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Abstract

In this study, we focus on solving the nonlinear time-fractional Hirota—Satsuma coupled
Korteweg-de Vries (KdV) and modified Korteweg—de Vries (MKdV) equations, using
the Yang transform iterative method (YTIM). This method combines the Yang transform
with a new iterative scheme to construct reliable and efficient solutions. Readers can
understand the procedures clearly, since the implementation of Yang transform directly
transforms fractional derivative sections into algebraic terms in the given problems. The
new iterative scheme is applied to generate series solutions for the provided problems.
The fractional derivatives are considered in the Caputo sense. To validate the proposed
approach, two numerical examples are analysed and compared with exact solutions, as
well as with the results obtained from the fractional reduced differential transform method
(FRDTM) and the g-homotopy analysis transform method (q-HATM). The comparisons,
presented through both tables and graphical illustrations, confirm the enhanced accuracy
and reliability of the proposed method. Moreover, the effect of varying the fractional
order is explored, demonstrating convergence of the solution as the order approaches an
integer value. Importantly, the time-fractional Hirota-Satsuma coupled KdV and modified
Korteweg—de Vries (MKdV) equations investigated in this work are not only of theoretical
and computational interest but also possess significant implications for achieving global
sustainability goals. Specifically, these equations contribute to the Sustainable Development
Goal (SDG) “Life Below Water” by offering advanced modelling capabilities for understand-
ing wave propagation and ocean dynamics, thus supporting marine ecosystem research
and management. It is also relevant to SDG “Climate Action” as it aids in the simulation of
environmental phenomena crucial to climate change analysis and mitigation. Additionally,
the development and application of innovative mathematical modelling techniques align
with “Industry, Innovation, and Infrastructure” promoting advanced computational tools
for use in ocean engineering, environmental monitoring, and other infrastructure-related
domains. Therefore, the proposed method not only advances mathematical and numerical
analysis but also fosters interdisciplinary contributions toward sustainable development.

Keywords: time-fractional Hirota—Satsuma coupled KdV; modified KdV; Yang transform;
Caputo operator; new iterative method

1. Introduction

Recent research has shown that a variety of physical phenomena in engineering,
physics, chemistry, and other scientific fields can be effectively represented using models
and mathematical techniques from fractional calculus, namely, the concept of non-integer
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order derivatives and integrals. The applications of fractional order calculus in fractional
order integration and differentiation make it an essential component of calculus. The idea of
fractional calculus is not new. It is a variation of classical calculus that deals with ordinary
differentiation and integration of arbitrary order. It basically started with a letter that
Leibniz wrote to L’'Hospital in the late seventeenth century. The basic idea behind fractional
calculus is that natural events are modelled using fractional operators rather than integer
operators. As a result, the main focus of fractional calculus is on properties that traditional
theory cannot adequately describe [1-4]. The two main categories of fractional derivatives
are Liouville-Caputo and Riemann-Liouville derivatives. Periodically, new definitions
of integrals and fractional operators are presented. These are basically extensions to the
Liouville-Caputo operator that provide new features that were not available before and
are fundamental to the development of fractional calculus theory. As a result, fractional
calculus has been shown to be a useful tool for studying topics associated to applied science.
In recent years, fractional calculus has been applied extensively. Numerous linear and
non-linear phenomena have been studied, using fractional calculus [5,6]. A few domains
that employ fractional order modelling are education [7], agriculture [8], ocean waves [9],
health [10], robotics [11], and construction [12].

In the applied sciences, including fluid mechanics, quantum mechanics, plasma
physics, ocean engineering, and nonlinear optics, nonlinear fractional differential equa-
tions (NFDEs) provide an efficient description of a wide range of physical phenomena.
Numerous studies in fields such as control theory, biology, economics, and electrodynamics
have demonstrated that NFDEs play a vital role in modelling and understanding complex
systems and dynamic behaviours observed in real-life applications. In recent years, these
equations have garnered significant attention, due to their applicability in diverse scientific
domains, notably in optical fibres, chemical physics, and solid-state physics. Obtaining
accurate analytical or approximate solutions to such equations is essential for deepening
our understanding of nonlinear processes in natural and engineered environments. Find-
ing the solution to NFDEs might be complicated at times. The exact analytical solutions
of many NFDEs are not known; hence, approximation and numerical methods must be
employed to obtain the desired outcomes. Therefore, effective computational techniques
may be needed to solve NFDEs. In recent years, a number of significant works on fractional
calculus have been researched, and several books have been written by different writers,
including Podlubny [13], Miller and Ross [14], Kilbas et al. [15], and Baleanu et al. [16,17].
These books provide a thorough analysis of fractional calculus, which could aid researchers
in understanding the fundamental concepts of the subject. Consequently, a number of
semi-analytical and numerical methods have been developed for the resolution of these
kinds of physical model issues, including the homotopy perturbation method [18], the
conformal decomposition method [19], the Adomian decomposition method [20,21], and
the modified decomposition method [22]. Some other researches can be found in [23-28]
relating to the complex study of fractional calculus and various methods.

