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Abstract

In recent years, we have abstracted physical fractal space from biological structures and
movements within living organisms, revealing the profound intrinsic connections between
fractional order time and fractional-dimensional space, and providing partial explanations
for the sources and orders of fractional order. We have confirmed that the topological invari-
ants of fractal cells, the order of physical components, and the mismatch of spatiotemporal
order are important factors determining the fractional order of operators. This paper is a
continuation of the previous work. Inspired by bone fractal operators, this article attempts
to identify other factors that affect the order of operators. Specifically, the following contents
are included: (1) originating from the bone fractal operators, we present the construction
process of the “apparent half-order” system; (2) using the Schiessel–Blumen model as
the comparative object, we analyze the origin and characteristics of the “γ-order” system;
(3) using the continued fraction theory and operatorization thought as the link, we establish
the design and control method for general fractional-order systems, and discuss the factors
affecting the order of fractional-order operators.

Keywords: physical fractal space; bone fractal operators; continued fraction theory;
operatorization thought; fractional-order systems

1. Introduction
Fractional-order system refers to a mathematical model whose dynamic behavior is

dominated by fractional-order differential equations (FDEs). Its core feature is that the
order of differential/integral operators can be any real number, not just integers [1,2]. This
non-integer order endows the system with unique intrinsic memory and genetic properties:
the current output or state of the system depends not only on the input at the moment but
also significantly on the weighted accumulation of its entire past history [3]. This inherent
temporal non-locality and long-range dependence make the fractional-order model a
natural tool for characterizing numerous complex physical phenomena [4–6]. For example,
it can effectively simulate the non-exponential relaxation or creep behavior observed in
biological tissues (such as nerve conduction, drug metabolism) and viscoelastic materials
(such as polymers, rubber) [7]. It can also characterize the abnormal diffusion process of
fluid or pollutant transport in fractal or porous media such as soil and rock [8,9]. In the field
of control engineering, fractional-order controllers provide more flexible gain and phase
shaping capabilities than traditional integer-order PID (Proportional–Integral–Derivative)
by introducing adjustable real order, significantly improving the robustness of the system
to parameter changes and disturbances [10]. Compared to attempting to approximate these
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complex processes using high-order/integer-order differential equations, fractional-order
models can typically achieve more accurate and universal modeling of real-world systems
with memory effects, spatial non-uniformity, and scale invariance (fractal features) in a
lower-order, more concise form, and a mathematical structure that is more in line with
physical essence. They are a powerful framework for dealing with complex dynamic
problems across scales [11–13].

It is precisely because of the flourishing development of fractional calculus theory
that fractional-order systems have been able to demonstrate their unique advantages
in numerous engineering and scientific fields and have been widely applied [14,15]. It
should be emphasized that there are numerous definitions for fractional-order integrals and
differentials, which have led to the lack of a unified research paradigm in their long-term
development. The most common approach is to study each fractional-order-characterized
ordinary differential or partial differential equation one by one, but the above system is
not perfect. A more natural processing method is to use the operational calculus [16].
Heaviside’s proposal to use symbol p instead of differentiation operation d

dt in the study of
circuits and electromagnetic theory, and the ability to perform various algebraic operations
such as addition, subtraction, multiplication, and division on this symbol, marked the
birth of the operational calculus theory [17]. At the beginning of the 20th century, the
theory of operational calculus underwent significant development, but did not form a
fundamental breakthrough [18–21]. Until 1959, Polish mathematician Mikusiński gave a
completely new set of rules for operational calculus: introducing a new way of operator
action, wherein the operator action yields outcomes defined as convolution integrals with
their associated kernel functions [22]. The above operation to a certain extent laid the
foundation of algebraic theory for operational calculus, greatly promoting the development
of this discipline [23]. Nowadays, the theory of operational calculus has been widely
applied, but there are still some basic problems that need to be solved [24–26]. For example,
there is still no unified pattern for the representation of operators and their corresponding
physical meanings [27,28]. Therefore, how to establish the correlation between operational
calculus and other disciplines such as fractal, mechanics, etc., is a research topic worthy of
long-term exploration [29,30].

Recent studies have conceptualized multi-level, chain-like topologies derived from
muscle/ligament fibers, nerve fibers, and compact bone fibers, while concurrently model-
ing multi-level micro-elastic cavity topology from arterial blood flows [31]. This framework
establishes biologically inspired fractal and fractional-order mechanics based on physical
components as basic elements. Strikingly, these distinct systems converge toward shared
characteristics: the common physical fractal space, similar fractal operators, and similar
fractional-order mechanics. It should be emphasized that this spatial form of describ-
ing functional self-similarity is different from geometric fractals, as this system does not
possess the concept of measurement in geometry. Due to the absence of measurement,
it is impossible to characterize its structural characteristics using classical fractal dimen-
sions. Moreover, the fractal tree features abstracted from the aforementioned biological
materials are infinite-level self-identical, while the regular fractal features in textbooks
are infinite-level self-similar. Self-identical is a special form of self-similarity. However,
infinite-level structures in physics and biology do not exist, they are just idealized limit
states, but they do capture the essence of things. For example, in fractional-order circuit
design [32–34] researchers also extend the hierarchical structure of fractal circuits to infinity
and then use finite-level structures to approximate the expected fractional-order systems
based on the truncation method. If traditional chain-like circuits are used to construct
fractional-order systems, the calculation of each circuit component is generally to four
or more decimal places, which is difficult to achieve in practical physical circuits and
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highlights the necessity of “infinite-level”. Therefore, researchers named this type of spatial
form with self-similar characteristic in physical or mechanical behavior as “physical fractal
space” or “functional fractal space” [35].

In this new spatial form, researchers have naturally explained the essence of many
material mechanics behaviors, such as bone mechanics, intravascular hemodynamics, the
viscoelastic properties of coal, and so on [36]. When dealing with the above issues, the
classic concept of “element” has certain limitations. Most researchers have overlooked
the discreteness of fibers and the self-similarity of structures in biomaterials and have
directly extended the continuity hypothesis proposed for inorganic metal materials to
biomaterials [37]. Taking the viscoelastic mechanics of biomaterials as an example, re-
searchers have established the classic quasi-linear viscoelastic constitutive model, which
functionally corresponds to the time characteristics of different scales in the viscoelastic
response of materials, but the fitting ability is limited [38]. Because “element” is continuous,
it cannot characterize the discrete arrangement of fibrin in biological fibers. Therefore,
the “fractal cell” in the “physical fractal space” can be regarded as the basic mechanical
analysis unit of biomaterials, that is, a new “element”. Researchers have found that the
method of studying material properties and functions using the algebraic theory of op-
erational calculus is highly effective, providing a new theoretical system and research
paradigm for mechanics research. It should be noted that the fractal operators in the
physical fractal space are all non-integer-order operators. Such non-integer-order operators
are suitable tools for characterizing non-localized effects. In the future, it is worthwhile for
researchers to constantly think and explore how to apply this research method to different
disciplinary fields.

