0 < λ < λ̃.

For K(φ) > 0 and ψ(t0) > 0, there exist unique t+ and t− such that 0 < t+ < t0 < t−, and

ψ(t+) = λK(φ) = ψ(t−), and ψ(t+) > 0 > ψ(t−).

We have t−φ ∈ Q−
λ , t+φ ∈ Q+

λ , and Jλ(t−φ) ≥ Jλ(tφ) ≥ Jλ(t+φ) for t ∈ [t+, t−] and
Jλ(t+φ) ≤ Jλ(tφ) for t ∈ [0, t+]. Hence, we deduce that

Jλ(t+φ) = min
0≤t≤t−

Jλ(tφ), Jλ(t−φ) = max
t>t0

Jλ(tφ).

Therefore, the claim is proved.
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4. Proof of Theorem 1
In this section, using the Nehari method, we establish our first result, namely

Theorem 1, which says that for sufficiently small λ > 0, problem (1) admits at least two
positive solutions in the subcritical case q < 2∗β,α. More precisely, our proof will be divided
into two lemmas, but before we note the following proposition about the existence of
Palais–Smale sequences at level β±

0 for the functional Jλ.

Proposition 1. If 0 < λ < min{λ0, λ̃}, then the following assertions hold:

(i) There exists a (PS)β+0
-sequence {φn} ⊂ Qλ in X for Jλ;

(ii) There exists a (PS)β−0
-sequence {φn} ⊂ Q−

λ in X for Jλ.

The proof of Proposition 1 can be concluded by adapting the steps in the proof by
Wu ([27], Proposition 9), and so the details are omitted. Now, we discuss the existence of
local minimizers to the energy functional.

Lemma 9. If 0 < λ < min{λ0, λ̃}, then the functional Jλ admits a minimizer φ1 ∈ Q+
λ ,

satisfying the following conditions:

• Jλ(φ1) = β0 = β+
0 < 0;

• φ1 is a positive solution to problem (1).

Proof. By Proposition 1, one can find a minimizing sequence {φn} for Jλ on Qλ such that

Jλ(φn) = β0 + o(1) and J ′
λ(φn) = o(1) in X∗. (25)

Since the functional Jλ is bounded from below on the Nehari manifold Qλ, there exists a
minimizing sequence {φn} ⊆ Qλ such that, passing to the limit, we have

lim
n→∞

Jλ(φn) = inf
φ∈Qλ

Jλ(φ).

Lemma 6 ensures that the sequence {φn} is bounded in X. So, using the embeddings
results in Lemmas 2 and 3, we may assume that

φn ⇀ φ1 in X, φn → φ1 in Lr(Ω) and Lγ(∂Ω),

for some φ1 ∈ X, 1 ≤ γ < min{2∗β,α, 2∗b,α}, 1 ≤ r < 2∗α, 0 < b < 2α, and 0 ≤ β <

αγ + N(1 − γ
2 ). Hence, we easily get∫

Ω
|φn|dx →

∫
Ω
|φ1|dx and

∫
∂Ω

|φn|ds →
∫

∂Ω
|φ1|ds, (26)

as n → ∞. Then,
K(φn) = K(φ1) + o(1) (n → ∞). (27)

By (25) and (26), φ1 is a weak solution of problem (1). Using the definition of Jλ and (11),
we have

K(φn) =
q(p − 1)
2p − q

∥φn∥2 − 2pq
2p − q

Jλ(φn). (28)

For n → ∞ in (28), combining (25), (27), and β0 < 0, we obtain

K(φ1) ≥ − 2pq
2p − q

β0 > 0.

