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Abstract

This paper mainly studies a different infinite-point Caputo fractional differential equation,
whose nonlinear term may be singular. Under some conditions, we first use spectral
analysis and fixed-point index theorem to explore the existence of positive solutions of the
equation, and then use Banach fixed-point theorem to prove the uniqueness of positive
solutions. Finally, an interesting example is used to explain the main result.

Keywords: positive solutions; Caputo fractional derivative; spectral analysis; fixed-point
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1. Introduction
Recently, fractional differential equations (FDEs) have become increasingly important

in mathematics. The fractional derivative serves as an effective tool for accurately describing
the memory and heritability of various materials and processes. Compared to traditional in-
teger differential equations, FDEs are crucial in many fields, including physics, engineering,
mechanics, and biology [1–3]. This widespread application makes them valuable in areas
such as control theory [4], viscoelastic theory [5,6], epidemiological modeling [7], and more,
effectively addressing many complex real-life problems. The multi-point or infinite point
boundary value problem (BVP) of FDEs is one of the research directions welcomed by
many scholars. Multi-point boundary value problems originated from various fields of
applied mathematics and applied physics. They can not only describe many important
and complex physical phenomena more accurately, such as the theory of non-uniform
electromagnetic field, but also have a broader practical application background, such as
population growth. With the continuous in-depth study of many scholars, people began to
have an interest in the infinite point boundary value condition. In 2011, Gao and Han [8]
first considered the solution of FDEs with infinite point boundary value conditions. In 2016,
Guo et al. [9] first studied the infinite-point Caputo FDE problem. Xu and Yang [10] studied
FDEs in control theory in combination with infinite point boundary conditions. In 2024,
Li et al. [11] discussed an infinite-point Hadamard FDE problem.

The existence and uniqueness of solutions has always been one of the hot issues in
the study of FDEs. Commonly used tools for proving the existence of solutions include the
fixed-point theorem in cones [12–15], the upper and lower solution method [16,17], and Leray–
Schauder degree theory [18], etc. To establish the uniqueness of solutions, techniques
such as the Banach fixed-point theorem [16,19,20], Gronwall’s inequality, and the Laplace
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transform method are frequently employed. For nonlinear FDEs, additional methods such
as variational techniques and spectral analysis may also be utilized.

In [21], the author considered the existence and multiplicity of positive solutions for
the FDE problem  Dα

0+u(t) = a(t) f (t, u(t)), 0 < t < 1,

u(0) = u′(0) = 0, u(1) = ∑m
i=1 β ju(ξ j),

where Dα
0+ is the Riemann–Liouville differential operator of order 2 < α ≤ 3. The exis-

tence and multiplicity of solutions are obtained by two fixed-point theorems on a cone in
Banach spaces.

In [9], Guo et al. studied the following infinite-point FDE problem cDα
0+u(t) + f (t, u(t), u′(t)) = 0, 0 < t < 1,

u(0) = u′′(0) = 0, u′(1) = ∑∞
j=1 ηju(ξ j),

where cDα
0+ is the Caputo derivative, 2 < α ≤ 3. The existence of multiple positive solutions

is obtained by Avery–Peterson’s fixed-point theorem.
In [11], Li et al. discussed an infinite-point Hadamard FDE problem−H D♭

a+v(t) + ϱ(t)ℓ(t, v(t),H Dµ
a+v(t)) = 0, a < t < b,

H Dµ
a+v(a) = H Dµ+1

a+ v(a) = 0, H Dµ
a+v(b) = ∑∞

j=1 k j
H Dµ

a+v(ς j),

where H D♭
a+ , H Dµ

a+ are the Hadamard derivatives, 2.5 < ♭ ≤ 3, 0 < µ < 0.5. The existence
of positive solutions is obtained by the spectral analysis method, Gelfand’s formula, and the
cones fixed-point theorem.

In [22], Zhai et al. analyzed the following form of Hadamard FDE problem on an
infinite interval H Dα

1+x(t) + a(t) f (t, x(t)) + b(t)g(t, x(t)) = 0, 1 < t < +∞,

x(1) = x′(1) = 0, H Dα−1
1+ x(+∞) = ∑m

i=1 αi
H Iβi

1+x(η) + c ∑n
j=1 σjx(ξ j),

where H Dα
1+ is the Hadamard-type fractional derivative of order α, 2 < α < 3, and H Iβi

1+ is
the Hadamard-type fractional integral of order βi > 0 (i = 1, 2, . . . , m). The local existence
and uniqueness of positive solutions are obtained by two fixed-point theorems of a sum
operator in partial ordering Banach spaces.

In [23], Zhang considered following nonlinear fractional differential equation with
infinite-point boundary value conditions Dα

0+u(t) + q(t) f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = . . . = u(n−2)(0) = 0, u(i)(1) = ∑∞
j=1 αju(ξ j),

where Dα
0+ is the Riemann–Liouville derivative, α > 2, n − 1 < α ≤ n. The local existence

and multiplicity of positive solutions are obtained by fixed-point theorems.
Inspired by these references, here we consider a new infinite-point Caputo FDE problem cDα

a+v(t) + e(t) f (t, v(t), cDµ
a+v(t)) = 0, 0 < a < t < b,

cDµ
a+v(a) = cDµ+1

a+ v(a) = cDµ+2
a+ v(a) = 0, cDµ

a+v(b) = ∑∞
j=1 k j

cDµ
a+v(δj),

(1)
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where cDα
a+ and cDµ

a+ are Caputo fractional derivatives of orders α, µ, 3.5 < α ≤ 4,
0 < µ < 0.5, a < δ1 < δ2 < . . . < δj−1 < δj < . . . < b (j = 1, 2, . . .), k j > 0 and
∑∞

j=1 k j(δj − s)α−µ−1 > (b − s)α−µ−1, ∑∞
j=1 k j(δj − a)3 < (b − a)3, e(t) may be singular at

t = a or t = b, f is a given continuous function.
This paper mainly consists of the following parts: In Section 2, some definitions and

lemmas are given to provide some basic contents for the later proof. In Section 3, the ex-
istence and uniqueness of solutions are proved. Theorems 1 and 2 use the fixed-point
index theorem to prove the existence of positive solutions, and Theorem 3 uses the Banach
fixed-point theorem to prove the uniqueness of positive solutions. In Section 4, an ex-
ample is used to verify the correctness of the conclusion. In Section 5, the main contents,
characteristics, and further research directions of this kind of equation are summarized.

2. Preliminaries
For the following proofs, we need some important definitions and lemmas.

Definition 1 ([24,25]). The Caputo fractional derivative of order α > 0 for a function u is defined as

cDα
a+u(t) =

1
Γ(n − α)

∫ t

a
(t − s)n−α−1u(n)(s)ds,

where n = [α] + 1, [α] denotes the integer part of the number α.