Non-integer-order operators in the physical fractal space have been widely applied
in many disciplines [31,35]. But it still leaves behind some basic issues that make the
explanation of the above application seem unnatural. For example, researchers only intro-
duce fractional-order operators phenomenologically without investigating their underlying
physical essence. This situation is not difficult to understand, as researchers only use
fractional-order operators as “appropriate” tools and do not care where fractional-order
operators come from or what factors determine their order. In fact, understanding the influ-
encing factors of order in fractional-order operators is the theoretical basis for designing
and controlling general fractional-order systems. In our previous work, we have confirmed
that the topological invariants of fractal cells, the order of physical components, and the
mismatch of spatiotemporal order are important factors determining the fractional order of
operators [36,37]. It can be said that the source of fractional order is not unique, and the
factors that determine fractional order are diverse. How to understand this diversity? Are
there any other influencing factors? This article attempts to provide answers, including
the following contents: (a) a review of the bone fractal operator model and “apparent
half-order” system; (b) a comparison between the Schiessel–Blumen model and “γ-order”
system; (c) a design and control method for general fractional-order systems. The classic
fractional-order design usually expresses the operators in the complex frequency domain,
which inevitably encounters problems such as cumbersome operation when solving the
overall response. With the development of the operator kernel function method [38], people
gradually realized that the logical foundation of its operator algebra was incomplete and
there were some ambiguities. In order to overcome the above limitations, we apply the
continued fraction theory and operatorization thought to the design of fractional-order
systems. We solve for the overall operator and its kernel function response in the operator
domain, greatly simplifying the calculation steps, which is a new attempt in the interdisci-
plinary fields of mechanics, mathematics, and physics, and also provides a new perspective
for understanding the interrelationships between various disciplines.
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Section 2 reviews the bone fractal operator model and the “apparent half-order” system.
Section 3 presents the Schiessel–Blumen model and the “γ-order” system. Section 4 analyzes
the correlation between continued fraction structures, fractal operators, and fractional-order
systems. Section 5 elaborates on the operatorization thought in fractional-order system
design. Section 6 provides the operatorization expression of the Schiessel–Blumen model.
Section 7 establishes the design and control method for general fractional-order systems.
Section 8 discusses the factors affecting the order of fractional-order operators.

2. Bone Fractal Operator Model and “Apparent Half-Order” System
This section mainly reviews the bone fractal operator model and the “apparent half-

order” system. For convenience, we first provide the derivation process of the algebraic
expression for bone fractal operator model [31]. According to Mikusiński’s work [22] and
the operator structure introduced earlier, the definitions of basic differential operators and
integral operators are as follows: If function f (t) has continuous derivatives at t ≥ 0, then
the basic differential operator p is defined as:

p f (t) =
d f (t)

dt
+ f (0)δ(t). (1)

The integral operator l is defined as:

l f (t) =
t∫

0

f (τ)dτ. (2)

The basic differential operator p and integral operator l defined by Equations (1) and (2)
are inverse operators to each other, and the combination of these two basic operators has an
effect that is independent of the order of action. In the Mikusiński operator field, Equation (3)
holds, which is an important foundation of operator algebra theory.

l =
1
p

. (3)

Based on Equation (3), both the differential operator and integral operator discussed
in this article can be regarded as the functions of the basic differential operator p defined in
Equation (1), that is, operator-type function T(p).

When stress σ(t) is applied to bone fibers and strain ε(t) is generated, then we have
the following:

σ(t) = T(p)ε(t), (4)

where T(p) is the bone fractal operator in the physical fractal space. Based on the fractal
characteristics of compact bone and the transmission patterns of force and deformation
along the chain-like fiber, we can abstract a multi-level self-identical element tree and
extend it to infinite levels. The invariance of operator fractal space provides the algebraic
equation that bone fractal operator T need to satisfy, which is as follows:

1
1
T1

+ 1
T2

+ 1
T
+ T3 = T. (5)

In mechanics, the right-hand side of Equation (5) can be regarded as the stiffness of
the fractal component, and the left-hand side can be regarded as the stiffness of the fractal
cell, and the two are equivalent. It is further deduced that:

(T1 + T2)T2 − (T1 + T2)T3T − T1T2T3 = 0. (6)
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Equation (6) is the algebraic equation of the fractal operator T. This is a quadratic
equation with the following radical solution:

T =
T3 ±

√
T2

3 + 4 T1T2T3
(T1+T2)

2
. (7)

So far, the fractal operator T of compact bone is determined, as shown in Equation (7).
Note the presence of symbol

√
in the bone fractal operator T, whose root

√
is derived

from a quadratic operator algebraic equation and is independent of the selection of physical
components. In other words, regardless of how the physical components in the fractal tree
are selected and what the final order of the bone fractal operator T is, its expression will
always include

√
. Therefore, we refer to this

√
order caused by the topological index of

fractal structure as the “apparent half-order” (operator) system, as shown in Figure 1.

Figure 1. Bone fractal operator model and “apparent half-order” system.

The bone fractal operator model approximates the mechanical behavior of bone by
connecting an infinite number of Hooke elastic elements and Newton viscous elements in
series and parallel, as shown in Figure 1 [35]. In fact, the physical (functional) fractal spaces
that we abstract from biological materials, biological structures, and biological movements
all adopt the simplest form of two-branch topology without exception. Its topological index
is “2”, which is the smallest prime number and determines the most basic and universal
motion laws within the organism [36]. As for why the bone fractal operator model shown
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in Figure 1 is an “apparent half-order” system? The answer is simple: because the bone
fractal operator T satisfies a quadratic algebraic equation (Equation (6)) and its solution
contains a quadratic radical (Equation (7)) in apparent form. Therefore, we say that the bone
fractal operator T is a 1/2-order operator in apparent form. Here, the reason for adding the
restrictive word “apparent” is that the final order of the root

√
not only depends on the

1/2-order of the apparent sign
√

, but also on the order of the operator within the root sign.
Thus, we have reviewed the construction process of the bone fractal operator model

and its correlation with the “apparent half-order” system.

3. Schiessel–Blumen Model and “γ-Order” System
This section mainly presents the Schiessel–Blumen model and the “γ-order” system.
Schiessel–Blumen mentioned in reference [39] that “our models allow a transparent

interpretation of the parameters which enter the fractional equations, and reveal that
the internal dynamics are hierarchically constrained.” In fact, the S-B model mainly dis-
cusses fractional-order relaxation equations, as fractional calculus is an important tool
for analyzing slow relaxation phenomena. The construction process of the S-B model is
as follows:

Establish a coupled linear differential equation system that the structure satisfies based
on the mechanical model shown in Figure 2:

Figure 2. Schiessel–Blumen model and “γ-order” system.
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(a) The additivity of the strains

εd
k = εs

k+1 + εd
k+1, (8)

where the subscript k of strain represents the structural hierarchy, that is, the k level
structure, the superscript s represents the spring, and d represents the dashpot. And
k = 0, 1, . . . , n − 2, the strains at the upper and the lower ends of the stepped structure
satisfy ε = εs

0 + εd
0 and εd

n−1 = εs
n, respectively.