The generalised time-fractional Hirota—Satsuma coupled KdV and MKdV equations
with appropriate initial conditions are solved and explored in the current research. The
most important nonlinear equations in physics and mathematics are the generalised Hirota—
Satsuma coupled KdV and MKdv systems. The Toda lattice equation, a well-known soliton
equation in one space and one time dimension, which is used to simulate the interaction
of nearby particles of similar weight in a crystal lattice formation, is the general case of
the Hirota—Satsuma coupled KdV equation. These models have numerous applications in
numerous domains of nonlinear research. For strings and multi-strings, these systems can
be employed to describe general properties of string dynamics in constant curvature space.
The interaction of two long waves with distinct dispersion relationships is also explored by
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these equations. Furthermore, wave propagation is described by these models in the study
of shallow-water waves.

The system of partial FDES of the following type represents the time-fractional Hirota—
Satsuma coupled KdV:

U _ 18U _ . 9U VW
ocP 203 o P
0PV EEAY% oV
S v 1
5P a¢3+3Ua¢' 1)
oPW *W oW
_— = = —_— <1
ocP a¢3+3Ualp’ 0<p<l,

and a time-fractional coupled mKdV system is

B 3 2
U _ 190 e 29 W gy 500

P 20y o 2 9y? o ap T Iy 2
0PV EAY oV _oUoaV ,0U oV
o~ op oy apay TV ag Ty

where / is a constant and B is a parameter describing the order of the time-fractional
derivative of U(¢,¢), V(¥,¢c)), and W(i, c), respectively. Our target is to achieve solu-
tions in the form of recurrence relations by applying the Yang transform iterative method
(YTIM), the novel iterative methodology provided by Gejji and Jafari [29]. In 2006, Jafari
and Daftardar-Gejji [29,30] presented a novel iterative technique for obtaining numerical
solutions to nonlinear functional equations. The iterative method has been employed to ad-
dress a large number of fractional boundary value problems [31] and nonlinear differential
equations of both integer and fractional order [32]. In this method, we use Yang transform
(YT) with the iterative approach. It is also advantageous to use this process to obtain an
accurate approximation of the solution. We can say that the projected approach can reduce
the time and work of the computation in comparison to the established schemes while
preserving great efficiency in the approximate results; the size decreasing amounts to an
enhancement of the execution of technique. The following is the paper’s order. We provide
a few foundational definitions in Section 2. Section 3 provides a brief presentation of the
Yang transform and an analysis of the new iterative technique. The convergence analysis
of the suggested method is discussed in Section 4 of the manuscript. The time-fractional
coupled KdV and mKdV systems’ approximate solutions, graphs, and tables are shown in
Sections 5 and 6. The conclusions are given in Section 7.

2. Basic Definitions
In this section, we offer some basic definitions related to our current research.
Definition 1. The Caputo definition of a fractional derivative is given as [33,34]

1
DEU.c) = T(k—B) /Og@ —p) PN (g, p)do, k-1<B<k keN. (3

Definition 2. The Yang transform (YT) of the function U(g) is given as [35,36]
Y{U(e)} = R(w) = [ e¥U(c)dg, ¢>0, ue (~1,c2). @

with inverse transformation as
Y H{R(u)} = U(g). ()
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Definition 3. The YT of a non-integer derivative is given as [35,36]
Y{UP(g)} = Ru( nil Ek(kjl), 0<p<n. (6)
Definition 4. The YT of an nth derivative is given as [35,36]
Y{U"(¢)} = Ru(,f‘) - nz_l UN0) 03, 7)

3. Roadmap of the YTIM

In this section, we present a general description of the YTIM. We consider the general
nonlinear FPDE of the form

DEU(, ¢) + PrU, ¢) + QU ) — Ra(,c) =0, m—1<B<m, (8)

with
U(y,0) =U(y),

where D,? = % represents the Caputo derivative, P; and Q; are linear and nonlinear
terms, respectively, and R is the source term.
By implementing YT to (8),

Y[DEU(y,¢)] + Y[PU(y, ¢) + Q1U(y, ) — Ra(y,¢)] = 0. 9)

By using the YT differentiation property, we have

1
IR~ O] = YPUWe) + QUG ~Rael
R(u) = ul(,0) = uPY[P1U(,¢) + QiU(,6) = Ra(y)].
By implementing the inverse Yang transform, Equation (10) can be written as
U(,6) = U(y,0) =Y~ uPY[PU(y,¢) + Q1U($,6) — Ra(,6)] (an
By the iterative approach, we obtain
)= ) Un(yc), (12)
m=0
7)1 ( 2 Um(¢ 9 ) 2 Um lP Q (13)
m=0 m=0

and the nonlinear term Q; is decomposed as

0 m m—1
Um(llJ/G)) =1 (Uo(p,6)) + ) {91 (kz Uk(llJ/G)) - Ql< ) Uk(¢r€)> } (14)
=0 k=0

m=1



Fractal Fract. 2025, 9, 503 50f 19

By using Equations (12)—(14) into Equation (11), we obtain

Y Un(pc) = U(w,0) = Y PY[Ri(y,¢)]] - Y [ufY 7%( )y Um(w,g)> +
" o m m—1 i (15)
Q1(Uo(¥,6)) + ) {Ql ( Y Uk(lPrQ)) - Ql( Y Uk(¢r€)> } ]
m=1 k=0 k=0
In terms of an iterative formula, we obtain
Uo(y,6) = U(y,0) = Y ' [sPY[Ri (¢, )], (16)
Ui(,6) = =Y [PY[P1[Uo(y, 6)] + Q1 To(¥,6)]], a7
Uns1($,6) = =Y {PY | P1[Ui(9, 0)] + Q1 (Uo(,6) + Un(,6) + .. + Ui, 6)) -
(18)
Q1 (Uo(¢,6) + Ui (g, ¢) +... + Ui(y, ) ] iz 1
At the end, the solution in series form to Equation (8) for the m-term illustrates
U(I/J,g) = UO(#’/@) + Ul(lplg) +U2(¢lg) +..., m= 1,2, tee (19)