Hence, φ1 ∈ Qλ is a nontrivial solution of problem (1).
Now, we prove that φn → φ1 in X. By the Fatou Lemma, we get
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β0 ≤ Jλ(φ1) =

(
1
2
− 1

2p

)
∥φ1∥2 −

(
1
q
− 1

2p

)
λK(φ1)

≤ lim
n→∞

inf
((

1
2
− 1

2p

)
∥φn∥2 −

(
1
q
− 1

2p

)
λK(φn)

)
= β0,

which yields Jλ(φ1) = β0, and φn → φ1 strongly in X.
Next, we have to prove that φ1 ∈ Q+

λ . Suppose that φ1 ∈ Q−
λ . Utilizing Lemma 8,

we can find t− and t+ such that t−φ1 ∈ Q−
λ , t+φ1 ∈ Q+

λ and t+ < t− = 1. Now we have
d
dtJλ = 0 and d2

dt2 J > 0. Consequently, there exists t̃ such that t+ < t̃ < t− = 1 and
Jλ(t+φ1) < Jλ(t̃φ1). From Lemma 8, we also have

Jλ(t+φ1) < Jλ(t̃φ1) ≤ Jλ(t−φ1) = Jλ(φ1),

this leads to a contradiction with Jλ(φ1) = β0. So, we obtain that φ1 ∈ Q+
λ , and Jλ(φ1) =

β+
0 = β0. Clearly, we have Jλ(φ1) = Jλ(|φ1|), and |φ1| ∈ Q+, and hence it solves problem

(1). From Lemma 4, we can assume that φ1 ≥ 0. Finally, by the strong maximum principle
(see [27]), we conclude that this solution is positive, namely φ1 > 0.

Lemma 10. If 0 < λ < λ̄ = min{λ0, λ̃}, then the functional Jλ admits a minimizer φ2 ∈ Q−
λ

satisfying the following conditions:

• Jλ(φ2) = β−
0 ;

• φ2 is a positive solution to problem (1).

Proof. Proposition 1 implies that we can find a minimizing sequence {φn} of the functional
Jλ on the submanifold Q− satisfying the following conditions

Jλ(φn) = β−
0 + o(1) and J ′

λ = (φn) in X∗. (29)

The sequence {φn} is bounded in X by Lemma 6. So, from Lemmas 2 and 3, we may
suppose there exists φ2 ∈ X such that

φn ⇀ φ2 in X, φn → φ2 in Lr(Ω) and Lγ(∂Ω),

for 1 ≤ γ < min{2∗β,α, 2∗b,α}, 1 ≤ r < 2∗α, 0 < b < 2α, and 0 ≤ β < αγ + N(1 − γ
2 ). We

have to establish that φn → φ2 in X. Arguing by contradiction, suppose that ∥φ2∥ <

lim infn→∞ ∥φn∥. Hence, we deduce that

⟨J ′
λ(φ2), φ2⟩ = ∥φ2∥2 − P(φ2)− λK(φ2)

< lim inf
n→∞

(
∥φn∥2 − P(φn)− λK(φn)

)
= 0.

Comparing this inequality with φ2 ∈ Q−
λ , we have a contradiction. This way, we conclude

that φn → φ2 in X, as n → ∞, and hence Jλ(φ2) = β−
0 . Similar to the proof of Lemma 9, we

note that Jλ(φ2) = Jλ(|φ2|), and |φ2| ∈ Q−
λ is a solution to problem (1). From Lemma 4,

we may suppose that φ2 is a non-negative solution to problem (1). Then, due to the Harnack
inequality (see Zhang-Liu [28]), we conclude that φ2 > 0.

Proof of Theorem 1. Utilizing Lemmas 9 and 10, we have two positive solutions φ1 and
φ2, such that φ1 ∈ Q+

λ and φ2 ∈ Q−
λ , respectively. Moreover, by Lemma 5, we know that

Q+
λ ∩ Q−

λ = ∅. It follows that φ1 and φ2 are exactly two distinct positive solutions of
problem (1).
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5. Proof of Theorem 2
In this section, using again the Nehari method, we establish our second result, namely

Theorem 2, which says that for sufficiently small λ > 0, problem (1) admits at least two
positive solutions in the critical case q = 2∗β,α. More precisely, our proof will be divided
into two lemmas (Lemmas 14 and 17), but first, we need some auxiliary results. Here,
we suppose (2N − µ)/N ≤ p ≤ 2∗µ,α, and set f (x) ≡ 1. For simplicity, we also use the
following notation:

λ̄∗ := λ̄(2∗β,α), Ξq∗ := Ξ(2∗β,α), and J (φ) := Jλ,q:=2∗β,α
(φ).