Definition 2 ([24,25]). The Riemann–Liouville fractional integral of order α > 0 for a function u
is defined as

Iα
a+u(t) =

1
Γ(α)

∫ t

a
(t − s)α−1u(s)ds.

Lemma 1 ([24,25]). With the given notations, the following equality holds

Iα
a+(

cDα
a+)u(t) = u(t) + c0 + c1(t − a) + c2(t − a)2 + . . . + cn−1(t − a)n−1,

where n is the least integer greater than or equal to α and ci (i = 0, 1, . . . , n− 1) are arbitrary constants.

Let u(t) =c Dµ
a+v(t), v(t) ∈ C([a, b], [0,+∞)), then the BVP(1) can be equivalent to

the following:  cDα−µ
a+ u(t) + e(t) f (t, Iµ

a+u(t), u(t)) = 0, a < t < b,

u(a) = u′(a) = u′′(a) = 0, u(b) = ∑∞
j=1 k ju(δj),

(2)

where 3.5 < α ≤ 4 and 0 < µ < 0.5.

Lemma 2. Given h ∈ C[a, b] ∩ L1(a, b), the fractional problem cDα−µ
a+ u(t) + h(t) = 0, a < t < b,

u(a) = u′(a) = u′′(a) = 0, u(b) = ∑∞
j=1 k ju(δj),

has a unique solution

u(t) =
∫ b

a
G(t, s)h(s)ds,

where

G(t, s) = H(t, s) +
(t − a)3

∆

∞

∑
j=1

k j H(δj, s),
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∆ = (b − a)3 −
∞

∑
j=1

k j(δj − a)3,

H(t, s) =
1

Γ(α − µ)(b − a)3

 (t − a)3(b − s)α−µ−1 − (t − s)α−µ−1(b − a)3, a ≤ s ≤ t ≤ b,

(t − a)3(b − s)α−µ−1, a ≤ t ≤ s ≤ b.

Proof. According to Lemma 1, we can obtain

u(t) = −Iα−µ
a+ h(t) + c0 + c1(t − a) + c2(t − a)2 + c3(t − a)3

= −
∫ t

a

(t − s)α−µ−1

Γ(α − µ)
h(s)ds + c0 + c1(t − a) + c2(t − a)2 + c3(t − a)3,

where c0, c1, c2, and c3 are arbitrary constants. From u(a) = 0, we have c0 = 0. Then

u′(t) = −
∫ t

a

(t − s)α−µ−2

Γ(α − µ − 1)
h(s)ds + c1 + 2c2(t − a) + 3c3(t − a)2,

u′′(t) = −
∫ t

a

(t − s)α−µ−3

Γ(α − µ − 2)
h(s)ds + 2c2 + 6c3(t − a),

from u′(a) = u′′(a) = 0, we get c1 = c2 = 0. Therefore,

u(δj) = −
∫ δj

a

(δj − s)α−µ−1

Γ(α − µ)
h(s)ds + (δj − a)3c3,

by u(b) = ∑∞
j=1 k ju(δj), we get

u(b) = −
∫ b

a

(b − s)α−µ−1

Γ(α − µ)
h(s)ds + (b − a)3c3

=
∞

∑
j=1

k j

[
−
∫ δj

a

(δj − s)α−µ−1

Γ(α − µ)
h(s)ds + (δj − a)3c3

]
,

then, we get

c3 =
1
∆

[∫ b

a

(b − s)α−µ−1

Γ(α − µ)
h(s)ds −

∞

∑
j=1

k j

∫ δj

a

(δj − s)α−µ−1

Γ(α − µ)
h(s)ds

]
,

where

∆ = (b − a)3 −
∞

∑
j=1

k j(δj − a)3.

Hence,

u(t) = − 1
Γ(α − µ)

∫ t

a
(t − s)α−µ−1h(s)ds +

(t − a)3

∆Γ(α − µ)

∫ b

a
(b − s)α−µ−1h(s)ds

− (t − a)3

∆Γ(α − µ)

∞

∑
j=1

k j

∫ δj

a
(δj − s)α−µ−1h(s)ds

+
1

Γ(α − µ)(b − a)3

∫ b

a
(t − a)3(b − s)α−µ−1h(s)ds

− 1
Γ(α − µ)(b − a)3

∫ b

a
(t − a)3(b − s)α−µ−1h(s)ds
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=
1

Γ(α − µ)(b − a)3

∫ t

a
(t − a)3(b − s)α−µ−1h(s)ds

+
1

Γ(α − µ)(b − a)3

∫ b

t
(t − a)3(b − s)α−µ−1h(s)ds

− 1
Γ(α − µ)(b − a)3

∫ t

a
(b − a)3(t − s)α−µ−1h(s)ds

+

[
1

∆Γ(α − µ)
− 1

Γ(α − µ)(b − a)3

] ∫ b

a
(t − a)3(b − s)α−µ−1h(s)ds

− 1
∆Γ(α − µ)

∞

∑
j=1

k j

∫ δj

a
(t − a)3(δj − s)α−µ−1h(s)ds

=
1

Γ(α − µ)(b − a)3

∫ t

a

[
(t − a)3(b − s)α−µ−1 − (b − a)3(t − s)α−µ−1

]
h(s)ds

+
1

Γ(α − µ)(b − a)3

∫ b

t
(t − a)3(b − s)α−µ−1h(s)ds

+
(b − a)3 − ∆

∆Γ(α − µ)(b − a)3

∫ b

a
(t − a)3(b − s)α−µ−1h(s)ds

− 1
∆Γ(α − µ)

∞

∑
j=1

k j

∫ δj

a
(t − a)3(δj − s)α−µ−1h(s)ds

=
∫ b

a
H(t, s)h(s)ds +

(t − a)3

∆

[
1

Γ(α − µ)(b − a)3

∞

∑
j=1

k j

∫ b

a
(δj − a)3(b − s)α−µ−1h(s)ds

− 1
Γ(α − µ)(b − a)3

∞

∑
j=1

k j

∫ δj

a
(b − a)3(δj − s)α−µ−1h(s)ds

]

=
∫ b

a
H(t, s)h(s)ds +

(t − a)3

∆

∞

∑
j=1

k j

∫ b

a
H(δj, s)h(s)ds

=
∫ b

a
G(t, s)h(s)ds.

The proof is now finished.

Lemma 3. For s, t ∈ [a, b], we have
(i) H(t, s) ≤ w(s)

Γ(α−µ)
,

(ii) H(t, s) ≥ v(t)w(s)
Γ(α−µ)(b−a)3 ,

where w(s) = (b − s)α−µ−1, v(t) = (t − a)3(b − t).