(b) The additivity of the stresses

σs
k = σs

k+1 + σd
k , (9)

where k = 0, 1, . . . , n − 1, and the stress at the lower end of the stepped structure satisfies
σ = σs

0.

(c) The constitutive equation followed by the physical component of each structural part,
which is as follows for spring:

εs
k =

1
Ek

σs
k , (10)

where Ek is the stiffness coefficient of the k-th spring. Which is as follows for dashpot:

σd
k = ηk

dεd
k

dt
, (11)

where ηk is the viscosity coefficient of the k-th dashpot.

(d) Initial conditions

ε(t ≤ 0) = σ(t ≤ 0) = 0. (12)

Establish the stress–strain relationship in the complex frequency domain after Laplace
transform. Substituting Equation (10) into Equation (8), we have:

Ek+1εd
k (s) = σs

k+1(s) + Ek+1εd
k+1(s). (13)

By substituting Equation (11) into Equation (9) and combining it with the derivative
theorem of Laplace transform, we have:

σs
k(s) = σs

k+1(s) + sηkεd
k (s). (14)

Then, by combining the above equations and performing clever mathematical itera-
tions between Equations (13) and (14), and through n − 2 times iterative operations, the
continued fraction representation of the stress–strain relationship in the complex frequency
domain can be obtained:

E0
ε(s)
σ(s)

= 1 +
s−1 E0

η0

1+

s−1 E1
η0

1+

s−1 E1
η1

1+

s−1 E2
η1

1+
· · ·

s−1 En−1
ηn−1

1+

s−1 En
ηn−1

1
. (15)

It should be emphasized that Equation (15) is only the constitutive equation of the
n-level structure shown in Figure 2 and does not possess the properties of the “γ-order”
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system. Therefore, Schiessel–Blumen attempted to introduce the binomial series from
reference [40] as follows:

x(x + 1)γ−1 =
x

1+
(1 − γ)x

1+

1·(0+γ)
1·2 x
1+

1·(2−γ)
2·3 x
1+

2·(1+γ)
3·4 x
1+

2·(3−γ)
4·5 x
1+

· · · . (16)

The advantage of this operation is that the coefficients of Equations (15) and (16) can
be matched one-to-one to obtain the material parameters of each structural part of spring
and dashpot, and the final main order of the system is γ. Therefore, we can select the
parameters Ek and ηk according to Equation (17):

c0 =
E0

η0
,

E1

η0
= (1 − γ)c0,

E1

η1
=

1 · (0 + γ)

1 · 2
c0, . . . . (17)

It should be noted that the S-B model initially has an n-level structure, while the
binomial series of Equation (16) is infinite. This means that choosing Equation (17) as
the material parameter design method for the system is based on extending the n-level
structure to infinite-level structures. By substituting Equation (17) into Equation (15),
we have:

E0
ε(s)
σ(s)

= 1 +
c0
s

1+
(1 − γ) c0

s
1+

· · ·
(n−1)(n−γ)
(2n−1)(2n−2)

c0
s

1
. (18)

Therefore, when the hierarchical structure k of the system tends towards infinity,
we have:

E0
ε(s)
σ(s)

= 1 +
( c0

s

)( c0

s
+ 1

)γ−1
. (19)

Thus, the constitution of Schiessel–Blumen model in the complex frequency domain
has been determined, as shown in Equation (19).

The Schiessel–Blumen model approximates the fractional-order relaxation equation
by connecting a finite number of Hooke elastic elements and Newton viscous elements in
series and parallel, as shown in Figure 2, and extending the finite-order structure (n-level
structure) to infinite order according to binomial series and continued fraction theory [39].
Observing Equation (19), it can be seen that the main-order of the S-B system is γ. This
means inputting a coefficient relationship Equation (17) related to the expected fractional-
order γ to the physical components of the system. In the system of S-B model, only
integer-order physical components are used. When the structural hierarchy tends towards
infinity, the operator order of the overall structure is also equal to γ. And the expected
fractional-order γ is artificially given, so this is a design approach to achieve general γ order
of the system. If the constraint of the “apparent half-order” system is infinite self-identical,
then the constraint of the S-B model is precisely the coefficient expression containing the
design parameter γ in Equation (17).

Thus, we have demonstrated the construction process of the Schiessel–Blumen model
and its correlation with “γ-order” system.

4. Correlation Between Continued Fraction Structures, Fractal Operators,
and Fractional-Order Systems

This section mainly analyzes the correlation between continued fraction structures,
fractal operators, and fractional-order systems.

In Section 3, we provided a detailed introduction to the derivation process of the
Schiessel–Blumen model. It should be emphasized that when Schiessel–Blumen was
searching for a matching binomial series (Equation (16)), the first term did not contain 1,
so the continued fraction (Equation (15)) of initial n-level structure and binomial series
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(Equation (16)) were not congruent, with a difference of 1 between the two. The initial
structure of the S-B model is finite level (n-level), and it needs to be extended to infinity
before its continued fraction can accurately equal the binomial series (Equation (16)).

In reference [38], inspired by bone fractal operators, we established correlations be-
tween various disciplines (fractal geometry, fractional calculus, special function, continued
fraction, etc.), while also endowing them with specific mechanical connotations in the
physical fractal space. The new understanding of the correlation mentioned above is
due to our previous exploration of bone mechanics. Similarly, this section attempts to
establish the correlation between continued fraction structures, fractal operators, and
fractional-order systems.

In reference [38], we used the theory of a continued fraction to explain the construc-
tion process, properties, and characteristics from Golden Meta-Spring to Generalized
Meta-Spring, mainly involving the definition and representation of a continued fraction.
Generally speaking, the basic form of a continued fraction, namely the continued fraction
structure, corresponds precisely to the step topology in the physical fractal space. In other
words, this pattern caused by symmetry breaking in tree-like topology is an intrinsic mani-
festation of the continued fraction structure. It can be said that the existence of continued
fractions leads to the existence of stepped topological structures and generalized fractal
systems. We can obtain different step topological fractal trees by regulating the continued
fraction structure and then calculate the fractal operators based on the stiffness–flexibility
calculation method in mechanics. Finally, we can use the spatiotemporal correlation in the
physical fractal space to obtain the fractional-order systems.

Essentially, the starting point of the S-B model is to solve a system of linear differential
equations, obtain a continued fraction structure through clever mathematical iterations,
and finally obtain the fractional order constitution in the complex frequency domain,
which is completely different from our operatorization thought. The advantage of the
operatorization thought is that it skips the step of initially listing the system of linear
differential equations and directly manipulates the research object. Its biggest feature is
to separate the intrinsic and extrinsic aspects of the research system and calculate them
independently. “Intrinsic” is the operator of the system, which is the intrinsic property
of the system and is not affected by external inputs. “Extrinsic” is the external input of
the system, that is, external conditions which are not affected by the inherent properties
of the system. In other words, the operatorization method is a computational model for
decoupling the research system. If we use operatorization method to perform inverse
Laplace transform on both sides of Equation (19) simultaneously, we have:

L−1σ(s) = L−1L[σ(t)] = σ(t) = L−1
[

E0

1+( c0
s )(

c0
s +1)

γ−1 ε(s)
]

= L−1
[

E0

1+( c0
s )(

c0
s +1)

γ−1

]
∗ L−1[ε(s)] = L−1

[
E0

1+( c0
s )(

c0
s +1)

γ−1

]
∗ ε(t).

