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1. Introduction

Fractional differential equations constitute an important research direction in modern
mathematics and applied sciences. In contrast to traditional integer-order differential
equations, fractional differential equations can describe complex systems with memory
effects, heredity and nonlocal characteristics more accurately. So, these equations appear in
a wide variety of fields, such as physics, biology, control theory, financial engineering, fluid
mechanics, image processing and materials science [1-5]. Fractional models have become
important and significant investigation tools, especially in characterizing the behavior of
viscoelastic materials, abnormal diffusion phenomena, neural information transmission, bi-
ological tissue responses and the evolution of financial assets [6-10]. With the development
of mathematical theories and computational methods, various definitions of fractional
derivatives, such as Riemann-Liouville, Caputo, Hadamard, etc., have been proposed
and continuously improved, providing rich expression forms and theoretical support for
continuously promoting and deepening research on fractional models.

In the study of fractional differential equations, analyzing the properties of their solu-
tions has always been one of the core issues, covering multiple aspects such as the existence,
uniqueness, stability, regularity, monotonicity, asymptotic behavior and symmetry of the
solutions. These properties not only represent the basis of theoretical research, but are
also directly related to the reliability and computability of a model. Due to the nonlocality
and memorability characteristics of fractional derivatives, the solutions to fractional dif-
ferential equations often exhibit complex global behaviors, whereas such characteristics
are not demonstrated by the solutions to integer-order differential equations. Therefore,
researchers are continuously developing and applying nonlinear functional analysis tools,
such as the variational method [11,12], fixed-point theory [13,14], upper and lower solution
methods [15,16], topological degree theory [17,18], critical point theory [19,20], monotone
iterative method [21,22], etc., to establish the existence and uniqueness conditions for solu-
tions to fractional differential equations, and analyze their stability and long-term dynamic
behavior. Symmetry analysis not only helps to reveal the structural characteristics of the
solution among its many properties and reduce the complexity of the problem, but also
plays a key role in unique determination, identification of the solution’s branch structure
and model simplification. The symmetry of the solution is often closely related to the
nonlocal diffusion behavior, especially in models involving nonlocal operators such as
fractional Laplacian and fractional p-Laplacian, [23-30]. Therefore, the in-depth study of
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properties of fractional differential equation solutions, especially symmetry, promotes the
development of the theory of nonlocal partial differential equations, and provides important
mathematical tools and new ideas for the modeling and simulation of complex systems.

In view of the foregoing discussion, this Special Issue showcases the diversity of
studies focusing on the properties and applications of solutions to fractional differential
equations. It contains fourteen articles, which are briefly described in the next section. The
purpose of this editorial is to elaborate on each of the articles included in this Special Issue
and encourage the reader to explore them.

2. An Overview of the Published Articles

Fangyuan Dong et al. (Contribution 1) study a class of nonlocal Schrodinger—Poisson—
Slater equations. The authors establish the existence, stability and symmetry-breaking
of solutions in both radial and nonradial cases. In the radial case, variational methods
are used to prove the existence of a positive solution. In the nonradial case, the existence
of ground-state solutions is proven using the Nehari manifold method. Their results
demonstrate the stability of solutions in both radial and nonradial cases, identifying critical
parameter regimes associated with stability and instability. Their work advances our
understanding of nonlocal interactions in symmetry-breaking and stability while extending
existing theories to multiparameter and higher-dimensional settings within the Schrodinger—
Poisson-Slater model.

Keyu Zhang et al. (Contribution 2) investigate the solvability of a Riemann-Liouville-
type fractional-impulsive integral boundary value problem. Under some conditions on
the spectral radius corresponding to the related linear operator, several existence theorems
of the problem are obtained using fixed-point methods. In particular, they determine the
existence of multiple positive solutions via the Avery—Peterson fixed-point theorem. Note
that the linear operator depends on the impulsive term and the integral boundary condition.

Yongqing Wang (Contribution 3) discusses the positive solutions to a class of semi-
positone boundary value problems of fractional differential equations. The nonlinearity
f(t,x) may be singular at t = 0,1 and satisfies f(t,x) > —a(t)x — %(¢). The author derives
some new properties of the Green’s function of the auxiliary problems, and discovers the
multiplicity and existence of positive solutions by utilizing the fixed-point index theory.
Their research results enrich the study of semipositone FBVPs, and the proposed method
can also be applied to other types of differential equations.

Xianchen Wang et al. (Contribution 4) use the theory of fractional calculus to present a
detailed description and the calculation process of the Adomian decomposition algorithm
for incommensurate fractional-order chaotic systems. On this basis, the phase diagrams,
Poincaré section, coexistence bifurcation diagrams, and coexistence Lyapunov exponent
spectrum are analyzed. In addition, a fixed-time synchronization control scheme is pro-
posed. The results offer a new approach to the practical application of incommensurate
fractional-order chaotic systems.

Tao Liu et al.’s (Contribution 5) introduce and implement a method based on the
spectral element method that relies on interpolating scaling functions (ISFs). Using an
orthonormal projection, the method maps the equation to scaling spaces identified from
multi-resolution analysis. This is achieved by expressing the Caputo fractional derivative
as a square matrix based on ISFs. The convergence of the scheme is established through the-
oretical analysis. Simplicity in its implementation, significant accuracy, and high efficiency
make this method a candidate for solving fractional-type and nonfractional equations.