Proof. (i) By Lemma 2, we have

H(t, s) =
1

Γ(α − µ)(b − a)3

[
(t − a)3(b − s)α−µ−1 − (t − s)α−µ−1(b − a)3

]
≤ 1

Γ(α − µ)(b − a)3 (t − a)3(b − s)α−µ−1

≤ 1
Γ(α − µ)(b − a)3 (b − a)3(b − s)α−µ−1

=
1

Γ(α − µ)
(b − s)α−µ−1,
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we can get H(t, s) ≤ w(s)
Γ(α−µ)

, where w(s) = (b − s)α−µ−1.
(ii) Case 1: a ≤ s ≤ t ≤ b

H(t, s) =
1

Γ(α − µ)(b − a)3

[
(t − a)3(b − s)α−µ−1 − (t − s)α−µ−1(b − a)3

]
=

1
Γ(α − µ)(b − a)4

[
(b − a)(t − a)3(b − s)α−µ−1 − (b − a)(t − s)α−µ−1(b − a)3

]
≥ 1

Γ(α − µ)(b − a)4

[
(t − a)3(b − s)α−µ − (b − a)4(t − s)α−µ−1

]
=

1
Γ(α − µ)(b − a)4 (t − a)3(b − s)α−µ−1

[
(b − s)− (b − a)4(t − s)α−µ−1

(t − a)3(b − s)α−µ−1

]
,

let l(s) = (b − s)− (b−a)4(t−s)α−µ−1

(t−a)3(b−s)α−µ−1 , then

l′(s) =
(b − a)4

(t − a)3 (α − µ − 1)(t − s)α−µ−2(b − s)µ−α(b − t)− 1 ≤ 0, (s → t),

so we have
H(t, s) ≥ 1

Γ(α − µ)(b − a)4 (t − a)3(b − s)α−µ−1(b − t).

Case 2: a ≤ t ≤ s ≤ b

H(t, s) =
1

Γ(α − µ)(b − a)3 (t − a)3(b − s)α−µ−1

=
1

Γ(α − µ)(b − a)3(b − t)
(b − t)(t − a)3(b − s)α−µ−1

≥ 1
Γ(α − µ)(b − a)4 (b − t)(t − a)3(b − s)α−µ−1.

Combining Cases 1 and 2, we have w(s) = (b − s)α−µ−1, v(t) = (t − a)3(b − t) and
we can get H(t, s) ≥ v(t)w(s)

Γ(α−µ)(b−a)4 .

Lemma 4. The properties of the Green function G(t, s) are as follows:
(i) G(t, s) : [a, b]× [a, b] → [0,+∞) is continuous;
(ii) G(t, s) ⩽ w(s)

Γ(α−µ)
w0;

(iii) G(t, s) ⩾ v(t)w(s)
Γ(α−µ)(b−a)4 .

where w(t) = (b − t)α−µ−1, v(t) = (t − a)3(b − t), w0 = 1 + (b−a)3

∆ ∑∞
j=1 k j.

Proof. (i) According to the expressions of H(t, s) and G(t, s), we can get G(t, s) is continu-
ous in [a, b]× [a, b].
(ii) By Lemma 3, we have H(t, s) ≤ w(s)

Γ(α−µ)
. Then,

G(t, s) = H(t, s) +
(t − a)3

∆

∞

∑
j=1

k j H(δj, s)

≤ w(s)
Γ(α − µ)

+
(b − a)3

∆

∞

∑
j=1

k j
w(s)

Γ(α − µ)

=
w(s)

Γ(α − µ)

[
1 +

(b − a)3

∆

∞

∑
j=1

k j

]

=
w(s)

Γ(α − µ)
w0.
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(iii) By Lemma 3, we have H(t, s) ≥ v(t)w(s)
Γ(α−µ)(b−a)4 . Then,

G(t, s) ≥ H(t, s) ≥ v(t)w(s)
Γ(α − µ)(b − a)4 .

The proof is now finished.

Let E = C[a, b], ∥u∥ = maxa≤t≤b |u(t)|, then (E, ∥.∥) is Banach space. And we have

P = {u ∈ E : u(t) ≥ 0, t ∈ [a, b]},

K =

{
u ∈ P : u(t) ≥ v(t)

(b − a)4w0
∥u∥, t ∈ [a, b]

}
,

where w0 is given in Lemma 4. Obviously, K is a sub-cone of P. And we give some
definitions: Kr = {u ∈ K : ∥u∥ < r}, ∂Kr = {u ∈ K : ∥u∥ = r}, Kr = {u ∈ K : ∥u∥ ≤ r}.

Next, assume the following hypotheses hold.
(H1) e : (a, b) → [0,+∞) is non-negative, e(t) ̸= 0 and e(t) may be singular at

t = a, t = b and ∫ b

a
w(s)e(s)ds < +∞.

(H2) f : [a, b]× (0,+∞)× (0,+∞) → [0,+∞) is continuous, and ∀ 0 < r < j < +∞,

lim sup
m→+∞

{
sup

∫
k(m)

w(s)e(s) f (s, x1(s), x2(s))ds | x1 ∈ K j\Kr, x2 ∈ K j\Kr

}
= 0,

where

k(m) =

[
a, a +

1
m

]⋃[
b − 1

m
, b
]

, j =
1

Γ(µ + 1)
(b − a)µ j.

(H3) For any t ∈ [a, b], x1, x2, y1, y2 ∈ K, there exist real number l1, l2 such that

| f (t, x1, y1)− f (t, x2, y2)| ≤ l1|x1 − x2|+ l2|y1 − y2|.

Nonlinear operator A : K\{0} → P and linear operator J : E → E are defined
as follows:

Au(t) =
∫ b

a
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds, t ∈ [a, b].

Ju(t) =
∫ b

a
G(t, s)e(s)u(s)ds, t ∈ [a, b]. (3)

Lemma 5 (Arzela–Ascoli Theorem [26]). Let (T, d) be a compact metric space and A ⊆ C(T).
Then the following assertions are equivalent:
(i) A is relatively norm compact;
(ii) A is uniformly bounded, i.e., ∃ M > 0 such that ∥ f (t)∥ ≤ M, ∀ f ∈ A, ∀ t ∈ T, and A
is equicontinuous, i.e., ∀ ε > 0, ∃ δε > 0 such that ∀ x, y ∈ T with d(x, y) < δε it follows that
| f (x)− f (y)| < ε, ∀ f ∈ A;
(iii) Any sequence ( fn)n∈N ⊆ A contains a uniformly convergent subsequence.

Lemma 6 (Krein–Rutmann’s Theorem [27]). Assume J : E → E, where J is a linear operator
and is continuous, and J(K) ⊂ K, where K is a total cone. If there exist a positive constant d and
ζ ∈ E\(−K) that makes dJ(ζ) ≥ ζ, then the spectral radius of J be greater than 0, and which has a
positive eigenfunction in regard to its first eigenvalue λ = r(J)−1.
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Remark 1 (Gelfand’s formula [27]). The spectral radius of J meets

r(J) = lim
n→+∞

∥Jn∥
1
n ,

where J is a linear bounded operator, and ∥.∥ is the norm of the operator.

