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Abstract

This study presents a theoretical model for the thermoelastic response in transmission-
mode photoacoustic systems that feature a two-layer structure. The model incorporates
volumetric optical absorption in both layers and is based on classical heat conduction
theory, hyperbolic generalized heat conduction theory, and fractional heat conduction
models including inertial memory in Generalizations of the Cattaneo Equation (GCEI,
GCEIl, and GCEIII). To validate the model, comparisons were made with the existing
literature models. Using the proposed model, the thermoelastic photoacoustic response of
a two-layer system composed of a 3D-printed porous polyamide (PA12) substrate coated
with a thin, highly absorptive protective dye layer is analyzed. We obtain that the thickness
and thermal conduction in properties of the coating are very important in influencing the
thermoelastic component and should not be overlooked. Furthermore, the thermoelastic
component is affected by the selected fractional model—whether it is subdiffusion or
superdiffusion—along with the value of the order of the fractional derivative, as well as the
optical absorption coefficient of the layer being investigated. Additionally, it is concluded
that the phase has a greater impact than the amplitude when selecting the appropriate
theoretical heat conduction model.

Keywords: anomalous diffusion; fractional thermal conduction; fractional calculus

1. Introduction

Materials that are 3D-printed, especially those made from polymers, have become
increasingly accessible thanks to rapid advancements in additive manufacturing technolo-
gies such as fused deposition modeling (FDM), stereolithography (SLA), and selective
laser sintering (SLS). These techniques allow for the creation of complex geometries that
are challenging or impossible to achieve with traditional manufacturing methods. This
capability opens up new possibilities in fields such as biomedicine, electronics, energy
systems, and mechanical engineering [1].

Among the various classes of polymers, 3D-printed polyamides—such as PA6, PA11,
and PA12—have garnered significant attention for their mechanical strength, chemical
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resistance, and adaptability to specific functional requirements. These materials are ex-
tensively used in the production of industrial parts, medical devices, automotive and
aerospace components, solar panels, and a wide range of consumer products [2—4]. Ad-
ditive manufacturing provides a significant advantage in quickly producing prototypes,
facilitating efficient iterative design and reducing material waste. It also enables the cre-
ation of complex, customized structures with optimized material utilization. Although
the intrinsic porosity of 3D-printed polymer structures is often viewed as a drawback, it
can be functional for specific applications. The size and distribution of pores significantly
impact the material’s mechanical, thermal, and optical properties, which depend on factors
such as printing technology, processing parameters (including temperature and speed),
and the properties of the raw material, particularly in the case of polyamide sintering [4].
To customize the properties of these materials for engineering applications, it is crucial to
use experimental methods that can simultaneously characterize multiple physical param-
eters. In this regard, photoacoustic spectroscopy has become a valuable non-destructive
technique for simultaneously analyzing optical, thermal, and elastic properties.

Photoacoustic methods, developed and refined over nearly fifty years, are increasingly
used to characterize a wide range of materials and structures [5-7]. These techniques utilize
an excitation optical beam to generate a detectable signal. When the laser interacts with the
sample, it heats the material, creating a thermal flux that propagates heat through the sam-
ple and its surroundings, resulting in a thermal wave [8]. This thermal wave causes pressure
fluctuations in the surrounding gas (the photoacoustic signal), which are influenced by
the sample’s optical, thermal, elastic, electronic, and other physical properties [9-12]. The
experimental photoacoustic signal strongly depends on the underlying physical model,
requiring an accurate theoretical representation of the involved processes. Developing
a model that links the signal to the optical excitation (forward problem) is essential for
solving the inverse problem and retrieving the material’s physical properties [13].

Laser-sintered polymeric materials typically exhibit a low optical absorption coeffi-
cient, which necessitates the application of a thin optical coating for photothermal and
photoacoustic measurements. This can be achieved either by depositing a thin layer of
a material with a high optical absorption coefficient or by modifying the surface to en-
hance photothermal efficiency and improve the signal-to-noise ratio. Additionally, such
modifications help protect the detector from the excitation beam in transmission-mode
configurations [14,15]. When the measurement is performed with the coating or modified
surface facing the excitation beam, information on the optical properties of the laser-sintered
material is lost in the detected signal. However, if the laser-sintered material itself is illu-
minated, the coating serves to enhance photothermal efficiency, shield the detector, and
preserve the information on the optical properties of the bulk material in the measured
signal. To solve the inverse photothermal problem in such a configuration, it is necessary
to develop a model of the temperature distribution and thermoelastic (TE) bending for a
bilayer sample.