(20)

According to the convolution theorem of operators, we have:

σ(t) = T(p)ε(t) = K(t) ∗ ε(t). (21)

The convolution kernel function of the S-B model is:

KS-B(t) = L−1

[
E0

1 +
( c0

s
)( c0

s + 1
)γ−1

]
. (22)
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Therefore, the operator of the S-B model is:

TS-B(p) = L[KS-B(t)](p) = LL−1

[
E0

1 +
( c0

s
)( c0

s + 1
)γ−1

]
=

E0

1 +
(

c0
p

)(
c0
p + 1

)γ−1 . (23)

In Equation (23), the main order of the operator is γ. Note that in the complex
frequency domain each term in the continued fraction structure of Equation (15) is included
s−1, indicating that the continued fraction expression of the S-B model does not match
the real physical graph (structure). Because the structure shown in Figure 2 is a system
with alternating arrangement of spring and dashpot, if expressed in an operatorization
manner it should be a continued fraction structure with an alternating arrangement of
constant terms and time differential operator p. At this point, we can consider the S-B
model to be completely different from our operatorization thought. The former precisely
derives the continued fraction expression through clever mathematical iterations when
solving a system of linear differential equations with an overall structure, but does not
involve the correspondence between the real physical structure and operator. Our bone
fractal operator model establishes a one-to-one correspondence between a physical graph,
structural topology, and operatorization expression. We believe that whether it is a single
physical component or a structural system composed of several physical components, they
all correspond to a certain operator. Similarly, any operator theoretically has a combination
or combination of physical components that matches it. Essentially, the S-B model attempts
to construct a continued fraction form and then search for binomial series corresponding to
it in order to derive the proportional relationship satisfied by the parameters of the spring
Ek and dashpot ηk materials. However, each term of the continued fraction in Equation (15)
does not correspond to each level of the real physical structure. Therefore, the S-B model is
a purely mathematical construction method that does not include physical features, while
our operatorization method is a paradigm of the integration of mathematics and mechanics,
with fundamental differences between the two. This also highlights the importance of
developing an operatorization theoretical system. It should be emphasized that we can
use the parameters of the S-B model to validate and calculate its operators, but logically
it is inverted. In practical applications, we often focus more on the parameter design of
physical components, so it is particularly important to find a general design approach for
material parameters in the spring–dashpot system.

Thus, we have established the correlation between continued fraction structures, fractal
operators, and fractional-order systems, and introduced the concept of operatorization
method, laying a theoretical foundation for the operatorization thought in fractional-order
system design.

5. Operatorization Thought in Fractional-Order System Design
This section mainly elaborates on the operatorization thought in fractional-order

system design.
In Section 4, we established the correlation between continued fraction structures,

fractal operators, and fractional-order systems by introducing the concept of operatorization
method. In fact, if the concept of “there exists a correspondence between functions and
tangible structures in the physical fractal space” in reference [38] is further extended, that
is, the research object is extended from the “function domain” to the “operator domain”,
the operatorization thought in fractional-order system design can be obtained: “there
exists a correspondence between operator-type functions and tangible structures in the
physical fractal space”. The difference between the two is that the former attempts to
construct a full-spring stiffness system, while the latter does not limit the types of physical
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components. This means that the former is a constant-type operator system, while the
latter is a functional-type operator system. The connection between the two is that they
both use the stiffness–flexibility calculation method of a continued fraction to design
the system. It should be emphasized that, unlike the definition of a continued fraction
in pure mathematics, the physical effects of structural series and parallel connections
also need to be considered in the real system design. In reference [38], it is reflected
that the equivalent stiffness of the series branch is the reciprocal sum of the stiffness
of each physical component, and the equivalent stiffness of the parallel branch is the
direct sum of the stiffness of each physical component. In our operatorization thought
the equivalent operator of a series branch is the reciprocal sum of the operators of each
physical component, while the equivalent operator of a parallel branch is the direct sum
of the operators of each physical component. The objective reality differences caused by
mechanics or physics mentioned above highlight the necessity of interdisciplinary research
and provide a new idea for the design and control of fractional-order systems; with the help
of operatorization thought we can express the expected fractional-order system in the form
of continued fraction, obtain the operators of each level of physical components according
to the stiffness–flexibility calculation method of continued fraction, and then deduce the
properties of physical components through the convolution theorem of operators, thus
building the entire system. The above is the operatorization thought in fractional-order
system design, as shown in Figure 3.

Figure 3. Operatorization thought in fractional-order system design.
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Specifically, we start from the most basic integer-order physical components (such
as spring–dashpot model) and build the real system according to the step topology corre-
sponding to the continued fraction. According to the operatorization thought, the final
system can be expressed as a structural operator TStructural(p):

TStructural(p) = T1 +
1

1
T2

+ 1
T3+

1
1

T4
+···

. (24)

By substituting the structural operator TStructural(p) into Equation (4), we can obtain
the response σ(t) of the system under different input strain ε(t), that is:

σ(t) =

T1 +
1

1
T2

+ 1
T3+

1
1

T4
+···

ε(t). (25)

Equation (25) and the stiffness expression of the Golden Meta-Spring model in ref-
erence [38] satisfy the consistency of the apparent form, because both adopt the stiffness–
flexibility calculation method in the step topology structure. As mentioned earlier, the
structural operator TStructural(p) of the system are intrinsic properties, so the fractional
order of TStructural(p) is also the fractional order of the overall system. This means that with
Equation (25), we can regulate the fractional order of the system. In other words, if we
want to design the fractional order of the system, we can choose the material parameters of
the physical components in Equation (25).

Structural operator TStructural(p) provides convenience for solving the response of
the system as once TStructural(p) is obtained its convolution can be directly calculated
to obtain the output of the system, which is also the core of operatorization thought in
fractional-order system design. The advantage of this operation is that it decouples the
output problem of solving the overall system into independent calculations of the internal
structural operators TStructural(p) of the system and their convolutions with external input
ε(t), greatly simplifying the analysis steps and computational complexity. It can be said
that the selection of material parameters for physical components is another important
factor in determining the fractional order of system operators.

It should be emphasized that the bone fractal operator model and the S-B model, as
two typical ways of designing fractional-order systems, have slight differences in opera-
torization expression. The bone fractal operator model corresponds directly to Figure 3,
where all physical components are of integer order. The fractional-order system is obtained
through the design concept of infinite-level self-identical. The physical components of
the S-B model are also of integer order. By satisfying a certain proportional relationship
between the material parameters of the spring–dashpot and extending the structural hi-
erarchy to infinity, the “γ-order” system is obtained. There are subtle differences in the
structural operator TStructural(p) between the two. Due to the different forms of system con-
struction, the bone fractal operator model includes the first term T1 in Equation (25), while
the S-B model does not. But the solution of system response is completely unaffected by
the above differences, which is another advantage of the operatorization thought, namely
the convenience brought by decoupling.