Lemma 7. J : E → E defined by (3) is a linear operator with complete continuity under (H1),
and the spectral radius r(J) of J is unequal zero; furthermore, J exists as a positive eigenfunction ζ

in regard to its first eigenvalue λ1 = r(J)−1.

Proof. Step 1. We need to verify operator J : K → K.
For any u ∈ K, we have

∥Ju∥ = max
t∈[a,b]

∫ b

a
G(t, s)e(s)u(s)ds ≤ w0

Γ(α − µ)

∫ b

a
w(s)e(s)u(s)ds,

Ju(t) ≥ v(t)
Γ(α − µ)(b − a)4

∫ b

a
w(s)e(s)u(s)ds ≥ v(t)

(b − a)4w0
∥Ju∥,

so we get Ju ∈ K.
Step 2. We need to verify that operator J has a completely continuous property from K to K.

According to (H1) and Lemma 4(i), operator J is uniform boundedness.
For any t1, t2 ∈ [a, b], t1 ≤ t2,

|Ju(t1)− Ju(t2)| =
∣∣∣∣∫ b

a
(G(t1, s)− G(t2, s))e(s)u(s)ds

∣∣∣∣ ≤ ∫ b

a
|(G(t1, s)− G(t2, s))|e(s)u(s)ds,

by Lemma 4(i), G(t1, s) → G(t2, s) when t1 → t2, then,

∥Ju(t1)− Ju(t2)∥ = max
t∈[a,b]

|Ju(t1)− Ju(t2)| → 0.

According to the Arzela–Ascoli theorem, operator J has a completely continuous
property from K to K.
Step 3. By Krein–Rutmann’s theorem, we prove that J has the first eigenvalue λ1 and
λ1 > 0.

By the process of proof of Lemma 4, there exists t0 ∈ (a, b) that makes G(t0, t0) > 0.
Therefore, there exists [m, n] ⊂ (a, b) such that t0 ∈ [m, n] and G(t, s) > 0 for any t, s ∈
[m, n]. Choose u ∈ K that makes u(t0) > 0 and u(t) = 0 for all t /∈ [m, n].

For any t ∈ [m, n], we have

Ju(t) =
∫ b

a
G(t, s)e(s)u(s)ds ≥

∫ n

m
G(t, s)e(s)u(s)ds > 0,

then, there exists d > 0 that makes d(Ju)(t) ≥ u(t), t ∈ [a, b].
By Lemma 6, we have that r(J) is unequal to zero. For the given first eigenvalue

λ1 = r(J)−1, there exists a positive eigenfunction φ∗ for J that makes λ1 Jφ∗ = φ∗.

Lemma 8. Suppose (H1) and (H2) hold, then operator A : K j\Kr → K is completely continuous.

Proof. Step 1. We need to verify operator A : K j\Kr → K.
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For any u ∈ K j\Kr, we have

∥Au∥ = max
t∈[a,b]

∫ b

a
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds

≤ w0

Γ(α − µ)

∫ b

a
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds,

and

Au(t) ≥ v(t)
Γ(α − µ)(b − a)4

∫ b

a
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds

≥ v(t)
Γ(α − µ)(b − a)4

Γ(α − µ)

w0
∥Au∥

=
v(t)

(b − a)4w0
∥Au∥,

so operator A from K j\Kr to K.
Step 2. We prove A : K j\Kr → K is well defined. This implies that we need to prove

sup
u∈K j\Kr

∫ b

a
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds < +∞, ∀ r > 0.

For ∀ u ∈ K j\Kr,

Iµ
a+u(t) =

1
Γ(µ)

∫ t

a
(t − s)µ−1u(s)ds

≤ 1
Γ(µ)

∥u∥
∫ t

a
(t − s)µ−1ds

=
1

Γ(µ + 1)
∥u∥(t − a)µ

≤ 1
Γ(µ + 1)

∥u∥(b − a)µ

≤ 1
Γ(µ + 1)

(b − a)µ j,

that means ∥Iµ
a+u∥ ≤ 1

Γ(µ+1) (b − a)µ j = j.
By (H2), there must be a non-negative integer v0 > 1 such that

sup
u∈K j\Kr

∫
k(v0)

w(s)e(s) f (s, Iµ
a+u(s), u(s))ds <

Γ(α − µ)

w0
.

Choosing

ϱ = min
{

1
(b − a)3w0

,
1

Γ(µ)w0

}
,

ϱ = max
{

1,
(b − a)µ

Γ(µ + 1)

}
.

∀ u ∈ K j\Kr, we have
u(t) ≤ ∥u∥ ≤ j ≤ ϱj,

u(t) ≥ v(t)
(b − a)4w0

∥u∥ =
(t − a)3(b − t)∥u∥

(b − a)4w0
,
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then,

u(t) ≥ (t − a)3(b − a)∥u∥
(b − a)4w0

=
(t − a)3∥u∥
(b − a)3w0

≥ (t − a)3ϱ∥u∥ ≥ (t − a)µϱ∥u∥.

For Iµ
a+u(t), we have

Iµ
a+u(t) ≤ 1

Γ(µ + 1)
∥u∥(b − a)µ ≤ ϱ∥u∥ ≤ ϱj,

and

Iµ
a+u(t) =

1
Γ(µ)

∫ t

a
(t − s)µ−1u(s)ds

≥ 1
Γ(µ)

∫ t

a
(t − s)µ−1 (s − a)3(b − s)∥u∥

(b − a)4w0
ds

=
∥u∥

Γ(µ)(b − a)4w0

∫ t

a
(t − s)µ−1(s − a)3(b − s)ds

≥ ∥u∥
Γ(µ)(b − a)4w0

∫ t

a
(t − a)µ−1(s − a)3(b − s)ds,

then,

Iµ
a+u(t) ≥ ∥u∥

Γ(µ)(b − a)4w0

∫ t

a
(t − a)µ−1(b − a)3(b − a)ds =

∥u∥
Γ(µ)w0

(t − a)µ ≥ ∥u∥(t − a)µϱ.

∀ t ∈
[

a + 1
ν0

, b − 1
ν0

]
, we have

(
1
ν0
)µϱr ≤ u(t) ≤ ϱj,

(
1
ν0
)µϱr ≤ Iµ

a+u(t) ≤ ϱj.

Thus,

sup
u∈K j\Kr

∫ b

a

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds

≤ sup
u∈K j\Kr

∫
k(ν0)

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds

+ sup
u∈K j\Kr

∫ b− 1
ν0

a+ 1
ν0

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds

≤ 1 + D1

∫ b

a

w0

Γ(α − µ)
w(s)e(s)ds

< +∞,

where

D1 = max
{

f (t, x1, x2) : (t, x1, x2) ∈
[

a +
1
ν0

, b − 1
ν0

]
×
[
(

1
ν0
)µϱr, ϱj

]
×
[
(

1
ν0
)µϱr, ϱj

]}
.