Inspired by Ghoussoub et al. [29], we state the following results.

Lemma 11 ([29]). If 0 ≤ β < 2α < 2, N > 2α and 0 ≤ κ < κ(α), then any positive extremal
φ ∈ X for Ξq∗ satisfies φ ∈ C1(Rn \ {0}) and

lim
x→0

|x|ν−(κ)φ(x) = Λ0 and lim
x→∞

|x|ν+(κ)φ(x) = Λ∞, (30)

where Λ̄0, Λ∞ > 0 and ν−(κ)(resp., ν+(κ)) is the unique solution in (0, 0,N−2α
2 ) (resp.,

in (N−2α
2 , N − α)) of the equation

ΨN,α(t) := 22α
Γ
( t+2α

2
)
Γ
(

N−t
2

)
Γ
(

N−t−2α
2

)
Γ
( t

2
) = κ,

with ν−(0) = 0 and ν+(0) = N − 2α. Further, we can find positive constants C2, C3 > 0 such that

C2

|x|ν−(κ) + |x|ν+(κ)
≤ φ(x) ≤ C3

|x|ν−(κ) + |x|ν+(κ)
for all x ∈ RN \ {0}.

Let φ∗(x) be a positive weak solution of (1), and define φε(x) = ε
2α−N

2 φ∗( x
ε ) with ε > 0

in RN . Clearly, φε(x) is also a solution of (1). Take ρ > 0 small enough such that B2ρ(0) ⊂ Ω,
B2ρ(0) = {x ∈ RN : |x| < 2ρ}. Choose the radial cut-off function ξ(x) ∈ C∞

0 (Ω) such that
0 ≤ ξ(x) ≤ 1 in B2ρ(0), ξ(x) = 1 in Bρ(0), and ξ(x) = 0 in Bc

2ρ(0). One can check that
ξ(x)φε(x) belongs in X. For any ε > 0, we set

Uε(x) = ξ(x)φε(x) for x ∈ RN , (31)

and have the following Lemmas.

Lemma 12 ([29]). If Uε is given by (31), and φ1 is a positive solution of (1), then for all ε > 0
small enough, we get

(i) ∥Uε∥2 ≤ ∥φε∥2 + O(εν+(κ)−ν−(κ));

(ii)
∫

∂Ω
|Uε |

2∗
β,α

|x|β ds =
∫

∂Ω
|φε |

2∗
β,α

|x|β ds + o(εν+(κ)−ν−(κ)).

Lemma 13. If Uε is given by (31), and φ1 is a positive solution of (1), then for all ε > 0 small
enough we get

∫
∂Ω

|φ1 + tUε|2
∗
β,α

|x|β
ds =

∫
∂Ω

|φ1|
2∗β,α

|x|β
ds +

∫
∂Ω

|tUε|2
∗
β,α

|x|β
ds + 2∗β,αt

∫
∂Ω

|φ1|
2∗β,α−2

|x|β
Uε φ1ds

+ 2∗β,αt2∗β,α−1 |Uε|2
∗
β,α−2

|x|β
Uε φ1ds + o(ε

ν+(κ)−ν−(κ)
2 ).

(32)
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We note that (32) reflects Equation (17) in Brezis and Nirenberg [30] (see the proof of
Theorem 1 (p. 133) and use Lemma 4) with only minor modifications. Therefore, we omit
the proof of Lemma 13 here. Next, we give the existence result of a positive solution to
problem (1) on Q+

λ .

Lemma 14. If 0 < λ < λ̄∗, then the functional J admits a minimizer φ1 ∈ Q+
λ satisfying the

following conditions:

(i) J (φ1) = β0 = β+
0 < 0;

(ii) φ1 is a positive solution to problem (1).