4. Convergence Analysis

Theorem 1. The outcome of (19) is unique at 0 < (i + lpz)(ﬁil)) <1

Proof. Assume a Banach space H = (C[]],||.||) V continuous function on | with the norm
||.||. Let H be a Banach space, and I : H — H is a non-linear mapping, where

Uppr = Up + Y uPY [P (U (9, 6)) + Q1 (Ui, )]l 1> 0.

Suppose that [P1(U) — P1(U*)[ < ¢1]|U—U*| and [Q1(U) — Q1(U*)[ < ¢[U - U7,
where U := U(¢,¢) and U* := U*(¢,¢) are two separate function values and ¢, are
Lipschitz constants.

11U = 1U*[] < maxie [y~ [uPY[Py (U) = Py (U%)]
+uPY[Q (1) — Qi ()]
< maxgey 1Y YU - U]
+ oY YU - U] 20)
< maxie) (1 + 92) [Y [y |U - U]
< (91 + o) Y PY|U - U]

B
= (01 +42) () IV - Ul

Iis a contraction as 0 < (1 + lpz)(ﬁil)) < 1. The outcome of (8) is unique, in terms of

the Banach fixed point theorem. [

Theorem 2. The outcome of (19) is convergent.



Fractal Fract. 2025, 9, 503

6 of 19

U

— Usl|

Proof. Assume U,, =Y, U,(¢,¢). To show that U,, is a Cauchy sequence in H, consider

m

= maxcej| Z U], n=1,23,...
r=n+1
m
< maxcej|Y! uﬁYl Y. (P1(U,q) + Ql(Ur1))H ‘
r=n+1

= maxcej

y! uﬁY[ mf (P1(U;) + Ql(w)H |

r=n+1

(21)

< maxeer| Y uPY[(P1(Up-1) = P1(Uy-1) + Q1(Up-1) — Q1(Up—1))]]|

< prmaxge| Y P Y[(P1(Up-1) = P1(Uy1))]]]

+ pomaxce;|Y HuPY[(Q1(Up—1) — Q1(Uy—1))]]|
/5

W)me—l _Un—1||

Let m = n + 1; then,

(1‘/]1 + ¢2)( (

U1 = Unl| < 9l[Un = Upal] < 92| Up-1Un2f| <. < ¢"[[U1 = Uoll,  (22)
where ¢ = (1 + 1/J2)( /3 +1 ). Similarly, we have

NUm — Unll < |Upg1 = Unl| + [[Ups2Upga || + - - + 1[Um = Up—a ||,
(W' + 9"+ " H)||Up = Uy

(23)
1 _lpmfi’l
<YP"| ——— .
< (T )l
As (0 < ¢ < 1,weobtain1 —¢p™~" < 1. Hence,
lpi’l
U — Ul < ———maxees||Un]]. (24)

4

Since ||U]| < oo, ||Uy —Uy|| — 0 when n — oo. Hence, U, is a Cauchy sequence in H,
demonstrating that the series Uy, is convergent. [

5. Applications
5.1. Example
We consider the time-fractional Hirota—Satsuma coupled KdV [37],

U _ 18U 00 VW
o 209y3 P oY

PV PV 9V
25
o = app Vg @)

oW W oW
—_— —_— <
S~ oy TGy 0<BSL
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with
a — 2x? 5 )
U(y,0) = 3 + 2x“ tanh” (x1p),
4x%ug (0 +12)  4x%(a + x2) tanh(x
V(IP,O)Z— .MOS(Z )_'_ ( 3) ( 1/’)/
M1 M1

W(,0) = po + pq tanh(xip).

where x, 19, 41 # 0 and « are arbitrary constants.
At g =1and u = —a, the exact solution of Equation (25) is

o — 2x?

U(y,¢) = + 21% tanh?® (x (¢ — pig)),

4 2 2 4 2 2 nh -
V(g ) = — Vo?)(;é{rff ) (et )t;m (x(y — g))

W(y,¢) = po + pq tanh(x (¢ — pg)).