So A : K j\Kr → K is well defined, and A has the uniformly bounded property on any
bounded set.
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Step 3. We prove that A : K j\Kr → K is continuous.
∀ ε > 0, by (H2), there must be a non-negative integer ν0 > 1 that makes

sup
∫

k(ν0)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds <
εΓ(α − µ)

4w0
,

where
x1 ∈ K j\Kr, x2 ∈ K j\Kr.

∀ uk, u0 ∈ K j\Kr, we have ∥uk − u0∥ → 0, (k → ∞). By f (t, x1, x2) has uniformly continu-
ous property on [

a +
1
ν0

, b − 1
ν0

]
×
[
(

1
ν0
)µϱr, ϱj

]
×
[
(

1
ν0
)µϱr, ϱj

]
,

we have
lim

k→+∞
| f (s, Iµ

a+uk(s), uk(s))− f (s, Iµ
a+u0(s), u0(s))| = 0.

By the Lebesgue control convergence theorem,

lim
k→+∞

∫ b− 1
ν0

a+ 1
ν0

w(s)e(s)| f (s, Iµ
a+uk(s), uk(s))− f (s, Iµ

a+u0(s), u0(s))|ds = 0,

and thus, ∀ N > 0, for k > N,

∫ b− 1
ν0

a+ 1
ν0

w(s)e(s)| f (s, Iµ
a+uk(s), uk(s))− f (s, Iµ

a+u0(s), u0(s))|ds <
εΓ(α − µ)

2w0
.

For k > N,

∥Auk − Au0∥ ≤ sup
u∈K j\Kr

∫
k(ν0)

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+uk(s), uk(s))ds

+ sup
u∈K j\Kr

∫
k(ν0)

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u0(s), u0(s))ds

+
∫ b− 1

ν0

a+ 1
ν0

w0

Γ(α − µ)
w(s)e(s)| f (s, Iµ

a+uk(s), uk(s))− f (s, Iµ
a+u0(s), u0(s))|ds

< 2
w0

Γ(α − µ)

εΓ(α − µ)

4w0
+

εΓ(α − µ)

2w0

w0

Γ(α − µ)

= ε.

Thus, A : K j\Kr → K is continuous.
Step 4. For any bounded set Ω and Ω ⊂ K j\Kr, we prove that A(Ω) is equicontinuous.

By (H2), ∀ ε > 0, there is a natural number ω1 > 1 so that

sup
x2∈K j\Kr

∫
k(ω1)

w(s)e(s) f (s, Iµ
a+u(s), u(s))ds <

εΓ(α − µ)

4w0
,

D2 = max
{

f (t, x1, x2) : (t, x1, x2) ∈
[

a +
1

ω1
, b − 1

ω1

]
×
[
(

1
ω1

)µϱr, ϱj
]
×
[
(

1
ω1

)µϱr, ϱj
]}

.
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By Lemma 4(i), G(t, s) is uniformly continuous on [a, b]× [a, b].
∀ ε > 0, ∃ δ > 0, ∀ s ∈ [a + 1

ω1
, b − 1

ω1
], |t − t′| < δ, t, t′ ∈ [a, b],

|G(t, s)− G(t′, s)| ≤ ε

2

(
D2

∫ b− 1
ω1

a+ 1
ω1

e(s)ds

)−1

,

then, ∀ |t − t′| < δ, t, t′ ∈ [a, b], u ∈ Ω,

∥Au(t)− Au(t′)∥ ≤ 2 sup
u∈K j\Kr

∫
k(ω1)

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds

+
∫ b− 1

ω1

a+ 1
ω1

|G(t, s)− G(t′, s)|e(s) f (s, Iµ
a+u(s), u(s))ds

< 2
w0

Γ(α − µ)

εΓ(α − µ)

4w0
+

ε

2

< ε,

so A(Ω) is equicontinuous. According to the Arzela–Ascoli theorem, operator A : K j\Kr →
K is completely continuous.

3. Main Results
Now, we need to prove the existence of solutions. In this part, we first give the

following lemmas.

Lemma 9 ([27]). Suppose K is a cone within Banach space E. Let A : Kr → K be a completely
continuous operator. In the case of u0 ∈ K \ θ so that u − Au ̸= λu0 for an arbitrary u ∈ ∂Kr and
λ ≥ 0, and thus i(A, Kr, K) = 0. In the case of Au = λu for an arbitrary u ∈ ∂Kr and λ ≥ 1, and
thus i(A, Kr, K) = 1.

Lemma 10. Assume that (H1) holds, and then J has an eigenvalue λ̃1 that makes

lim
ε→0+

λε = λ̃1.

Proof. Let . . . ≤ εn ≤ . . . ≤ ε2 ≤ ε1 and εn → 0 (n → +∞). Then for any n < m, ζ ∈ E
and t ∈ [a, b], we get

Jεn ζ(t) ≤ Jεm ζ(t) ≤ Jεζ(t),

Jk
εn ζ(t) ≤ Jk

εm ζ(t) ≤ Jk
ε ζ(t), k = 2, 3, . . . ,

where Jk
εn = J(Jk−1

εn ), k = 2, 3, . . ., so we have

∥Jk
εn∥ ≤ ∥Jk

εm∥ ≤ ∥Jk
ε ∥, k = 1, 2, . . . .

By the Remark 1, we get

r(Jεn) ≤ r(Jεm) ≤ r(Jε),

λεn ≥ λεm ≥ λ1,

where λ1 is the first eigenvalue of J. Since λεn is monotonous and has a lower bound λ1,
we can obtain

lim
n→+∞

λεn = λ̃1.

Then, we will prove λ̃1 is an eigenvalue of J.
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Suppose ζεn is one of the positive eigenfunctions of Jεn in regard to λεn with ∥ζεn∥ = 1,
that is,

ζεn(t) = λεn

∫ b+εn

a−εn
G(t, s)e(s)ζεn(s)ds = λεn Jεn ζεn(t), n = 1, 2, . . . .

It is worth noting that

∥Jεn ζεn∥ = max
a≤t≤b

∫ b+εn

a−εn
G(t, s)e(s)ζεn(s)ds ≤

∫ b

a

w0

Γ(α − µ)
w(s)e(s)ds,

so {Jεn ζεn} ⊂ E is uniform boundedness. For any n ∈ N, t1, t2 ∈ [a, b], we have

|Jεn ζεn(t1)− Jεn ζεn(t2)| ≤
∫ b+εn

a−εn
|G(t1, s)− G(t2, s)|e(s)ζεn(s)ds → 0, t1 → t2,

so {Jεn ζεn} ⊂ E is equicontinuous. According to Lemma 5 and limn→+∞ λεn = λ̃1, we have
ζεn → ζ0 (n → +∞), ∥ζ0∥ = 1. Then we get

ζ0(t) = λ̃1

∫ b

a
G(t, s)e(s)ζ0(s)ds = λ̃1 Jζ0(t), t ∈ [a, b].