The proof of Lemma 14 repeats the proof of previous Lemma 9 for the functional Jλ

with q = 2∗β,α. In obtaining the existence result on Q−
λ , the following lemmas play a crucial

role; hence, we have to properly manipulate the (PS)β−0
condition.

Lemma 15. If φ1 is the local minimum in Lemma 14, then for ε > 0 small enough, we obtain

sup
t≥0

J (φ1 + tUε) < β0 +
2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ .

Proof. Consider the functional

J (φ1 + tUε) =
1
2
∥φ1 + tUε∥2 − 1

2p
P(φ1 + tUε)−

λ

2∗β,α

∫
∂Ω

|φ1 + tUε|2
∗
β,α

|x|β
ds.

We know that

∥φ1 + tUε∥2 = ∥φ1∥2 + t2∥Uε∥2 + 2t⟨φ1, Uε⟩ − 2tκ
∫

Ω

φ1Uε

|x|2α
dx,

and so we get

J (φ1 + tUε) =
1
2
∥φ1∥2 +

t2

2
∥Uε∥2 + t⟨φ1, Uε⟩ − tκ

∫
Ω

φ1Uε

|x|2α
dx

− 1
2p

P(φ1 + tUε)−
λ

2∗β,α

∫
∂Ω

|φ1 + tUε|2
∗
β,α

|x|β
ds.

Notice that φ1 is a minimizer for J , then one has

1
2
∥φ1∥2 = J (φ1) +

1
2p

P(φ1) +
λ

2∗β,α

∫
∂Ω

|φ1|
2∗β,α

|x|β
ds. (33)

Substituting the test function ξφ1 into J ′(φ) = 0 in X yields

t⟨φ1, Uε⟩ − tκ
∫

Ω

φ1Uε

|x|2α
dx

=t
∫

Ω

∫
Ω

h(x)
|φ1(y)|p|φ1(x)|p−2 φ1(x)Uε

|x − y|µ dxdy + tλ
∫

∂Ω

|φ1|
2∗β,α−1

|x|β
Uεds.

(34)

Equations (32)–(34) give us
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J (φ1 + tUε) =J (φ1) +
1

2p
P(φ1) + t

∫
Ω

∫
Ω

h(x)
|φ1(y)|p|φ1(x)|p−2 φ1(x)Uε

|x − y|µ dxdy

− 1
2p

P(φ1 + tUε) +
t2

2
∥Uε∥2 − λt2∗β,α

2∗β,α

∫
∂Ω

|Uε|2
∗
β,α

|x|β
ds

− λt2∗β,α−1
∫

∂Ω

|Uε|2
∗
β,α−1

|x|β
φ1ds + o(ε

ν+(κ)−ν−(κ)
2 ).

From Ghoussoub et al. [29] and Abdellaoui et al. [31], one can find a positive constant
C4 > 0 such that

C−1
4 ≤ |x|ν−(κ)φ1(x) ≤ C4 for all x ∈ Ω.

Then, there exists l > 0 such that

lim
x→0

|x|ν−(κ)φ1(x) = l.

Hence, we have∫
∂Ω

|Uε|2
∗
β,α−1

|x|β
φ1ds ≤ C4

∫
∂Ω

|Uε|2
∗
β,α−1

|x|β
|x|−ν−(κ)ds

=C4

∫
Bδ0

|Uε|2
∗
β,α−1

|x|β
|x|−ν−(κ)ds + C4

∫
Ω̄\Bδ0

|Uε|2
∗
β,α−1

|x|β
|x|−ν−(κ)ds

=C4εN+ 2α−N
2 l−β−ν−(κ)

∫
B

ε−1δ

|φ∗(x)|2
∗
β,α−1

|x|β
|x|−ν−(κ)dx + o

(
ε

ν+(κ)−ν−(κ)
2

)

=C4εN+ 2α−N
2 l−β−ν−(κ)