Previous studies have proposed models of optically induced temperature distribu-
tions, thermal moments, and thermoelastic displacements for optically opaque bilayer
samples, based on classical heat conduction theory [16], and generalized theories, which
account for anomalous diffusion and thermal wave effects but do not consider the influ-
ence of distributed heat sources resulting from the low optical absorption coefficient of
the illuminated layer [17]. In addition, models that have been developed for temperature
distribution and thermoelastic displacement in optically transparent bilayer samples, which
allow an analysis of the impact of spatially distributed heat sources on the thermal moment,
have been developed only based on hyperbolic heat conduction theory that incorporates
wave-like non-Fourier effects, but neglect anomalous diffusion phenomena in thermal
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transport [18,19]. Given the porous nature of laser-sintered samples, these effects are likely
to arise from the fractal distribution of pores. Additionally, photoacoustic measurements of
laser-sintered polymer materials show deviations, especially at the extremes of the mea-
surement range, compared to classical model predictions. These discrepancies may stem
from detector influences but also from the limitations of the current models.

This work develops a model for the thermoelastic component of the transmission-
mode frequency-domain photoacoustic response by considering the optical coefficient
absorption in a bilayer sample composed of high structural entropy materials, typical of
laser-sintered systems. The goal is to explore how structural entropy influences the photoa-
coustic signal and to evaluate the potential of frequency-domain photoacoustic techniques
for analyzing material properties related to how internal structural disorder affects the
propagation of electromagnetic, thermal, and elastic waves in these complex structures.

Section 2 presents the mathematical model for the thermoelastic component of the pho-
toacoustic response in a two-layer structure, where both layers absorb incident radiation.
The adoption of fractional heat conduction models in this study is justified by theoretical
and experimental evidence indicating the limitations of classical and hyperbolic formu-
lations in representing thermal transport in structurally complex media. As established
in prior works [20,21], fractional-order models offer a more accurate framework by ac-
counting for memory effects, nonlocality, and anomalous diffusion phenomena associated
with heterogeneities, fractal structures, and dynamic disorder. Section 3 analyzes effects of
anomalous diffusion and optical transparence of illuminated layer on the thermoelastic
component for a specific two-layer structure consisting of laser-sintered PA12 as the first
layer and a thin black protective coating as the second layer. The two-layer models are also
compared to the single-layer model for the thermoelastic component that consider only the
influence of the optical opacity of the non-illuminated coating discussed in paper [22]. The
most important conclusions are given in Section 4.

2. Theory

The thermoelastic response of a two-layer sample containing materials with opti-
cal volume absorption is investigated in this study. To tackle this problem, it is crucial
to understand, firstly, how temperature variations are distributed within the two-layer
sample. In reference [18], a model for the dynamic temperature distribution in a sample
composed of two layers of optically transparent materials has been developed using the
hyperbolic generalized theory. However, there is currently no model that applies classical
heat conduction theory or fractional heat conduction theories to this scenario.

This section starts with a discussion on fractional thermal diffusion. It then examines
temperature variations in a two-layer sample by utilizing classical heat conduction theory,
hyperbolic heat conduction theory, and all three fractional heat conduction theories. Finally,
a model is introduced for the thermoelastic component of the photoacoustic response for a
two-layer system that incorporates the volume absorption of the incident radiation based
on all five theories

2.1. Fractional Thermal Diffusion

Fractional diffusion is used to describe the transfer of mass or energy in materials
with high structural entropy (disorder) and porous media or materials with heterogeneities
on the meso- or microscale [23-27]. In such systems, the non-Fickian movement of par-
ticles has been experimentally observed [28-32]. In addition, the classical Fourier heat
diffusion equation fails to accurately reproduce experimentally observed temperature and
thermoelastic variations, especially in photothermal and photoacoustic measurements.
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Two basic fractional diffusion models derived from probabilistic considerations of
continuous-time random walks (CTRWs) are (1) the subdiffusive model that employs
fractional derivatives with respect to time [33-36] and can be associated with the system’s
memory in thermodynamic phase space so called kinetic memory [37] and (2) the superdif-
fusive model that involves fractional spatial derivatives that describe long-range jumps in
energy transport across structurally disordered domains [35,38].