The proof is now finished.

Theorem 1. Assume the conditions (H1), (H2) are satisfied, and

lim inf
x1,x2→0+

min
t∈[a,b]

f (t, x1, x2)

x1 + x2
> λ1, (4)

lim sup
x2→+∞

max
t∈[a,b]

f (t, x1, x2)

x2
< λ1. (5)

the BVP(1) has at least one positive solution, where λ1 is the first eigenvalue of J defined by (3).

Proof. According to (4), there exists r > 0, for t ∈ [a, b] such that

f (t, x1, x2) ≥ λ1(x1 + x2), 0 < xi ≤ r, i = 1, 2, (6)

let r0 = min
{

r, r
ϱ

}
, for any u ∈ ∂Kr0 , since

0 < Iµ
a+u(s) ≤ ϱr0 ≤ r, 0 < u(s) ≤ r0 ≤ r, s ∈ [a, b], (7)

we have from (6), (7) that

Au(t) =
∫ b

a
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds

≥ λ1

∫ b

a
G(t, s)e(s)(Iµ

a+u(s) + u(s))ds

≥ λ1

∫ b

a
G(t, s)e(s)u(s)ds

= λ1 Ju(t), t ∈ [a, b].

By Lemma 7, J has a positive eigenfunction ζ corresponding to λ1, that is ζ = λ1 Jζ.
Step 1. We will show

u − Au ̸= dζ, u ∈ ∂Kr0 , d ≥ 0. (8)
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If not, there exist u0 ∈ ∂Kr0 and d0 ≥ 0 such that u0 − Au0 ̸= d0ζ, then d0 > 0, we
have u0 = Au0 + d0ζ ≥ d0ζ.

Let d̃ = sup{d|u0 ≥ dζ}, then d̃ ≥ d, u0 ≥ d̃ζ, λ1 Ju0 ≥ λ1d̃Jζ = d̃ζ. Thus, we have

u0 = Au0 + d0ζ ≥ λ1 Ju0 + d0ζ ≥ d̃ζ + d0ζ = (d̃ + d0)ζ,

which contradicts the definition of d̃. So (8) holds and by Lemma 9, we get

i(A, Kr0 , K) = 0.

According to (5), we choose a constant 0 < γ < 1 makes

lim sup
x2→+∞

max
t∈[a,b]

f (t, x1, x2)

x2
< γλ1. (9)

Let the linear operator J̄ satisfy J̄u = γλ1 Ju, then J̄ : E → E is a bounded linear
operator and J̄(K) ⊂ K.

Further, we have
J̄ζ = γλ1 Jζ = γζ,

which means the spectral radius of J̄ is r( J̄) = γ and J̄ has the first eigenvalue γ−1 > 1. By
Remark 1, we have

γ = lim
n→+∞

∥ J̄n∥
1
n .

For the above equation, let ε0 = 1
2 (1 − γ) and there is a large enough natural number

N that when n ≥ N, we get ∥ J̄n∥ ≤ [γ + ε0]
n. For any u ∈ E, we define

∥u∥∗ =
N

∑
i=1

[γ + ε0]
N−i∥ J̄i−1u∥,

where J̄0 = I is the unit operator. ∥.∥∗ is another norm of E.
Combining (5) and (9), there is j1 > r, we have

f (t, x1, x2) ≤ γλ1x2, x1 > 0, x2 ≥ j1, t ∈ [a, b].

Choosing j > max
{

j1, 2(γ+εN−1
0 )−1

ε0
B∗

}
, where B∗ = ∥B∥∗ and

B = sup
u∈Kj1

∫ b

a

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u(s), u(s))ds < +∞.

Step 2. We will show
Au ̸= du, u ∈ ∂Kj, d ≥ 1. (10)

If not, there exist u1 ∈ ∂Kj and d1 ≥ 1 such that Au1 = d1u1. Let ū(t) = min{u1(t), j1}
and D(u1) = {t ∈ [a, b] : u1(t) > j1}.

For ū ∈ C([a, b], [0,+∞)), we get v(t)
(b−a)4w0

j ≤ u1(t) ≤ ∥u1∥ = j, and hence, combining
with j1 < j, there exists a < t0 < b such that u(t0) = j1. For t ∈ [a, b], we have ū(t) ≤ j,
and ū(t0) = min{u1(t0), j1} = j1, then we have ∥u(t)∥ = j1, that means u ∈ ∂Kj1 .

For any t ∈ D(u1), u1(t) ≥ j1, Iµ
a+u(t) ≥ 0, we have
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Au1(t) =
∫ b

a
G(t, s)e(s) f (s, Iµ

a+u1(s), u1(s))ds

≤
∫

D(u1)
G(t, s)e(s) f (s, Iµ

a+u1(s), u1(s))ds +
∫
[a,b]\D(u1)

G(t, s)e(s) f (s, Iµ
a+u1(s), u1(s))ds

≤ γλ1

∫ b

a
G(t, s)e(s)u1(s)ds +

∫ b

a

w0

Γ(α − µ)
w(s)e(s) f (s, Iµ

a+u1(s), u1(s))ds

≤ J̄u1(t) + B.

By J̄ : E → E is a bounded linear operator and J̄(K) ⊂ K, we have

0 ≤ J̄k(Au1)(t) ≤ J̄k( J̄u1 + B)(t), k = 0, 1, . . . , n − 1.

Further, we get

∥ J̄k(Au1)∥ ≤ ∥ J̄k( J̄u1 + B)∥, k = 0, 1, . . . , n − 1,

so

∥Au1∥∗ =
N

∑
i=1

[γ + ε0]
N−i∥ J̄i−1(Au1)∥

≤
N

∑
i=1

[γ + ε0]
N−i∥ J̄i−1( J̄u1 + B)∥

= ∥ J̄u1 + B∥∗.

By u1 ∈ ∂Kj, we have

∥u1∥∗ > [γ + ε0]
N−1∥u1∥ = [γ + ε0]

N−1 j >
2
ε0

B∗,

which means
B∗ <

ε0

2
∥u1∥∗.

Then, we get

d1∥u1∥∗ = ∥Au1∥∗ ≤ ∥ J̄u1∥∗ + ∥B∥∗

=
N

∑
i=1

[γ + ε0]
N−i∥ J̄iu1∥+ B∗

= [γ + ε0]
N−1

∑
i=1

[γ + ε0]
N−i−1∥ J̄iu1∥+ ∥ J̄Nu1∥+ B∗

≤ [γ + ε0]
N−1

∑
i=1

[γ + ε0]
N−i−1∥ J̄iu1∥+ [γ + ε0]

N∥u1∥+ B∗

= [γ + ε0]
N−1

∑
i=1

[γ + ε0]
N−i∥ J̄i−1u1∥+ B∗

= [γ + ε0]∥u1∥∗ + B∗

≤ [γ + ε0]∥u1∥∗ +
ε0

2
∥u1∥∗

=

[
1
4

γ +
3
4

]
∥u1∥∗.