∫
RN

|φ∗(x)|2
∗
β,α−1

|x|β
|x|−ν−(κ)dx + o

(
ε

ν+(κ)−ν−(κ)
2

)
=C4ε

ν+(κ)−ν−(κ)
2

∫
RN

|φ∗(x)|2
∗
β,α−1

|x|β
|x|−ν−(κ)dx + o

(
ε

ν+(κ)−ν−(κ)
2

)
=C5ε

ν+(κ)−ν−(κ)
2 + o

(
ε

ν+(κ)−ν−(κ)
2

)
,

for some C5 > 0 (ε → 0). In addition, we obtain

1
2p

P(φ1) + t
∫

Ω

∫
Ω

h(x)
|φ1(y)|p|φ1(x)|p−2 φ1(x)Uε

|x − y|µ dxdy − 1
2p

P(φ1 + tUε)

=
1

2p

∫
Ω

∫
Ω

h(x)
|φ1(x)|p|φ1(y)|p

|x − y|µ dxdy + t
∫

Ω

∫
Ω

h(x)
|φ1(y)|p|φ1(x)|p−2 φ1(x)Uε

|x − y|µ dxdy

− 1
2p

∫
Ω

∫
Ω

h(x)
|φ1(x) + tUε|p|φ1(y) + tUε|p

|x − y|µ dxdy

= −
∫

Ω

∫
Ω

h(x)

∫ tUε

0

(
|φ1(y) + τ|p|φ1(x) + τ|p−1 − |φ1(y)|p|φ1(x)|p−1)dτ

|x − y|µ dxdy

≤ 0.

Now, we deduce by Lemma 11 that the last integral is finite by the asymptotics (30). We
can find c̃ > 0 such that

J (φ1 + tUε) ≤ J (φ1) +
t2

2
∥φε∥2 − λ

t2∗β,α

2∗β,α

∫
∂Ω

|φε|2
∗
β,α

|x|β
ds − c̃ε

ν+(κ)−ν−(κ)
2 + o

(
ε

ν+(κ)−ν−(κ)
2

)
.

Setting

H(t) =
t2

2
∥φε∥2 − λ

t2∗β,α

2∗β,α

∫
∂Ω

|φε|2
∗
β,α

|x|β
ds for t > 0,
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it is easy to obtain that H achieves its maximum at t̃0 =

 ∥φε∥2

λ
∫

∂Ω
|φε |

2∗
β,α

|x|β
ds


1

2∗
β,α−2

, and

lim
t→∞

H(t) = −∞, H(t̃0) =

(
1
2
− 1

2∗β,α

)
λ

2α−N
2α−β ∥φε∥

22∗
β,α

2∗
β,α−2

(∫
∂Ω

|φε|2
∗
β,α

|x|β
ds

)− 2
2∗

β,α−2

,

which leads to the inequality

H(t) ≤
(

1
2
− 1

2∗β,α

)
λ

2α−N
2α−β ∥φε∥

22∗
β,α

2∗
β,α−2

(∫
∂Ω

|φε|2
∗
β,α

|x|β
ds

)− 2
2∗

β,α−2

.

Considering the fact that φε is an extremal for (9) and (8), we have

∥φε∥2 = Ξq∗

(∫
∂Ω

|φε|2
∗
β,α

|x|β
ds

) 2
2∗

β,α
,

which implies

Ξ

2∗
β,α

2∗
β,α−2

q∗ = ∥φε∥
22∗

β,α
2∗

β,α−2

(∫
∂Ω

|φε|2
∗
β,α

|x|β
ds

)− 2
2∗

β,α−2

.

Since 1
2 − 1

2∗β,α
= 2α−β

2(N−β)
and

2∗β,α
2∗β,α−2 = N−β

2α−β , we derive that

H(t) ≤ 2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ for all t > 0.

Thus, we conclude that

J (φ1 + tUε) ≤ J (φ1) +
2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ − c̃ε
ν+(κ)−ν−(κ)

2 + o
(

ε
ν+(κ)−ν−(κ)

2

)
< β0 +

2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ for all t > 0.