However, neither of these probabilistic models accounts for possible inertial memory
effects and non-Fourier or non-Fickian behaviors [39—-41]. Specifically, the linear relation
between the temperature gradient as a thermodynamic force and the heat flux neglects the
inertia of heat carriers. This leads to non-physical results, namely, a model that predicts an
infinite speed of thermal perturbation propagation. Several authors have addressed this
limitation by introducing models that incorporate memory effects and anomalous diffusion,
including hyperbolic models that ensure finite thermal wave propagation speed [42—-44],
and approaches that highlight the influence of thermal memory on the dynamics of heat
transport through the generation of thermal waves [45-48].

The effect of finite thermal propagation speed was experimentally observed as early
as the 1940s in studies at extremely low temperatures (near absolute zero) [49] and was
theoretically explained by the famous Russian physicist Landau as the phenomenon of
second sound [50]. Later laser-heating experiments on crystalline materials [51-53] con-
firmed Landau’s insight: if relaxation times of specific subsystems exceed the characteristic
timescale for the system to reach equilibrium with the environment [54-56], which is typical
for substances at cryogenic temperatures [57] or highly disordered systems [58] at room
temperatures, then a wave-like model of heat propagation becomes necessary.

Building on Landau’s undamped wave model for second sound, Cattaneo [59] and
Vernotte [60], independently, proposed a hyperbolic damped wave model of heat prop-
agation, which has recently been applied in photothermal experiments to measure the
thermal propagation speed in 2D materials [61,62]. However, this model neglects anoma-
lous diffusion effects, which have also been experimentally observed in materials with high
structural entropy.

The development of probabilistic models that incorporate both inertial and kinetic
memory is still an active field of research. However, phenomenological models, that include
both types of memory, have been proposed [39]. These models are known as the generalized
fractional Cattaneo equations (referred to as GCEI, GCEII, and GCEIII). These equations
extend classical hyperbolic models by incorporating fractional time derivatives [39], thereby
allowing for the simultaneous modeling of inertial memory effects and kinetic memory
effects. In this context, kinetic memory is related to anomalous diffusion and long-term
statistical correlations in the motion of thermal carriers, while inertial memory describes
the delayed thermal flux response resulting from the finite relaxation times of energy
or mass carriers [25,40]. These two types of memory represent fundamentally different
physical origins of non-locality in time, and their combined effect is captured in generalized
fractional hyperbolic models.

An analysis of the proposed models has shown that GCEI and GCEIII can describe
subdiffusive transport with inertial memory, while GCEII describes superdiffusive transport
incorporating inertial memory effects [39]. To date, experimental results have not favored
one of these three models over the others, so all three are commonly employed in studies,
particularly for modeling photothermal and photoacoustic measurements [17,21,63,64].

The optically induced temperature distribution in a sample, under 1D approximation
based on each model, is described by the generalized balanced energy and Fourier law
equations, respectively, as follows:
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where ¢(x, t) and q(x, t) signify time-varying components of the temperature distribution
and heat flux, respectively. The temperature distribution and heat flux caused by the
heat sources can be expressed by T(x,t) = T,,;, + 0(x) + 9(x, t), measured in [K], and
Q(x,t) = gx(x) +q(x,t), in [Wm~2]. Symbol Ty, represents ambient temperature, while
6(x) and gx(x) denote steady components. Owing to the linearity of the differential equations
in the model, the steady and dynamic components of temperature distribution can be
determined independently. The dynamic aspect of temperature distribution is crucial for
the photoacoustic response; therefore, we will concentrate solely on dynamic equations.
The sample’s volumetric heat generation rate, S(x, t), measured in [W/m?], represents
the production of heat sources, also known as thermalization, and can be obtained by the

%, with I;(x,t) representing the intensity of the light beam.

expression S(x,t) = —y
Here, 1 represents the quantum mechanical coefficient of the electromagnetic energy-to-heat
conversion that is usually considered as unity [17,18].