Thus, we have elaborated on the operatorization thought in fractional-order system
design and provided a computational approach for solving the response of operator system.
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6. Operatorization Expression of Schiessel–Blumen Model
This section mainly presents the operatorization expression of the Schiessel–

Blumen model.
In Section 4, we obtained the operator TS-B(p) corresponding to the S-B model. In

Section 5, we obtained the structural operator TStructural(p) for generalized fractal systems.
Next, we will represent the operator TS-B(p) of the S-B model in the form of a continued
fraction. It should be emphasized again that this section further illustrates the advantages
of the operatorization thought using the S-B model. In other words, the introduction of
the S-B model in Section 3 is essentially a preparation for introducing the operatorization
thought. If the conventional S-B model method is used for the system shown in Figure 2,
it is required to solve the linear differential equation system shown in Equations (8)–(14).
If the operatorization thought is adopted, it is only necessary to correspond with the bi-
nomial series shown in Equation (16) with the structural operator TStructural(p) shown in
Equation (24) one-by-one and the types and parameters of each level of physical compo-
nents can be obtained sequentially, which once again highlights the power of operatoriza-
tion thought in fractional-order system design.

Based on the parameter design Equation (17) of the S-B model, we can obtain the
material parameters and their operatorization expressions for each level of spring and
dashpot. Specifically, assuming E0 and η0 knowing, according to Equation (24), we have:

TS-B
1 = E0, (26)

TS-B
2 = η0 p, (27)

TS-B
3 = E1 = (1 − γ)η0

E0

η0
= (1 − γ)E0, (28)

TS-B
4 = η1 p =

2E1

γc0
p =

2
γ

(1 − γ)E0
E0
η0

p =
2(1 − γ)

γ
η0 p, . . . . (29)

Therefore, the operator TS-B(p) of the S-B model can be further expressed as:

TS-B(p) =
1

1
E0

+ 1
η0 p+ 1

1
(1−γ)E0

+ 1
2(1−γ)

γ η0 p+ 1
1

(2−γ)(1−γ)
3γ E0

+···

. (30)

When the hierarchical structure tends towards infinity, Equation (30) becomes
Equation (23). Equation (30) indicates that any physical component at any level in the S-B
model can be determined and represented using the most basic (initial) material parameters
of the spring E0 and dashpot η0. Observing Equation (23) it is easy to see that the operator
TS-B(p) of the S-B model is mainly determined by the stiffness coefficient E0 of the initial
spring, the viscosity coefficient η0 of the initial dashpot, and the expected order γ. The
above three parameters are all manually selected. For material parameters E0 and η0, the
operator TS-B(p) of the entire system is directly related to both. The stiffness coefficient
E0 of the initial spring and the viscosity coefficient η0 of the initial dashpot are the basic
material parameters of the overall structure, because the material parameters of each level
of spring and dashpot can be represented by E0 and η0. In other words, there are an infinite
number of options for selecting values E0 and η0, which can be combined arbitrarily. There-
fore, there are infinitely many types of spring–dashpot systems that can form any γ-order
operator TS-B(p). For the expected order γ, according to our operatorization thought, the
above process can be understood as follows: if we want to construct a system of any γ-
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order, we only need to input a coefficient expression related to γ in each level according to
Equations (26)–(29).

At this point, based on the S-B model we have provided a construction method for
any operator order. The S-B model derives the continued fraction structure through pure
mathematical iteration, but their continued fraction form does not correspond one-to-
one with the real mechanical structure shown in Figure 2. Therefore, in the S-B model
continued fraction and binomial series are only used as pure mathematical methods and
do not have physical connotations. But in our operatorization system, the continued
fraction itself has rich physical connotations, which are closely related to factors such as the
topological structure of fractal trees and the mechanical properties of physical components.
Equations (23) and (30) represent a new design approach in our operatorization system; for a
system, if we expect it to be designed to any γ-order, we only need to find a series expansion
that satisfies the condition so that it can be expressed in simple continued fraction form,
and then use the operatorization thought to solve the parameters of physical components.
In other words, the continued fraction form corresponding to the series expansion of
Equation (23) is Equation (30). When we represent Equation (23) as a continued fraction
(Equation (30)), the material parameters of each level of physical components are also
determined and the entire system is determined accordingly.

Thus, we have provided the operatorization expression and continued fraction form
of the Schiessel–Blumen model.

7. Design and Control Method for General Fractional-Order Systems
This section mainly establishes the design and control method for general fractional-

order systems.
In current research, whether it is a biological model composed of springs and dash-

pots, or a circuit model composed of resistors, capacitors, and inductors, the basic compo-
nents that make up the fractal tree structure are of integer order [31,35,36]. By extending
the structural hierarchy to infinity and based on the self-identical properties of fractal
cells, algebraic equations satisfied by fractal operators can be listed, thus obtaining the
explicit expression of fractal operators. In short, we have designed fractional-order sys-
tems using only integer-order physical components, which brings new inspiration to
fractional-order control.

We naturally think that current fractal operators have an “apparent half-order” prop-
erty. Can we construct systems of any fractional order through further design? Or can the
design and control of any operator order be achieved under the original two-branch step
topology? The answer is affirmative.

Firstly, let us dialectically examine this issue. In our system, there are two prerequisites
for forming operator algebraic equations: one is infinite level and the other is self-identical.
This self-identical prerequisite, or the property that parts are equal to the whole, is a
necessary condition for forming an “apparent half-order” system, but it is also essentially
a constraint condition. Once this constraint is broken, the properties of the system will
change. In Sections 4 and 5, we have introduced the correlation between continued fraction
structures, fractal operators, and fractional-order systems, as well as the operatorization
thought in fractional-order system design. It should be emphasized that the consistency
between the self-assembly mode of the step topology and the continued fraction form
provides theoretical support for the design and control of arbitrary operator order. In other
words, step topology is an ideal structural model, and symmetry and symmetry breaking
theory play an important role in it [37,38].

Secondly, if we try to break the constraint of being self-identical, can we obtain similar
results? The answer is still affirmative, and the S-B model is a typical representative of it. In
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the S-B model, the physical components at each level are not exactly the same or identical,
but when the structural hierarchy tends towards infinity we can still obtain a system with
a fractional order of “γ”, which is a very exciting result. It should be emphasized that
the reference [39] does not seem to directly propose the design principle and basis of
Equation (17), but this layer-by-layer stacking pattern is very similar to the continued-
fraction structure. The S-B model provides a new perspective for clarifying the sources
of fractional order: we can obtain systems of any fractional order by selecting material
parameters or changing the constraint relationships between material levels which greatly
enhances the designability of the system. In the past physical fractal space, our system
was identical and of “apparent half-order”. Now, through the above design ideas we have
broken the constraints of being self-identical and introduced new constraints, which makes
the properties of the new system more diverse and the functions more comprehensive.
Thus, we have achieved the design and control of general operator order in the form of the
two-branch step topology.