Lemma 16. Assume there is a minimizing sequence {φn} for J on Q+
λ satisfying the following:

(i) J (φn) = ϱ + o(1) with ϱ < β0 +
2α−β

2(N−β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ ;

(ii) J ′(φn) = o(1) in X.

Then, there exists a subsequence of {φn}, which is strongly convergent in X.

Proof. We deduce by Lemma 6 that there exists a subsequence {φn} and φ such that

φn ⇀ φ weakly in X;

φn → φ strongly in Lr(Ω) for r ∈ [1, 2∗α).
(35)

Furthermore, assumption (ii) gives

⟨J ′(φ), u⟩ = 0 for any u ∈ X.

Thus, φ is a solution in X for problem (1) with J (φ) ≥ β0.
Now, we prove φ ̸= 0. We argue by contradiction; hence, we assume φ ≡ 0. Using

(35) and (2N − µ)/N ≤ p < 2∗α, we have
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∫
Ω

∫
Ω

h(x)
|φn(x)|p|φn(y)|p

|x − y|µ dxdy →
∫

Ω

∫
Ω

h(x)
|φ(x)|p|φ(y)|p

|x − y|µ dxdy = 0,

which shows ∫
Ω

∫
Ω

h(x)
|φn(x)|p|φn(y)|p

|x − y|µ dxdy = o(1) (n → ∞).

This fact and assumption (ii) yield

∥φn∥2 =
∫

Ω

∫
Ω

h(x)
|φn(x)|p|φn(y)|p

|x − y|µ dxdy + λ
∫

∂Ω

|φε|2
∗
β,α

|x|β
ds

=λ
∫

∂Ω

|φε|2
∗
β,α

|x|β
ds + o(1) (n → ∞),

(36)

which, together with assumption (i) shows that

J (φn) =
1
2
∥φn∥2 − 1

2p

∫
Ω

∫
Ω

h(x)
|φn(x)|p|φn(y)|p

|x − y|µ dxdy − λ

2∗β,α

∫
∂Ω

|φε|2
∗
β,α

|x|β
ds

=

(
1
2
− 1

2∗β,α

)
λ
∫

∂Ω

|φε|2
∗
β,α

|x|β
ds + o(1)

=
2α − β

2(N − β)
λ
∫

∂Ω

|φε|2
∗
β,α

|x|β
ds + o(1)

= ϱ + o(1) (n → ∞).

It follows from ϱ < 2α−β
2(N−β)

λ
2α−N
2α−β Ξ

N−β
2α−β

q∗ that

λ
N−β
2α−β

∫
∂Ω

|φε|2
∗
β,α

|x|β
ds < Ξ

N−β
2α−β

q∗ + o(1) (n → ∞). (37)

Again, (8) and (36) give

λ
N−β
2α−β

∫
∂Ω

|φε|2
∗
β,α

|x|β
ds ≥ Ξ

N−β
2α−β

q∗ + o(1),

which contradicts (37). Hence, φ ̸= 0 with J ≥ β0.
Set ζ̄n = φn − φ. Inspired by Ghoussoub and Yua [32], we deduce by the Brezis–Lieb

Lemma (see also [33]) that

∫
∂Ω

|φn|2
∗
β,α

|x|β
ds =

∫
∂Ω

|φ|2
∗
β,α

|x|β
ds +

∫
∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1) (n → ∞).