4

Implementing YTIM to Equation (25), we have

—3U0-—+3

103U oU VW
0(0) =0+ [ 55 -augp e

- - 2’V oV
V(p,¢) =Y HuV(y,0)]+ Y [uﬁY{alps +3U8¢H, (26)
>W oW
W(yp,c) = Y [uW(yp,0)] + Y [uﬁy{ S H ,
So,
U(y,0) = f _32K2 + 2« tanh? (k1p),
B 74K2y0(rx +x2)  4x?(a + %) tanh (k)
W(y,0) = po + pq tanh(xyp).
_ 4sinh(xy)ax® P
Ul (IIJ, g) - COSh3(KllJ) 1—-(1 +ﬁ)l
. 43 (o 4 x2)cP
Vi) = 3cosh?(xkyp)u T(1 4 B)”
— paxagh
Wily6) = cosh? (k))T(1+ B)’
and
Us(,¢) = _4a%c*(2cosh®(kyp) —3)  ¢? 16ak° sinh(xy) (=52 cosh® (ktp) + & cosh® (k) + 9x*)T (1 + 2B)
2Wre) = cosh? (k) I'(1+28) cosh’ (k)T (1 + B)?
¢
I'(1+3p)
Va(p,0) = — 8ta?(a + 12)c% sinh(kp)  32«7a®(ax + x2) sinh® (k)L (1 4+2B) ¢
26 = 3 cosh® (k)1 T (1 4 2B) cosh® (ki) 1 T(1 + B)2 I'(1+3p)
Wa(h, ) = 2u1k202 sinh(kp)c2P  24p1k5a2 sinh? (k) T(1 +28) ¢
(1, ¢) = — _

cosh® (kyp)T(1 + 2B) cosh® (xkp)T'(1 + B)2 I'(1+3p)
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The YTIM results of Equation (25) are demonstrated as

a — 2x2 4sinh(kyp)ax® P 402k (2 cosh® (k) —3)  ¢2P
U(y,¢) = + 2«2 tanh? (k) + Cosh(3(1f<1>/7) T (cosh4(1c(1p1)l)) ) T(1+28)
16a2x° sinh (k) (—5k2 cosh® (k) + a cosh? (k) +9x2)T (1 +2B)  ¢3F N
cosh” (xkip)T(1 + B)2 raa+sp) 7
A pg(a + %) 4x*(a + «2) tanh(xyp) dida(a + x%)gP
Vi) = - 3u? - 3 - 3cosh? (k) T'(1 4 B)
- 8cta?(a+12)cP sinh(kp)  32«7a®(w + k2) sinh® (k)L (14+2B) ¢ N
3 cosh® (k) 1 T'(1 4 2B) cosh® (ki) 1 T(1 + B)2 r(a+sp) 7
pixach - 21 k% sinh (k) g2

W(¥,6) = po+ pu tanh(xp) + cosh®(kp)T(1+ B)  cosh® (kp)T(1 + 2B)

| 24k°a? sinh?(kp)T(1+28) 3P

cosh®(kyp)T(14+p)2  T(1+3p) i

5.2. Example
We consider the time-fractional coupled modified KdV [37],
U 13°U ,0U  33°V Y oU oU
ocP 29y3 v oY 3 P2 +3U oY 3V oY P 27)
aiv - *V A% U oV ,0U oV

2~ o Vay Sapay TV e TGy

with
U(y,0) = % + x tanh(xy),

V(y,0) = g(r; x) + rtanh(xy),

where x, 1, 1 # 0 and « are arbitrary constants.
At g =1and u = —a, the exact solution of Equation (27) is

¢ 2
Uy, q) = é+xtanh <K¢+Z<—4K2—6€+6Kr+3;2>g>,

¢ ¢ P
V(p,c) = %%—rtanh <K¢+Z<—4K2—6€+6Kr+3;2>g>.

Implementing YTIM to Equation (27), we have

19°U oU  30%V oV ou U
U(y,6) =Y {uU(y,0)] + Y {u Y{Z 573 3U 2y 2992 +3Ua¢ +3Va¢ 3584, H

vV oV _oUaV oU oV
-1 -11,,8 v oy 2
V(p,¢) = Y HuV(p,0)] +Y {u Y{ 773 SValP 3*34; ) +3U W +3efa¢ H

(28)

So,

U(y,0) = é + ktanh(kp),

V(p,0) = g(r; %) 4 rtanh(xyp).
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14ty — 630+ 6x%0r =37 P

Ui(yp,¢) = — ,
1¥6) =3 cosh?(xy)r T(1+B)
1 4ictr + 6x30 — 6K20r — 373 B
Vl (lpr g) =77 2 °
4 cosh” (ky)x I(1+p)
and
. 2‘5
Ua(p,g) = - Smhlxp)e 16512 — 487 0r + 48K0Lr% + 36K°12 — 7265 Pr 4
8 cosh’ (ky)r2kI'(1 + 2B)

36T (1 +2B)
1672 (1 + 3p) cosh® (k)T (1 + )2

36xt %1% — 241t — 36K30r° + 36K%07* + 9r6> +

(64;(10 cosh? (k)12 4 144x8 cosh? (k) £2 — 96x° cosh? (k) r* + 362 cosh? (ki) r®—

18 cosh(k1p) sinh(xp)r” — 192« cosh? (k) rl + 1923 cosh? (kp) 2 — 32i® cosh ()3

sinh () — 288x” cosh? (k) rf? + 144x® cosh® (k) r* 0% 4 144x° cosh? (k)€ — 144x*

cosh? (ki) r*e + 48x* cosh (xyp) 1 sinh (k) 4 120x87* — 45x%r° — 80x1°7% — 96x” cosh (k)

% sinh(x) £ + 96x° cosh(k)r® sinh (k) £ + 216x° cosh(k)r sinh (k) £> — 432k° cosh(kp)
1% sinh (k) 02 4 216x* cosh (k)7 sinh () £2 + 72«3 cosh (k) r* sinh (k) £ — 722 cosh(kp)

7 sinh(x) ¢ — 180x°r>£ + 180k 4 4- 360k” 10 — 180x°r242 — 180k (% 4 2401710 — 240x8r2£>