We summarize the design and control method for general fractional-order system as
follows: select the expected γ order of the system, find a series expansion that satisfies the
conditions and includes the γ order, and express it in the form of continued fraction. Using
the operatorization thought, we obtain the material parameters of each level of physical
components to build the overall system. Therefore, the binomial series (Equation (16))
provided in the S-B model is only a design scheme. So, are there other binomial series
expansions that can be used to construct any γ-order system? The answer is affirmative.
For example, if the expected order of the system is γ, a simple series (p + 1)γ can be used
for expansion, as can be seen in the following:

(p + 1)γ =
1
1+

(−γ)p
1 +

1·(1 + γ)p
2 +

1·(1 − γ)p
3 +

2·(2 + γ)p
4 +

2·(2 − γ)p
5 +

· · · . (31)

It should be emphasized that p in Equation (31) is a time differential operator, and
its series expansion is an operator-type function. Here, we further extend the research
object from the “function domain” to the “operator domain”. Equation (31) can be further
written as:

T(p+1)γ(p) =
1

1 + (−γ)p

1+ 1·(1+γ)p

2+ 1·(1−γ)p

3+ 2·(2+γ)p

4+ 2·(2−γ)p
5+···

=
1

1 + 1
1

(−γ)p +
1

− 2γ
(1+γ)

+ 1

− 3(1+γ)
γ(1−γ)p +···

. (32)

Therefore, according to Equation (24) and the operatorization thought, the opera-
tors corresponding to each level of physical components can be calculated sequentially
as follows:

1

T(p+1)γ

1

= 1, (33)

T(p+1)γ

2 =
1

(−γ)p
, (34)

1

T(p+1)γ

3

= − 2γ

(1 + γ)
, (35)

T(p+1)γ

4 = − 3(1 + γ)

γ(1 − γ)p
, . . . . (36)

Just follow the pattern shown in Equations (33)–(36), and use the coefficient rela-
tionship equation containing the order of “γ” at each level as the input term for material
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parameters, we can construct general system with a fractional order of “γ”. The system
here is a broad concept, not limited to the spring–dashpot system in mechanics, but can also
be the capacitor–inductor–resistor system in circuits, and so on. Note that time integration
operator 1

p appear in Equations (34) and (36), so the “any order” here is more suitable for
building inductance (first-order integral operator) and resistance (constant operator) com-
ponents in circuit models. It can be said that as long as the series expansion is reasonable,
we can always build fractional-order systems that meet the requirements, which means that
the design and control methods for general fractional-order systems are not unique. For ex-
ample, we can find multiple design methods for γ-order systems. It should be emphasized
that Equations (34)–(36) indicate that physical components with “negative” properties will
appear in the system. These “negative” materials are widely present in nature, and we
can also synthesize structures with “negative” properties through artificial design (such as
mechanical metamaterials with negative Poisson’s ratio and negative modulus [41–45]).

Thus, this article provides two parameter selection methods for constructing general
“γ-order” systems, namely Equations (16) and (31). In fact, the parameter selection of
general “γ-order” system depends on the expansion form of the binomial series containing
time differential operator p. Or in other words, different binomial expansion methods
will result in different parameter selection methods, that is, the material parameters of the
physical components that make up the overall fractional-order systems are different. For
example, the series expansion of Equation (31) can also be expressed as:

(p + 1)γ = 1
1 +

(−γ)p
1 +

1·(1+γ)
1·2 p

1 +

1·(1−γ)
2·3 p

1 +

2·(2+γ)
3·4 p

1 +

2·(2−γ)
4·5 p

1 +
· · · ,

= 1
1 +

(−γ)p
1 +

(1+γ)p
2 +

(1−γ)p
3 +

(2+γ)p
2 +

(2−γ)p
5 +

(3+γ)p
2 +

(3−γ)p
7 +

· · · .
(37)

Equation (37) provides two additional ways to select parameters. We can calculate the
operators corresponding to each level of physical components in sequence according to
the patterns shown in Equations (33)–(36), in order to determine the material parameters
of each physical component. The specific process will not be repeated here. It can be seen
that the parameter selection of physical components at each level is closely related to the
expansion of binomial series. Every binomial series containing the time differential operator
p, when expressed in the continued fraction form, corresponds to a real system whose order
is the order of the operator-type function T(p). Therefore, the design of general “γ-order”
system is not unique and has diversity.

Next, we will provide application examples for constructing general “γ-order” sys-
tems. At present there are two main methods for simulating a general fractional-order
system using conventional physical components such as spring and dashpot. One ap-
proach is to use methods such as Newton’s method for approximation. Another type
is the fractal design mode mentioned in this article. If traditional methods are used to
construct fractional-order systems, the calculation of each physical component is generally
to four or more decimal places, which is difficult to achieve in practical production and
preparation, and this is also the biggest disadvantage of approximation methods. If the
fractal design mode is adopted, it usually increases the number of physical components
constructed exponentially with the recursive series, which greatly increases the manu-
facturing cost. Therefore, we can use truncation method to approximate the expected
“γ-order” to the maximum extent with a finite-level structure. In this way, the entire system
is composed of finite-level and integer-order physical components, which not only avoids
the excessive use of physical components, but also reduces the difficulty of preparing
fractional-order components.
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Consider a simple case where a “(p + 1)
1
2 -order” system is desired to be designed. In

reference [36], we have confirmed that when the input strain ε(t) is the Heaviside unit step
function η(t), the stress response of the system is as follows:

h∞-level(t) =
√

p + 1η(t) = erf
(√

t
)
+

e−t
√

πt
. (38)

If only the first five levels of the system are used, that is, only five physical components
are used, Equation (32) can be further written as:

T
(p+1)

1
2
(p) =

5p2 + 20p + 16
p2 + 12p + 16

. (39)

At this point, the stress response of the system is:

h5-level(t) = T
(p+1)

1
2
(p)η(t) = 4e−6t

[
cosh

(
2
√

5t
)
−

√
5

5
sinh

(
2
√

5t
)]

+ 10η(t)− 9. (40)

Plot the stress–strain responses corresponding to Equations (38) and (40) together, as
shown in Figure 4.

Figure 4. Stress response of infinite-level and finite-level (5-level) step topology (spring–dashpot
system) when the input strain is Heaviside unit step function.

In reference [36], we have confirmed that when t → ∞ , h∞-level(t) → 1 . Figure 4
shows that for Equation (40), it also exists: when t → ∞ , h5-level(t) → 1 . Moreover, the
five-level structure corresponding to Equation (40) has consistent long-term attenuation
characteristics compared to the infinite-level structure corresponding to Equation (38). This
means that if we use the truncation method and only use five physical components, we can

obtain a relatively ideal fractional-order system, i.e., the expected “(p + 1)
1
2 -order” system,

by following the step-like construction mode shown in Figure 3. The simple example
shown in Figure 4 provides theoretical support for the feasibility of designing general
fractional-order system. Or in other words, using finite-level structures to approximate the
properties of infinite-level structures is an interesting way to add possibilities for practical
production, preparation, and construction of expected fractional-order systems. It should
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be emphasized that this article only considers a simple case where the input strain ε(t) is
the Heaviside unit step function η(t). In the following work, we will discuss in detail the
effects of different truncation methods and input signals on the approximation performance
and output response of the entire system.