Consequently, due to weak convergence of ζ̄n ⇀ 0 in X, for n large enough, we have

β0 +
2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ > J (φ + ζ̄n)

= J (φ) +
1
2
∥ζ̄n∥2 − λ

2∗β,α

∫
∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1)

≥ β0 +
1
2
∥ζ̄n∥2 − λ

2∗β,α

∫
∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1),

which leads to

1
2
∥ζ̄n∥2 − λ

2∗β,α

∫
∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds <

2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ + o(1). (38)
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Noting that {ζ̄n} is uniformly bounded by assumption (ii), and φ is a solution of (1), one has

o(1) = ⟨J ′(ζ̄n), ζ̄n⟩

= J ′(φ) + ∥ζ̄n∥2 − λ
∫

∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1)

= ∥ζ̄n∥2 − λ
∫

∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1),

for J ′(φ) = 0. It follows that

∥ζ̄n∥2 − λ
∫

∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds = o(1). (39)

If (38) and (39) hold, then {ζ̄n} admits a subsequence, which converges strongly to zero.
We again argue by contradiction. Suppose that {ζ̄n} is bounded away from zero, that is,
there exists a constant c̃0 such that ∥ζ̄n∥ > c̃0 > 0. Using (38) and (39), we deduce that

2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ ≤ 2α − β

2(N − β)
∥ζ̄n∥2 + o(1)

=
1
2
∥ζ̄n∥2 − λ

2∗β,α

∫
∂Ω

|ζ̄n|2
∗
β,α

|x|β
ds + o(1)

<
2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ + o(1),

which is a contradiction. Thus, up to a subsequence, ζ̄n → 0 strongly in X, which shows
that φn → φ strongly in X, too.

Next, we prove the existence results for problem (1) on the submanifold Q−
λ .

Lemma 17. If 0 < λ < λ̄∗, then the functional J admits a minimizer φ2 ∈ Q−
λ satisfying the

following conditions:

(i) J (φ2) = infφ∈Q− J (φ) = β−
0 < β0 +

2α−β
2(N−β)

λ
2α−N
2α−β Ξ

N−β
2α−β

q∗ ;

(ii) φ2 is a nontrivial non-negative solution to problem (1).

Proof. In what follows, in order to prove

β−
0 < β0 +

2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ , (40)

by Lemma 8, there exists a unique t−(φ) > 0 such that t−(φ)φ ∈ Q−
λ . Set

Y1 :=
{

φ ∈ X \ {0} : t−
(

φ

∥φ∥

)
> ∥φ∥

}
∪ {0},

Y2 :=
{

φ ∈ X \ {0} : t−
(

φ

∥φ∥

)
< ∥φ∥

}
.

Therefore, Q−
λ disconnects X into two connected components Y1 and Y2, and X \ Q−

λ =

Y1 ∪ Y2. For φ ∈ Q+
λ , there exist unique t−

(
φ

∥φ∥

)
> 0 and t+

(
φ

∥φ∥

)
> 0 such that

t+
(

φ
∥φ∥

)
< t0 < t−( φ

∥φ∥ ), t+
(

φ
∥φ∥

)
∈ Q+

λ , and t−
(

φ
∥φ∥

)
∈ Q−

λ . Since φ ∈ Q+
λ , we obtain

t+
(

φ
∥φ∥

)
1

∥φ∥ = 1. Using t+
(

φ
∥φ∥

)
< t−( φ

∥φ∥ ), we have t−
(

φ
∥φ∥

)
> ∥φ∥ and Q+

λ ⊂ Y1.
More precisely, φ1 ∈ Y1.
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Next, we prove that there exists υ0 > 0 such that φ1 + υ0Uε ∈ Y2. Thus, for all υ0 > 0,
there exists a positive constant C̄ such that

0 < t−
(

φ1 + υ0Uε

∥φ1 + υ0Uε∥

)
< C̄. (41)

We argue by contradiction, so we assume that there exists a subsequence {υn} such that

υn → ∞, and t−
(

φ1 + υnUε

∥φ1 + υnUε∥

)
→ ∞, as n → ∞.