Yujun Cui et al. (Contribution 6) study high-order nonlinear fractional elastic equa-
tions that depend on low-order derivatives in the nonlinearity. Under suitable weaker
assumptions, the uniqueness is established using Perov’s fixed-point theorem and matrix
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analysis, while the existence of solutions is proven via the Leray-Schauder alternative
theorem and matrix analysis. Examples are provided to illustrate the key results.

Ayub Samadi et al. (Contribution 7) investigate a nonlocal fractional coupled system of
(k, p)-Hilfer fractional differential equations, where the boundary conditions involve (k, i)-
Hilfer fractional derivatives and (k, ip)-Riemann-Liouville fractional integrals. The exis-
tence and uniqueness of solutions are established for the considered coupled system by
using standard tools from fixed-point theory. More precisely, Banach and Krasnosel’skil”’s
fixed-point theorems are used, along with Leray—Schauder alternative. The results are
illustrated through constructed numerical examples.

Weiwei Liu et al. (Contribution 8) investigate the existence of solutions to the initial
value problem associated with a Hadamard-type fractional-order differential equation on
an infinite interval. The equation’s nonlinear term incorporates lower-order derivatives of
the unknown functions. To establish the global existence criteria, the authors first verify
that there exists a unique positive solution to an integral equation based on a class of new
integral inequality. Next, a metrizable and complete locally convex space is constructed.
On this space, the existence of at least one solution to the initial value problem is established
by applying Schduder’s fixed-point theorem.

Nasser H. Sweilam et al. (Contribution 9) improve a mathematical model of mon-
keypox disease with a time delay to a crossover model by incorporating variable-order
and fractional differential equations, along with stochastic fractional derivatives, in three
different time intervals. They discuss the stability and positivity of the solutions to the
proposed model. To analyze the model’s behavior, they construct two numerical methods:
the nonstandard modified Euler-Maruyama technique and the nonstandard Caputo pro-
portional constant Adams-Bashforth five-step method. Most importantly, their work opens
up new avenues for understanding the monkeypox epidemic.

Mengru Liu and Lihong Zhang (Contribution 10) study the monotonicity of the
positive solution to the double-index logarithmic nonlinear fractional g-Laplacian parabolic
equations with Marchaud fractional time derivatives by using the direct moving plane
method. They successfully overcome the difficulties caused by the double nonlocality in
space and time, as well as the nonlinearity of the fractional g-Laplacian. The results provide
important tools and methods for investigating the qualitative properties of solutions,
particularly for unbounded solutions to fractional elliptic and parabolic problems.

James Abah Ugboh et al. (Contribution 11) consider a faster iterative method for
approximating the fixed points of generalized a-nonexpansive mappings. They prove
several weak and strong convergence theorems for the considered method under mild
conditions on the control parameters. Furthermore, the authors demonstrate that the class
of mappings under consideration is more general than certain nonexpansive-type mappings.
These results generalize and improve upon many existing results in the literature.

Anthony Torres-Hernandez et al. (Contribution 12) construct a family of radial func-
tions to emulate thin-plate splines and propose methods for applying partial and full
fractional derivatives in interpolation problems. They use QR decomposition to precondi-
tion matrices and introduce two types of abelian groups for fractional operators, including
the Riemann-Liouville and Caputo derivatives. A radial interpolant is also proposed for
solving fractional differential equations via the asymmetric collocation method, with illus-
trative examples provided. This work highlights the innovative integration of fractional
operators with abelian group theory and radial basis functions.

Junjie Wang et al. (Contribution 13) develop finite difference and finite volume
schemes for the fractional Laplacian operator and apply them to solve fractional diffusion
equations. By combining fractional and classical interpolation functions, the authors handle
boundary singularities and construct discrete schemes with provable properties. Numerical
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experiments confirm the accuracy and efficiency of the proposed methods. Moreover, it is
easy to extend the numerical scheme to nonuniform dissection using a similar approach.

Tingting Guan and Lihong Zhang (Contribution 14) investigate solution properties
of space-time fractional variable-order conformable nonlinear differential equations in-
volving a generalized tempered fractional Laplace operator. The authors establish new
conformable fractional inequalities and prove a maximum principle in this context. They
further derive comparison results and analyze qualitative properties of solutions based on
the maximum principle.

3. Conclusions

The Special Issue, “Developments in the Symmetry and Solutions to Fractional Dif-
ferential Equations”, presents a series studies that demonstrate the profound influence of
fractional differential equations in modern mathematical analysis and applied sciences.
The articles presented in this Special Issue focus on the structure and symmetry analysis of
solutions, exploring the unique advantages of fractional models in depicting characteristics
such as memorability, heredity and nonlocality in complex systems, and improving the
traditional integer-order models describing such phenomena. For nonlocal Schrodinger—
Poisson systems and impulsive boundary value problems incommensurate with chaotic
systems and fractional Laplacian operators, many studies have proposed cutting-edge
analytical methods, providing solid support for understanding core issues such as the
existence, uniqueness, stability and symmetry-breaking of solutions to fractional differen-
tial equations.

This Special Issue includes fourteen original research papers demonstrating a range
of innovative achievements from theoretical analysis to numerical methods. The salient
features of this Special Issue include the establishment of a new maximum principle,
the construction of an efficient numerical interpolation technique, the design of control
strategies based on fractional systems, etc. The content of this Special Issue not only
promotes the theoretical development of fractional differential equations but also provides
new ideas for solving practical scientific and engineering problems. This Special Issue is
expected to serve as a significant reference and inspiration for the continuous development
of fractional differential equations and their potential applications in a wide range of
scientific disciplines.
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