Another approach is to use the Euler’s theorem for continued fraction to represent the

series
∞
∑

k=0
ckzk corresponding to the expected order γ as continued fraction b0 +

∞
∑

k=1

(
ak
bk

)
.

Where c0 = b0, c1z = a1, b1 = 1, ak = − ck
ck−1

z, bk = 1 + ck
ck−1

z, and k = 2, 3, . . .. Utilize
the correspondence between coefficients to obtain the material parameters of physical
components at each level. In addition, attention should be paid to the selection of the
expansion point of the series, as the expansion does not converge at any position. More-
over, when using normalization operations to process continued fractions, it is easy to
introduce non-linear terms that possess additive properties. This means that once non-
linear components appear in the system, the non-linear effects of physical components
will become increasingly severe as the structural hierarchy increases. This is not what we
expected to see, as the fractional-order system in this article is entirely constructed from
integer-order components, and we do not want to add non-linear components to the system,
which would pose significant challenges for the preparation of real systems. It should
be emphasized that, similar to the operatorization thought proposed in Section 5 and the
search for suitable series expansions in Section 7, we further extend the research object from
the “functional domain” to the “operator domain”. Therefore, the series and continued
fraction here are both on the operator domain, and Euler’s theorem here is essentially
on the operator domain. In short, Euler’s theorem for continued fraction provides a new
approach for the design and control of any operator order. We will discuss the application
of Euler’s theorem for continued fraction in future work.

Thus, we have established the design and control method for general fractional-order
systems, and it is exciting that the components make up the fractional-order systems are of
integer order, which classical mechanical models do not possess.

8. Discussion on the Factors Influencing the Order of Fractional-
Order Operators

In previous research [31,35–38], we have focused on answering the fundamental
question: Where do fractional-order operators come from? What factors determine the
order of fractional-order operators?

For the first question, we provide a reasonable explanation: the biological fractal
operators in the physical fractal space. Based on the bone fractal operators, it can be
confirmed that there is a profound intrinsic correlation between the fractional order time
and fractional-dimensional space. The fractional-dimensional space inevitably leads to the
fractional order time. Fractional-dimensional space, as well as the motion in fractional-
dimensional space, must be characterized by fractional-order-time operators. So far, we
have answered the important question of the origin of fractional-order operators.

For the second question, we found that the source of fractional order is not unique, and
the factors that determine fractional order are diverse. For example, the topological invari-
ants of fractal cells, the order of physical components, and the mismatch of spatiotemporal
order, etc. Of course, we can obtain different types of fractal operators by regulating struc-
tural topology and component properties. These fractal operators share a commonality:
the “apparent half-order”. This commonality arises from the quadratic algebraic equation
satisfied by fractal operators. If the self-identical constraint in the physical fractal space is
lifted we can also design fractional-order systems by adjusting the proportional relationship
of coefficients between physical components, where the S-B model is a typical represen-
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tative. Essentially, the derivation process of the S-B model is a mechanical manifestation
of continued fraction iteration. The S-B model obtains a set of material parameters for the
spring and dashpot through the corresponding equality of binomial coefficients. The use of
Equation (17) in reference [39] is only one scenario. In theory, as long as the binomial series
is selected appropriately, there are infinite design methods for the material parameters of
spring and dashpot. Moreover, the general design method for any fractional-order system
proposed in Section 7 also indicates that the series expansion method is not unique, and the
system design method is also not unique. Essentially, whether it is the bone fractal operator
model or the S-B model, their fractional-order operators are derived from a series of opera-
tors of infinite integer-order physical components that are stacked in a continued fraction
pattern. In other words, the order of fractional-order operators is directly influenced by the
material parameters of each level of physical components. Therefore, the research results of
this article provide another strong evidence for explaining the source of fractional order,
that is, the selection of material parameters or changing the constraint relationship between
material levels are important factors determining the fractional order of operators.

The novelty of this article lies in the application of operatorization thought to the
design of general fractional-order systems. It should be emphasized that Mikusiński’s op-
erator algebra theory does not provide a general method for determining kernel functions
by operators. In references [35,36], we established the correlation between kernel function
and operator using integral transformation, summarized the general solution process of
operator kernel function method, and understood it as the operatorization thought in
the physical fractal space. The above ideas are fundamentally different from the classical
fractional-order system design theory; the operatorization thought is based on operations
in the operator domain, while the classical theory is often based on complex frequency do-
main. Taking the design of impedance approximation circuit as an example [34], traditional
circuit design requires the impedance Z(s) to be established in the complex frequency
domain, where Z is the complex number and s is a variable in the complex plane. If the
operatorization thought is used to construct the same system, the impedance Z(s) will
be represented as an operator-type function T(p), where the independent variable p is
the derivative with respect to time, which is a sign rather than a parameter. The biggest
advantage of operatorization thought is that it transforms all problems into the operator
domain for computation. This operation is precise and simple, and compared with tradi-
tional methods it avoids the tedious steps of repeatedly using Laplace transform or inverse
Laplace transform when solving system response. Or, in other words, with the operatoriza-
tion thought the definition and operation of fractional calculus have been unified. We do
not need to provide different fractional-order definitions for different problems, we just
need to use the operatorization thought to calculate the convolution of the operator and
its kernel function of the overall system, which is also the core of operatorization thought.
However, designing fractional-order systems based on the continued fraction theory and
operatorization thought also has limitations; when expanding the operators T(p) of the
overall system into continued fraction, operators and physical components with “negative”
properties often appear, which increases the cost and complexity of actual production and
preparation. From a mathematical perspective, this limitation arises from the symmetry
breaking of the step topology corresponding to the continued fraction structure during its
formation [37,38]. In the future, we will further optimize the continued fraction structure
and fractal tree pattern and simplify the parameter selection of physical components and
the construction method of overall system. Meanwhile, we will also discuss in detail the
practical applications of operatorization thought in different fields, such as fractional-order
circuit design, in our upcoming work.
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Thus, apart from the topological invariants of fractal cells, the order of physical
components, and the mismatch of spatiotemporal order, we have provided the fourth main
influencing factor of the fractional order.

9. Conclusions
This article takes the bone fractal operator model and the Schiessel–Blumen model

as the background and establishes the design and control method for general fractional-
order systems based on the continued fraction theory and operatorization thought. It is
worth mentioning that the components make up fractional-order systems are of integer-
order, which is not present in classical mechanical models. The operatorization thought
transforms the calculation of the operator and its kernel function response of the overall
system from the traditional complex frequency domain to the operator domain, making
the solving steps precise and simple. This is a new attempt in the interdisciplinary fields of
mechanics, mathematics, and systems science. In the future, how to apply operatorization
thought to different fields is a research topic worth exploring for a long time.