. 413

___ 3sinh(xp)rl (1 +3p)c 64x'2° — 288k 120 + 288k ¢ + 432107 (% — 864x°
32T(1 + B)3 cosh’ (ky)r3T' (1 4 4PB)

1202 + 4321813 0% — 144x8r° — 216173 + 64813103 — 648x7 213 + 4321740 + 21607303 — 43240

0 — 324x%13 1% + 648k°r* 02 — 324x*1° 0% + 108x*r — 162x31°0 + 1621317 0 — 27r9>

_ sinh(mp)gzﬁ 8 2 2 . > . 79
Va(yp,¢) = 8 cosh® (k) 2T (1 1 2) (161( r~ cosh” (k) sinh(xy) + 48 cosh” (k) sinh (ki)' fr

48 cosh? () sinh () kO r* + 36 cosh? (k1p) sinh (k)42 — 72 cosh® (iyp) sinh (k) k> £2r + 36 cosh? (k1)
sinh () k4021 — 24 cosh? (k) sinh (k) xk*r* — 36 cosh? (k) sinh (k) x> r® + 36 cosh? (k) sinh (k) x>
¢r* — 288 sinh (k) rx” £ 4 288 sinh (k1) r?x°¢ + 9 cosh? (k) sinh (k) r® — 72 cosh (k) x> £r? 4 72 cosh(kp)

14 3B) cosh® (k)T (1 + B)2
0% — 288k* cosh? (k) r? 0% — 192x* cosh? (k) r* — 96x° cosh (i) sinh (k)2 € + 96x* cosh (k) 7> sinh (k) £
— 144xk%? — 144 sinh (k) x* cosh () rf? + 288x> cosh(k)r? sinh () £? — 144x2 cosh (x)r® sinh (k) £
+ 48x7 0 — 48K°0r> + 72 cosh? (k) r® + 72k cosh (k) sinh (xyp)r*¢ — 72 cosh () sinh (k1) r>€ + 252x° (>

. 4ﬁ
— 504102 + 252202 + 216k — 36K3P30 + 363 — 811 | Smh(""’)z(l +3p)e
32T(1 + B)3 cosh’ (ky)r2T' (1 + 4PB)

3p
4 3) T I 3k I (1+2p) <128K8 cosh? (kip)r* — 288x° cosh? (k1) €% + 576x° cosh? (k1p)
’

(641(121’3 — 96k 1420 + 96K1973 0 — 144x10702 + 288x%120% — 144131302 — 144x87° + 21617 1% — 648x8r03+
6481k’ 1203 + 144x7 0 — 216x°r3 0% — 144x57°0 + 108k 0% — 216x°7* 02 + 108x*1° 12 + 108k — 543100+

545217 0 — 27r9>
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The YTIM results of Equation (27) are demonstrated as

r 14y — 6K30 + 6x20r — 33 P
U(y,¢c) = — + xtanh(xy) — —
(¥:¢) 2K (xy) 4 cosh? (ki) r I'(1+p)

B sinh(xy)g?P
8 cosh® (k) r2xT (1 + 2)

<16K81’2 — 48k7 0r + 48x°0r? + 36K°07 — 721K %+

3¢%T(1+2)
1672T (1 + 3B) cosh® (xkyp)T'(1 + B)2

36k 0212 — 24x*r* — 36130 + 36K 0r* + 9r6> +

<64K10 cosh? (kip)r? + 14418 cosh? (k) €% — 96x° cosh? (k) r* + 36x2 cosh? (kip)r®—

18 cosh (k) sinh ()" — 192«” cosh? (k) r€ + 192« cosh? (k)12 — 32«8 cosh (k)1

sinh (k) — 288k” cosh?(kp)re? + 144x° cosh? (k) r? €% + 144x> cosh? (kp)r30 — 144x*
cosh? (k)€ + 48x* cosh (k)1 sinh (k) + 120x°7* — 45x%r° — 80x'%r% — 96x” cosh(k1p)

r% sinh (k) £ + 96x° cosh(xk)r® sinh (k)£ 4 216x° cosh(k)r sinh (k) > — 432x° cosh(kp)
r? sinh (k)2 4 216x* cosh (k)7 sinh (k) 2 + 72x3 cosh (xip)r# sinh (k)£ — 72x2 cosh ()

r° sinh (k)£ — 180k 4 180k 44 4- 360x” £ — 180x°r%¢> — 180K (% + 2401710 — 240K8r2€>

B 3sinh(xy)kT (1 + 3B)g*
32(1 + B)3 cosh’ (k)3T (1 + 48
1202 + 432137302 — 144x87° — 2161713 + 64813103 — 648x7 1203 + 432k 40 + 216k 03 — 432x°

) <64K12r3 — 28811420 + 288x193¢ + 432x1070% — 864x°

10— 324x%3 0% + 648xk°r* 0% — 32414 0% + 108k — 162K31°0 + 162K%+7 0 — 27r9> +...