Set ϕ̃n = φ1+υnUε

∥φ1+υnUε∥ . Lemma 8 yields that t−(ϕ̃n)ϕ̃n ∈ Q−
λ ⊂ Qλ. Applying the Lebesgue

dominated convergence theorem, we obtain

∫
∂Ω

|φn|2
∗
β,α

|x|β
ds =

1∥∥φ1 + υnUε

∥∥2∗β,α

∫
∂Ω

∣∣φ1 + υnUε

∣∣2∗β,α

|x|β
ds

=
1∥∥ φ1

υn
+ Uε

∥∥2∗β,α

∫
∂Ω

∣∣ φ1
υn

+ Uε

∣∣2∗β,α

|x|β
ds

for υn → ∞, as n → ∞. Thus, we also have∫
∂Ω

|φn|2
∗
β,α

|x|β
ds → 1

∥Uε∥2∗β,α

∫
∂Ω

|Uε|2
∗
β,α

|x|β
ds as n → ∞.

It follows that

J (t−(ϕ̃n)ϕ̃n) =
1
2
[t−(ϕ̃n)]

2∥ϕ̃n∥2 − 1
2p

[t−(ϕ̃n)]
2p
∫

Ω

∫
Ω

h(x)
|ϕ̃n|p(x)|ϕ̃n(y)|p

|x − y|µ dxdy

− λ

2∗β,α
[t−(ϕ̃n)]

2∗β,α

∫
∂Ω

|ϕ̃n|2
∗
β,α

|x|β
ds → −∞,

which contradicts the fact that J is bounded below. Hence, (41) holds.

Let υ0 := |C̄2−∥φ1∥2|
1
2

∥Uε∥ + 1. Then, we get

∥φ1 + υ0Uε∥2 = ∥φ1∥2 + υ2
0∥Uε∥2 + 2υ0

(
C(N, α)⟨φ1, Uε⟩ − κ

∫
Ω

φ1Uε

|x|2α
dx
)

≥ ∥φ1∥2 + |C̄2 − ∥φ1∥2|
≥ C̄2

>

∣∣∣∣t−( φ1 + υ0Uε

∥φ1 + υ0Uε∥

)∣∣∣∣2,

which implies that
t−
(

φ1 + υ0Uε

∥φ1 + υ0Uε∥

)
< ∥φ1 + υ0Uε∥,

and so φ1 + υ0Uε ∈ Y2.
We now introduce the following notation

Γ̃ :={η ∈ (C[0, 1], X) : η(0) = φ1 and η(1) = φ1 + υ0Uε},

ϑ̄ := inf
η∈Γ̃

max
ς∈[0,1]

J (η(ς)), ξ̄(ς) = φ1 + ςυ0Uε, for ς ∈ [0, 1].

It follows that ξ̄(0) ∈ Y1 and ξ̄(1) ∈ Y2. Hence, there exists ς0 ∈ (0, 1) such that ξ̄(ς0) ∈ Q−
λ

and ϑ̄ ≥ β−
0 . Lemma 16 gives
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β−
0 < ϑ̄ < β0 +

2α − β

2(N − β)
λ

2α−N
2α−β Ξ

N−β
2α−β

q∗ .

From the Ekeland’s variational principle, there exists a sequence {φn} ⊂ Q−
λ such that

J (φn) = β−
0 + o(1) and J ′(φn) = o(1) in X∗.

Again, by Lemma 16 and (40), there exist a relabeled subsequence {φn} and φ2 such that
φn → φ2 strongly in X. Hence, φ2 ∈ Q−

λ and J (φn) → J (φ2) = β−
0 as n → ∞.

Considering the fact that J (φ2) = J (|φ2|), and |φ2| ∈ Q−
λ is a solution of (1), we may

suppose that φ2 is a non-negative solution to problem (1). Furthermore, by the maximum
principle (see Silvestre [34]), we obtain φ2 > 0 in X. This concludes the proof.

Proof of Theorem 2. Combining Lemma 14 and Lemma 17, we already have two positive
solutions φ1 and φ2 such that φ1 ∈ Q+

λ and φ2 ∈ Q−
λ , respectively. Now, by Lemma 5,

we know that Q+
λ ∩Q−

λ = ∅. It follows that φ1 and φ2 are exactly two distinct positive
solutions of problem (1).
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