By 1 ≤ d1 ≤ [ 1
4 γ + 3

4 ], we know γ ≥ 1, which contradict with 0 < γ < 1. So (10) holds
and

i(A, Kj, K) = 1.
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Finally, we get

i(A, Kj\K̄r0 , K) = i(A, Kj, K)− i(A, Kr0 , K) = 1.

Hence, A has at least one fixed point in Kj\K̄r0 , that is to say, the BVP (1) has at least
one positive solution. It is worth noting that when for any small enough 0 < ε < 1, we
define a linear operator Jε

Jεu(t) =
∫ b−ε

a+ε
G(t, s)e(s)u(s)ds, t ∈ [a, b].

By Lemma 8, we have that Jε : K → K denotes a linear operator with complete
continuity, and the spentral radius r(Jε) of Jε is unequal to zero, and furthermore, Jε has a
positive eigenfunction ζϵ in regard to its first eigenvalue λε = r(Jε)−1.

Theorem 2. Suppose the conditions (H1), (H2) are satisfied, and

lim inf
x1+x2→+∞

min
t∈[a,b]

f (t, x1, x2)

x1 + x2
> λ̃1, (11)

lim sup
x1,x2→0+

max
t∈[a,b]

f (t, x1, x2)

x2
< λ1, (12)

then BVP(1) has at least one positive solution, where λ1 is the first eigenvalue of J defined by (3),
and λ̃1 is another eigenvalue of J.

Proof. According to (11), there exists r0 > 0, for t ∈ [a, b] such that

f (t, x1, x2) ≤ λ1x2, 0 < x1 ≤ (b − a)µ

Γ(µ + 1)
r0, 0 < x1 ≤ r0, (13)

for any u ∈ ∂Kr0 , since

0 < Iµ
a+u(s) ≤ (b − a)µ

Γ(µ + 1)
r0 ≤ r, 0 < u(s) ≤ r0, s ∈ [a, b], (14)

we have from (13), (14) that

Au(t) =
∫ b

a
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds

≤ λ1

∫ b

a
G(t, s)e(s)u(s)ds

= λ1 Ju(t), t ∈ [a, b].

Step 1. By Lemma 9, we will show

Au ̸= du, u ∈ ∂Kr0 , d ≥ 1 (15)

If not, there exist u0 ∈ ∂Kr0 and d0 ≥ 1 such that Au0 = d0u0, then d0 > 1 and

d0u0 = Au0 ≤ λ1 Ju0. (16)

By summarizing (16), we obtain

dn
0 u0 ≤ λn

1 Jnu0, n = 1, 2, . . . ,
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then,

∥Jn∥ ≥ ∥Jnu0∥
∥u0∥

≥
dn

0∥u0∥
λ1∥u0∥

=
dn

0
λn

1
.

By the Remark 1, we have

r(J) = lim
n→+∞

∥Jn∥
1
n ≥ d0

λ1
>

1
λ1

,

which contradict with r(J) = 1
λ1

. So (15) holds and

i(A, Kr0 , K) = 1.

According to (12) and λε → λ̃1(ε → 0+), there exist a small enough ε ∈ (0, 1
2 ) and

j > r, and we get
f (t, x1, x2) ≥ λε(x1 + x2) ≥ 2ϱεµ j,

where λε represents the first appeared eigenvalue Jε. Assume that ζε is the positive eigen-
function of Jε with respect to λε, then ζε = λε Jεζε. For any u ∈ ∂Kj, t ∈ [a + ε, b − ε], by
Lemma 8, we have

Iµ
a+u(t) + u(t) ≥ ∥u∥(t − a)µϱ + ∥u∥(t − a)µϱ

≥ 2ϱεµ j.

Then,

Au(t) =
∫ b

a
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds

≥
∫ b−ε

a+ε
G(t, s)e(s) f (s, Iµ

a+u(s), u(s))ds

≥ λε

∫ b−ε

a+ε
G(t, s)e(s)(Iµ

a+u(s) + u(s))ds

≥ λε

∫ b−ε

a+ε
G(t, s)e(s)u(s)ds

= λε Jεu(t).

Step 2. We will show

u − Au ̸= dζε, u ∈ ∂Kj, d ≥ 0. (17)

Similar to the proof of Theorem 1, (17) holds and

i(A, Kj, K) = 0.

Finally, we get

i(A, Kj\K̄r0 , K) = i(A, Kj, K)− i(A, Kr0 , K) = −1.

Hence, A has at least one fixed point in Kj\K̄r0 , that is to say, the BVP (1) has at least
one positive solution.

Next, we need to use the Banach fixed-point theorem to prove the uniqueness of the
solution.
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Theorem 3. Suppose the conditions (H1)-(H3) are satisfied, and

k =
w0M

Γ(α − µ)

[
l1(b − a)µ

Γ(µ + 1)
+ l2

]
< 1

then the BVP(1) has a unique positive solution.

Proof. By Theorems 1 and 2, we get the BVP (1) has at least one positive solution. Now we
just need to prove that A is a contractive mapping.

According to (H1), there exists M > 0 such that
∫ b

a w(s)e(s)ds ≤ M < +∞. For any
u, u0 ∈ Kj\K̄r0 , t ∈ [a, b],

∣∣∣Iµ
a+u(t)− Iµ

a+u0(t)
∣∣∣ ≤ 1

Γ(µ)

∫ t

a
(t − s)µ|u(s)− u0(s)|ds

≤ 1
Γ(µ)

∥u − u0∥
∫ t

a
(t − s)µ−1ds

=
1

Γ(µ)
(t − a)µ

µ
∥u − u0∥

≤ (b − a)µ

Γ(µ + 1)
∥u − u0∥,

then, we get

|Au(t)− Au0(t)| ≤
∫ b

a
G(t, s)e(s)| f (s, Iµ

a+u(s), u(s))− f (s, Iµ
a+u0(s), u0(s))|ds

≤ w0

Γ(α − µ)

∫ b

a
w(s)e(s)[l1|I

µ
a+u(s)− Iµ

a+u0(s)|+ l2|u(s)− u0(s)|]ds

≤ w0M
Γ(α − µ)

[
l1(b − a)µ

Γ(µ + 1)
∥u − u0∥+ l2∥u − u0∥

]
= k∥u − u0∥,

where k = w0 M
Γ(α−µ)

[
l1(b−a)µ

Γ(µ+1) + l2
]
< 1, then

∥Au − Au0∥ ≤ k∥u − u0∥,

according to Banach fixed-point theorem, the BVP(1) has a unique positive solution.