4 30 _ 6x20r — 33 B i 2p
l(r+x) + rtanh(xgp) — 14x%r + 6x 62 6x=lr — 3r s B 5s1nh(1c1p)g
2r 4 cosh® (ki) T(1+B) 8cosh®(xy)r2xT (1 +2B)

V(y,¢) =

<16K87’2 cosh? (ki) sinh(x1p) + 48 cosh? (k) sinh () k7 £r — 48 cosh? (k) sinh (k) k®£r? 4 36 cosh? (k1p)

sinh (k)k®0% — 72 cosh? (k) sinh (i) > 21 + 36 cosh? (kyp) sinh (k) x*£2r* — 24 cosh? (i) sinh () k4 —

36 cosh? (k1) sinh (k) x> 013 + 36 cosh? (icyp) sinh (k1) r* — 288 sinh (icyp ) rc” £ + 288 sinh (i) 2k 0+
3xc®PT (1 +28)

16T (1 + 3B) cosh® (k)T (1 + B)?

9 cosh? (k) sinh (k1) r® — 72 cosh (k) k> £r? + 72 cosh(Kl/J)K4€r3> -

<1281<8 cosh? (kip)r? — 288K cosh? (k1) €% + 5761 cosh? (ki) rt* — 288i* cosh? (kip)r20% — 192«* cosh? (k) r* —

96x° cosh (k) sinh () r*£ + 96x* cosh(x)r® sinh (k)¢ — 144x3r* — 144 sinh () x* cosh (k) re? +-
288x> cosh (k) r? sinh (k) £> — 144k cosh (k)1 sinh (k) €2 + 48k rl — 48xk%r* + 72 cosh? (k) r®+
72k cosh(kp) sinh (k) r*¢ — 72 cosh(xp) sinh (k)€ 4 252x807 — 504i>r(? + 2524202 4 21614 r* —
3sinh (k)T (1 +38)c*
32T(1 + B)3 cosh’ (k1) r2T (1 4 4B)
144519702 4- 288171207 — 144131302 — 144181 + 216x° 15 — 64815113 4 648K7r* (3 + 144K r*0 — 216K 13—

361330 + 361274 — 817’6) + (641{127’3 — 961720 + 96K193 0 —

144x%7° ¢ + 108x°73 02 — 216x°1*0% + 108x*r° % + 108x*r” — 54x31°0 + 54x%+7 1 — 27r9> +...
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6. Results and Discussion

Here, we report the results of our numerical simulations of the nonlinear time-
fractional Hirota—Satsuma coupled KdV and MKdV equations using the proposed tech-
nique. We used 2D and 3D graphs and tables to show the behaviour of the obtained
solution. Figures 1-3 represent the 3D comparison plots of the exact and YTIM solutions
of Example 5.1 for U(y,¢),V(y,¢), and W(4, ), while Figures 4-6 represent the 3D so-
lution graph at § = 0.50,0.75 of Example 5.1 for U(y,¢),V(,¢), and W(i,¢). Similarly,
Figures 7-9 represent the 3D as well as the 2D solution graph at different fractional orders
of Example 5.1. Also, Tables 1-3 show a comparison of the exact solution with the pro-
posed method solution at different fractional orders of B for U(y, ), V(¢,¢), and W(ip,c).
We compare the solution of the third-order approximation with FRDTM in Tables 4—6.
The comparison shows a high degree of agreement between the analytical and exact re-
sults. This suggests that the solutions generated by YTIM are more suitable than those
obtained FRDTM. Thus, compared to FRDTM, the suggested strategy is a dependable,
innovative method that needs less calculation time and is simpler and more adaptable. In
the same manner, Figures 10 and 11 represent the 3D comparison plots of the exact and
YTIM solutions of Example 5.2 for U(¢, ¢) and V (i, ¢), while Figures 12 and 13 represent
the 3D solution graph at g = 0.50,0.75 of Example 5.2 for U(¢, ¢) and V (i, ). Similarly,
Figures 14 and 15 represent the 3D and 2D solution graph at different fractional orders of
Example 5.2. Also, we compared the absolute error of the third-order approximation with
q-HATM in Tables 7 and 8 for U(y, ¢) and V (1, ). These error tables were essential for
evaluating both methods’ accuracy and convergence. A smaller absolute error suggests
a more accurate approximation, suggesting that our approach is capable of accurately
simulating the behaviour of the associated nonlinear partial differential equations. The
tabular and graphical representations have verified that fractional-order solutions converge
to integer-order solutions. Our solution series quickly converges to the precise solution
when we simply compute the iteration up to three terms. A few more iterations could be
investigated, in order to improve the accuracy of the estimated results. We can simulate and
visualise the physical characteristics of a non-linear problem with FC, which allows us to
examine and evaluate its physical behaviour. The method that has been proposed is more
effective and appropriate for examining complicated coupled fractional-order problems.
By Maple 2015, all of the numerical computations have been performed.

Table 1. Numerical comparison between accurate and proposed method solution at different frac-
tional orders for U(y, ¢).