With operator series expansion as the core, this article confirms that general fractional-
order operator can be obtained by adjusting the material parameters of physical components
or changing the constraint relationships between material levels, which greatly enhances
the designability of the system. The selection of material parameters is an important
factor in determining the fractional order of operators, and the bone fractal operator in
the physical fractal space provides a new perspective for understanding this pwonderful
correlation.
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29. Fernandez, A. Mikusiński’s operational calculus for general conjugated fractional derivatives. Bol. Soc. Mat. Mex. 2023, 29, 25.

[CrossRef]
30. Rani, N.; Fernandez, A. An operational calculus formulation of fractional calculus with general analytic kernels. Electron. Res.

Arch. 2022, 30, 4238–4255. [CrossRef]
31. Jian, Z.M.; Guo, J.Q.; Peng, G.; Yin, Y.J. Fractal Operators and Fractional-Order Mechanics of Bone. Fractal Fract. 2023, 7, 642.

[CrossRef]
32. Sen, F.; Kircay, A. Realization of Fractional-Order Current-Mode Multifunction Filter Based on MCFOA for Low-Frequency

Applications. Fractal Fract. 2025, 9, 377. [CrossRef]
33. Hassan, M.A.; Amgad, A.; Galal, O.H. Deterministic and Stochastic Analysis of Fractional-Order Legendre Filter with Uncertain

Parameters. Fractal Fract. 2024, 8, 645. [CrossRef]
34. Tian, H.; Zhao, M.; Liu, J.; Wang, Q.; Yu, X.; Wang, Z. Dynamic Analysis and Sliding Mode Synchronization Control of Chaotic

Systems with Conditional Symmetric Fractional-Order Memristors. Fractal Fract. 2024, 8, 307. [CrossRef]
35. Jian, Z.M.; Peng, G.; Li, D.A.; Yu, X.B.; Yin, Y.J. Correlation between Convolution Kernel Function and Error Function of Bone

Fractal Operators. Fractal Fract. 2023, 7, 707. [CrossRef]
36. Jian, Z.M.; Peng, G.; Luo, C.Q.; Zhou, T.Y.; Yin, Y.J. Convolution Kernel Function and Its Invariance Properties of Bone Fractal

Operators. Fractal Fract. 2024, 8, 151. [CrossRef]
37. Jian, Z.M.; Luo, C.Q.; Zhou, T.Y.; Peng, G.; Yin, Y.J. Fractional-Order Correlation between Special Functions Inspired by Bone

Fractal Operators. Symmetry 2024, 16, 1279. [CrossRef]
38. Jian, Z.M.; Yin, Y.J. Golden Meta-Spring Inspired by Bone Fractal Operators. Symmetry 2024, 16, 1653. [CrossRef]
39. Schiessel, H.; Blumen, A. Hierarchical analogues to fractional relaxation equations. J. Phys. A Math. Gen. 1993, 26, 5057–5069.

[CrossRef]
40. Jones, W.B.; Thron, W.J. Continued Fractions: Analytic Theory and Applications; Addison-Wesley: Reading, MA, USA, 1980.
41. Zhang, X.Y.; Sun, Q.; Liang, X.; Gu, P.Z.; Hu, Z.Y.; Yang, X.; Liu, M.X.; Sun, Z.J.; Huang, J.; Wu, G.M.; et al. Stretchable and

negative-Poisson-ratio porous metamaterials. Nat. Commun. 2024, 15, 392. [CrossRef] [PubMed]
42. Kai, Y.; Dhulipala, S.; Sun, R.; Lem, J.; Delima, W.; Pezeril, T.; Portela, C.M. Dynamic diagnosis of metamaterials through

laser-induced vibrational signatures. Nature 2023, 623, 514–521. [CrossRef]

https://doi.org/10.1080/03772063.2024.2367048
https://doi.org/10.3390/math12142227
https://doi.org/10.2478/s13540-011-0037-1
https://doi.org/10.1016/j.physa.2016.06.135
https://doi.org/10.1016/j.petrol.2017.03.015
https://doi.org/10.1016/j.aml.2014.02.011
https://doi.org/10.1007/BF01456326
https://doi.org/10.1112/plms/s2-15.1.401
https://doi.org/10.1002/j.1538-7305.1922.tb00388.x
https://doi.org/10.2307/3610762
https://doi.org/10.1016/0898-1221(95)00031-S
https://doi.org/10.1515/fca-2021-0016
https://doi.org/10.1515/fca-2020-0004
https://doi.org/10.1007/s40590-023-00494-3
https://doi.org/10.3934/era.2022216
https://doi.org/10.3390/fractalfract7090642
https://doi.org/10.3390/fractalfract9060377
https://doi.org/10.3390/fractalfract8110645
https://doi.org/10.3390/fractalfract8060307
https://doi.org/10.3390/fractalfract7100707
https://doi.org/10.3390/fractalfract8030151
https://doi.org/10.3390/sym16101279
https://doi.org/10.3390/sym16121653
https://doi.org/10.1088/0305-4470/26/19/034
https://doi.org/10.1038/s41467-024-44707-3
https://www.ncbi.nlm.nih.gov/pubmed/38195718
https://doi.org/10.1038/s41586-023-06652-x


Fractal Fract. 2025, 9, 528 22 of 22

43. Guo, X.; Guzmán, M.; Carpentier, D.; Bartolo, D.; Coulais, C. Non-orientable order and non-commutative response in frustrated
metamaterials. Nature 2023, 618, 506–512. [CrossRef] [PubMed]

44. Bordiga, G.; Medina, E.; Jafarzadeh, S.; Bösch, C.; Adams, R.P.; Tournat, V.; Bertoldi, K. Automated Discovery of Reprogrammable
Nonlinear Dynamic Metamaterials. Nat. Mater. 2024, 23, 1486–1494. [CrossRef]

45. Djellouli, A.; Raemdonck, B.V.; Wang, Y.; Yang, Y.; Caillaud, A.; Weitz, D.; Rubinstein, S.; Gorissen, B.; Bertoldi, K. Shell Buckling
for Programmable Metafluids. Nature 2024, 628, 545–550. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41586-023-06022-7
https://www.ncbi.nlm.nih.gov/pubmed/37316720
https://doi.org/10.1038/s41563-024-02008-6
https://doi.org/10.1038/s41586-024-07163-z

	Introduction 
	Bone Fractal Operator Model and “Apparent Half-Order” System 
	Schiessel–Blumen Model and “-Order” System 
	Correlation Between Continued Fraction Structures, Fractal Operators, and Fractional-Order Systems 
	Operatorization Thought in Fractional-Order System Design 
	Operatorization Expression of Schiessel–Blumen Model 
	Design and Control Method for General Fractional-Order Systems 
	Discussion on the Factors Influencing the Order of Fractional-Order Operators 
	Conclusions 
	References