4. An Example
Example 1 ([11]). Consider a FDE problem cD

15
4

1+v(t) + e(t) f (t, v(t), cD
1
4
1+v(t)) = 0, 1 < t < 2,

cD
1
4
1+v(1) = cD

5
4
1+v(1) = cD

9
4
1+v(1) = 0, cD

1
4
1+v(2) = ∑∞

j=1 k j
cD

1
4
1+v(δj),

where α = 15
4 , µ = 1

4 , a = 1, b = 2, e(t) = 1√
(2−t)(t−1)

, k j =
1

2j2 , δj =
1
j2 , e(t) is singular at

t = 1 or t = 2, f (t, x, y) = (x + y)−
1
5 + | ln y|.

Letting u(t) =c Dµ
a+v(t), we can get cD
7
2
1+u(t) + e(t) f (t, I

1
4
1+u(t), u(t)) = 0, 1 < t < 2,

u(1) = u′(1) = u′′(1) = 0, u(2) = ∑∞
j=1 k ju(δj),

(18)
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then,

G(t, s) = H(t, s) +
(t − 1)3

∆

∞

∑
j=1

k jH(δj, s),

∆ = (b − a)3 −
∞

∑
j=1

k j(δj − a)3 ≈ 1.2239,

H(t, s) =
1

Γ( 7
2 )

 (t − 1)3(2 − s)
5
2 − (t − s)

5
2 , 1 ≤ s ≤ t ≤ 2,

(t − 1)3(2 − s)
5
2 , 1 ≤ t ≤ s ≤ 2,

w0 = 1 +
1
∆

∞

∑
j=1

1
2j2

≈ 1.6718,

w(s) = (2 − s)
5
2 , v(t) = (t − 1)3(2 − t),

and the cone
K = {u ∈ P : u(t) ≥ 0.5981v(t)∥u∥, t ∈ [1, 2]}.

Now, for any 0 < r < j < +∞, u(t) ∈ K j\Kr,

j =
1

Γ(µ + 1)
(b − a)µ j =

1
Γ( 5

4 )
j,

ϱ = min
{

1
(b − a)3w0

,
1

Γ(µ)w0

}
= min{0.5982, 0.1650}= 0.5982,

ϱ = max
{

1,
(b − a)µ

Γ(µ + 1)

}
= max{1, 1.1033}= 1.1033.

Since ∫ b

a
w(s)e(s)ds =

∫ 2

1

(2 − s)
5
2√

(2 − s)(s − 1)
ds =

16
15

= M < +∞,

so (H1) is satisfied. By

0.1650r ≤ (t − 1)
1
4 ϱr ≤ u(t) ≤ j ≤ ϱj ≤ 1.1033j, (19)

0.1650r ≤ (t − 1)
1
4 ϱr ≤ I

1
4
1+u(t) ≤ ϱj ≤ 1.1033j, (20)

we have

| ln u(t)| ≤ | ln(t − 1)
1
4 ϱr|+ | ln j| ≤ | ln(t − 1)

1
4 |+ | ln j|+ | ln ϱr|, t ∈ [1, 2],

[u(t) + I
1
4
1+u(t)]−

1
5 ≤ (2ϱr)−

1
5 (t − 1)−

1
20 , t ∈ [1, 2],

then ∫ 2

1
| ln(t − 1)

1
4 |dt =

1
4
< +∞,

∫ 2

1
(t − 1)−

1
20 dt =

20
19

< +∞.

By considering the absolute continuity of the obtained integral, one can derive that

lim
m→+∞

∫
k(m)

| ln(s − 1)
1
4 |ds = 0,
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lim
m→+∞

∫
k(m)

(s − 1)−
1
20 ds = 0,

then,

lim sup
m→+∞

sup
x1∈K j\Kr

x2∈K j\Kr

∫
k(m)

w(s)e(s) f (s, x1(s), x2(s))ds

= lim sup
m→+∞

sup
x1∈K j\Kr

x2∈K j\Kr

∫
k(m)

(2 − s)
5
2√

(2 − s)(s − 1)

[
(I

1
4

1+u(s) + u(s))−
1
5 + | ln u(s)|

]
ds

≤ lim sup
m→+∞

sup
x1∈K j\Kr

x2∈K j\Kr

∫
k(m)

(2 − s)
5
2√

(2 − s)(s − 1)

[
| ln(s − 1)

1
4 |+ | ln j|+ | ln ϱr|+ (2ϱr)−

1
5 (s − 1)−

1
20

]
ds

=0,

so (H2) is satisfied. By

lim inf
x1,x2→0+

min
t∈[1,2]

(x1 + x2)
− 1

5 + | ln(x2)|
x1 + x2

= +∞,

lim sup
x2→+∞

max
t∈[1,2]

(x1 + x2)
− 1

5 + | ln(x2)|
x2

= 0.

So far, all the conditions proposed in Theorem 1 have been meet, so there must be one
or more positive solutions to (18).

Let x1, y1, x2, y2 satisfy (19), (20), and x1 > x2, y1 > y2 > 1, combined with the
Lagrange mean value theorem, and we have

| f (t, x1, y1)− f (t, x2, y2)| = |(x1 + y1)
− 1

5 − (x2 + y2)
− 1

5 + | ln y1| − | ln y2||

≤ |(x1 + y1)
− 1

5 − (x2 + y2)
− 1

5 |+ || ln y1| − | ln y2||

≤ 1
5

ξ−
6
5 (|x1 − x2|+ |y1 − y2|) +

1
δ
|y1 − y2|

=
1
5

ξ−
6
5 |x1 − x2|+

(
1
5

ξ−
6
5 +

1
δ

)
|y1 − y2|

≤ 1
5

ξ−
6
5 |x1 − x2|+

(
1
5

ξ−
6
5 + 1

)
|y1 − y2|,

where ξ ∈ [x1 + y1, x2 + y2], δ ∈ [y1, y2]. Select ξ = 0.56, then we have

l1 =
1
5

ξ−
6
5 = 0.4008,

l2 =
1
5

ξ−
6
5 + 1 = 1.4008,

so (H3) is satisfied.

k =
w0M

Γ(α − µ)

[
l1(b − a)µ

Γ(µ + 1)
+ l2

]
=

1.6718 × 16
15

Γ( 7
2 )

[
0.4008
Γ(1.25)

+ 1.4008
]
= 0.9886 < 1.

By Theorem 3, we get that (18) has a unique positive solution.

5. Summary
This paper primarily investigates a class of Caputo FDEs with infinitely many points.

Under certain conditions, the existence of positive solutions for the equation is established
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by employing the spectral analysis of related operators on cones and the fixed-point index
theory. Meanwhile, the uniqueness of the positive solution is proved using the Banach
fixed-point theorem. Compared with the existing literature, this study focuses on higher-
order Caputo fractional singular nonlinear differential equations, where the nonlinear
term involves the Caputo fractional derivative. The boundary conditions include infinitely
many points, and the uniqueness of the positive solution is also discussed, which are the
distinctive features of this work. However, the practical application of such Caputo FDEs
requires further investigation.
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