¢ B=085(YTIM) B=090(YTIM) B =095YTIM) B=1(YTIM) B =1(Exact)

0.0 0.4933335653 0.4933334681 0.4933334114 0.4933333783  0.4933333783
0.1 0.4933368309 0.4933364566 0.4933361820 0.4933359781  0.4933359781
0.2 0.4933440935 0.4933434422 0.4933429500 0.4933425755  0.4933425755
0.3 0.4933553470 0.4933544196 0.4933537101 0.4933531651  0.4933531652
0.4 0.4933705829 0.4933693797 0.4933684537 0.4933677388  0.4933677388
0.5 0.4933897886 0.4933883109 0.4933871689 0.4933862847  0.4933862846
0.6 0.4934129491 0.4934111977 0.4934098409 0.4934087881  0.4934087880
0.7 0.4934400458 0.4934380223 0.4934364515 0.4934352309  0.4934352308
0.8 0.4934710572 0.4934687632 0.4934669798 0.4934655923  0.4934655922
0.9 0.4935059587 0.4935033961 0.4935014015 0.4934998482  0.4934998481
1.0 0.4935447229 0.4935418936 0.4935396892 0.4935379714  0.4935379714
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Figure 1. Graph (a) demonstrating the accurate solution and (b) demonstrating our method solution
for U(y, ).
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Figure 2. Graph (a) demonstrating the accurate solution and (b) demonstrating our method solution
for V(y, ).
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Figure 3. Graph (a) demonstrating the accurate solution and (b) demonstrating our method solution

for W(y,¢).

Figure 4. Graphs demonstrating our method solution for U(y, ¢) at (a) § = 0.50 and (b) B = 0.75.



Fractal Fract. 2025, 9, 503 13 of 19

Figure 7. Graph (a) demonstrating three-dimensional and (b) demonstrating two-dimensional nature
of the proposed method result for U(¢, ¢) at various fractional orders of p.

g1
B (=0.75
=0.50

B B-0.35

Figure 8. Graph (a) demonstrating three-dimensional and (b) demonstrating two-dimensional nature
of the proposed method result for V(¢, ¢) at various fractional orders of p.
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Figure 9. Graph (a) demonstrating three-dimensional and (b) demonstrating two-dimensional nature
of the proposed method result for W(i, ¢) at various fractional orders of f.

Table 2. Numerical comparison between accurate and proposed method solutions at different
fractional orders for V(¢, ¢).

¢ B=085(YTIM) B=090(YTIM) B=095(YTIM) B=1(YTIM) B =1(Exact)

0.0 —3.0193627730 —3.0195023340 —3.0196119980  —3.0196980000 —3.0196980000
0.1  —3.0173495930 —3.0174891320 —3.0175987790  —3.0176847690 —3.0176847690
0.2  —3.0153369450 —3.0154764300 —3.0155860390  —3.0156720000 —3.0156720000
03  —3.0133252270 —3.0134646340 —3.0135741820  —3.0136600970 —3.0136600970
04  —3.0113148430 —3.0114541430 —3.0115636080  —3.0116494600 —3.0116494600
0.5  —3.0093061930 —3.0094453590 —3.0095547200  —3.0096404910 —3.0096404900
0.6  —3.0072996750 —3.0074386780 —3.0075479140  —3.0076335870 —3.0076335870
0.7  —3.0052956880 —3.0054345000 —3.0055435890  —3.0056291470 —3.0056291470
0.8  —3.0032946250 —3.0034332200 —3.0035421390  —3.0036275680 —3.0036275670
09  —3.0012968810 —3.0014352310 —3.0015439600  —3.0016292390 —3.0016292400
1.0 —2.9993028430 —2.9994409220 —2.9995494400  —2.9996345550 —2.9996345550

Table 3. Numerical comparison between accurate and proposed method solutions at different
fractional orders for W(¢, ¢).

¢ B=085(YTIM) B=090(YTIM) pB=095(YTIM) B=1(YTIM) B =1(Exact)

0.0 1.5003165040 1.5002471850 1.5001927160 1.5001500000  1.5001500000
0.1 1.5013164270 1.5012471200 1.5011926600 1.5011499500  1.5011499490
0.2 1.5023160870 1.5022468060 1.5021923640 1.5021496690  1.5021496690
0.3 1.5033152840 1.5032460430 1.5031916310 1.5031489580  1.5031489590
0.4 1.5043138200 1.5042446310 1.5041902600 1.5041476190  1.5041476190
0.5 1.5053114930 1.5052423710 1.5051880530 1.5051454520  1.5051454520
0.6 1.5063081080 1.5062390670 1.5061848110 1.5061422580  1.5061422580
0.7 1.5073034660 1.5072345200 1.5071803370 1.5071378400  1.5071378410
0.8 1.5082973720 1.5082285340 1.5081744340 1.5081320030  1.5081320030
0.9 1.5092896290 1.5092209110 1.5091669070 1.5091245500  1.5091245500
1.0 1.5102800450 1.5102114610 1.5101575620 1.5101152870  1.5101152870
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Table 4. Numerical comparison between proposed method solution with accurate solution and
fractional reduced differential transform method (FRDTM) for U(¢, g).

s P Exact FRDTM YTIM

0.0 0.493351 0.493333 0.493351

0.25 0.493393 0.493345 0.493393

0.2 0.50 0.493460 0.493381 0.493460
0.75 0.493552 0.493443 0.493552

1.0 0.493667 0.493528 0.493667

0.0 0.493405 0.493333 0.493405

0.25 0.493477 0.493344 0.493477

04 0.50 0.493573 0.493380 0.493573
0.75 0.493693 0.493440 0.493693

1.0 0.493836 0.493525 0.493836

0.0 0.493494 0.493333 0.493495

0.25 0.493595 0.493343 0.493596

0.6 0.50 0.493720 0.493378 0.493721
0.75 0.493868 0.493438 0.493868

1.0 0.494038 0.493523 0.494038

Table 5. Numerical comparison between proposed method solution

with accurate solution and

FRDTM for V(i,¢).
S Y Exact FRDTM YTIM

0.0 —3.013961 —3.019919 —3.013960

0.25 —3.008937 —3.014887 —3.008936

0.2 0.50 —3.003927 —3.009862 —3.003925
0.75 —2.998937 —3.004849 —2.998935

1.0 —2.993973 —2.999856 —2.993971

0.0 —3.007934 —3.019839 —3.007920

0.25 —3.002927 —3.014807 —3.002913

0.4 0.50 —2.997942 —3.009782 —2.997927
0.75 —2.992984 —3.004771 —2.992969

1.0 —2.988058 —2.999779 —2.988045

0.0 —3.001928 —3.019758 —3.001880

0.25 —2.996948 —3.014727 —2.996899

0.6 0.50 —2.991996 —3.009703 —2.991948
0.75 —2.987078 —3.004693 —2.987031

1.0 —2.982200 —2.999702 —2.982154

Table 6. Numerical comparison between proposed method solution

with accurate solution and

FRDTM for V(¢,¢).
¢ ¥ Exact FRDTM YTIM
0.0 1.502999 1.500039 1.503000
0.25 1.505494 1.502539 1.505495
0.2 0.50 1.507983 1.505035 1.507983
0.75 1.510461 1.507525 1.510462
1.0 1.512927 1.510005 1.512928
0.0 1.505993 1.500079 1.506000
0.25 1.508479 1.502579 1.508383
0.4 0.50 1.510956 1.505075 1.510756
0.75 1.513418 1.507564 1.513117
1.0 1.515865 1.510043 1.515463
0.0 1.508975 1.500111 1.509000
0.25 1.511449 1.502619 1.511381
0.6 0.50 1.513909 1.505114 1.513749
0.75 1.516352 1.507603 1.516100
1.0 1.518774 1.510081 1.518433
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Table 7. Numerical comparison between proposed method solution and g-homotopy analysis
transform method (g-HATM) for U(y, ¢).

¥

q-HATM

YTIM

—-50
—40
—-30
—-20
-10
0
10
20
30
40
50

1.502999 x 10~ 1
8.46214 x 10~ 11
6.03700 x 10~10
3.38628 x 10~%°
5.51964 x 10~
9.24074 x 1010
4.87746 x 10~%9
3.31997 x 10~%
5.86792 x 1010
8.21664 x 10~ 11
1.11710 x 10~ 11

1.000000 x 10~ 1
1.000000 x 10~ 11
2.000000 x 1010
1.600000 x 10~%
2.500000 x 1079
1.300000 x 1098
5.500000 x 10~%°
1.800000 x 109
2.000000 x 10~10
0.00000000
0.00000000

Table 8. Numerical comparison between proposed method solution and g-homotopy analysis
transform method (g-HATM) for V(¢, ¢).

¥

q-HATM

YTIM

-50
—40
-30
-20
-10
0
10
20
30
40
50

1.15064 x 10~11
8.46214 x 10711
6.03701 x 1010
3.38628 x 109
5.51964 x 10~
9.24074 x 10~10
4.87746 x 1079
3.31998 x 10~%9
5.86792 x 1010
8.21664 x 1011
1.11710 x 10~ 11

4.15000 x 10~12
2.838000 x 10~ 11
2.637000 x 1010
1.733000 x 109
4.610000 x 1079
1.400000 x 1098
4.600000 x 10709
1.800000 x 109
2.000000 x 10~10
0.00000000
0.00000000

0
(@ ¥

008 006

3

004 002 0

pog 006 004 0.02
<

Figure 10. Graph (a) demonstrating the accurate solution and (b) demonstrating our method solution

for U(y, g).

Figure 11. Graph (a) demonstrating the accurate solution and (b) demonstrating our method solution

for V(y, ).
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Figure 14. Graph (a) demonstrating three-dimensional and (b) demonstrating two-dimensional
nature of the proposed method result for U(¢, ¢) at various fractional orders of B.

Figure 15. Graph (a) demonstrating three-dimensional and (b) demonstrating two-dimensional
nature of the proposed method result for V(¢, ¢) at various fractional orders of B.

7. Conclusions

In this research, we used a coupling technique that combines the new iterative method
and the Yang transform to achieve approximate solutions to a coupled mKdV system and
a time-fractional generalised Hirota—Satsuma coupled KdV system. When the outcomes
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of this approach are compared to the precise solution, it becomes clear that the suggested
approach is remarkably straightforward and allows for dealing with the nonlinear terms
easily. The suggested approach solution exhibits strong agreement with the exact solution
when two nonlinear systems are solved. It has been verified that the suggested approach,
which demonstrates quick convergence, requires considerably lower computational effort.
When the approximate and exact solutions are compared, it is found that the approximate
series solutions for the first few terms are extremely accurate and converge quickly to
the solutions of the actual physical problems. The findings demonstrate that the current
method is very precise, trustworthy, and best suited for computer algorithms. It is also
a useful mathematical tool for many researchers studying linear or nonlinear fractional
differential equations in the applied sciences and engineering fields. In addition, the current
method can be used in combination with a number of other numerical techniques to obtain
an approximate and analytical solution for fractional differential equations.
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