In previous equations, D, represented the thermal diffusivity with dimensions
[m?2/sY] for the GCEI and GCEIIIl models and [m?/s2~ ] for GCEII model, while k, denotes
the thermal conductivity with dimensions [J/(m-K-s")] for the GCEI and GCEIII models
and [J/(m-K s>~Y)] for the GCEII model. Additionally, 7; represents the thermal relaxation
time in seconds [s], and v refers to the fractional order with v € [0, 1].

Fractional derivatives, in the Caputo or Riemann-Liouville sense [65-67], are uti-
lized to describe thermal transport behavior. The Riemann-Liouville and Caputo for-
mulations differ in their treatment of initial conditions. The Caputo definition is often
favored in physics because it naturally incorporates initial conditions. In frequency-
domain photothermal experiments, the sample is excited by a sinusoidally modulated
wave I(x,t) = I(x)cos(wt) [17,18,22,68], and the system’s stationary-state response at the
modulation frequency is measured using lock-in detection. Since transient processes
are already excluded in this context, the distinction between different definitions be-
comes largely irrelevant. Therefore, we used the Riemann-Liouville definition of the
fractional differintegral:

t f(xt
9V f(x,t) (11 )at 0 (ft( t’)) a 0<v<1

= 4
ot 1 a@fo t t’ 1+1 dt' v<0 ( )

where I'(1 — v) and I'(—v) are the Euler Gamma functions.
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In our analysis, the problem was treated by introducing complex representatives of
excitation heat flux, temperature, and heat flux:

S(x,t) = Re{S(x)el*!},
O(x,t) = Re{g(x)ef‘*’t}, )
9(xt) = Re{ g (x)e/" |,

where N
8 =9(jw),q = q(jw). (6)

The tilde represents the complex parameter; the variable w, defined as w = 27f,
indicates the circular frequency in radians per second (rad/s), where f is the modulation
frequency in hertz (Hz), and j is the imaginary unit.

Knowing this, fractional time derivatives can be described by complexes represented as

T = Re{(jw) B(x)e ), -

T = Re{(je) G ()1},

The system of partial differential equations for each GCE’s theory, Equations (1)—(3), is
reduced to a system of ordinary differential equations:

£00 _ 55(x) = ~52.5(x),
N (8)
~ do(x
g(x) = — L2500

The parameters ¢ and z. denote the complex coefficients of thermal wave propagation
[m~!] and the complex thermal impedance of the medium [K-m? /W], respectively. These
parameters depend on the heat conduction theory used in the model. Unlike most previous
studies that overlook structural entropy or focus solely on non-Fourier effects [18,65,69],
this work fully incorporates the impact of structural entropy on both the optical absorption
coefficient and heat conduction through the heat propagation coefficient, 7, and the thermal
impedance, EC. The parameters for various models are as follows [17,40]:

GCEI model
~ 1
0= 5=/ (jw)" (14 (jwr)"), o
E — \/DTV 1+(]wT)U
Tk (jw)”
GCEII model
7= =/ (@) (14 (jwr)"),
10
z — DTV 1+(ij)V ( )
‘ (jw)”
GCEIII model
0= 75—/ (jw)' (1 +jwT),
Z _ VDny V 1+Hjwt (11)
RN T

These two parameters in classical and hyperbolic heat conduction theories are given
by the following [46]:
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2.2. Temperature Variations

This section of Part 2 develops the temperature distribution model for the two-layer
structure illustrated in Figure 1a, encompassing all five theories.

gas | v
-~ B PA R
12—0(1 + cos wt): % g S
oA gas 2
‘ x
0 I L+ X
(a) (b)

Figure 1. The geometry of the problem: (a) the photoacoustic cell is closed with a two-layer material
heated by a periodic light source; (b) the radial geometry considered for the thermoelastic solution.

The following assumptions are adopted based on the typical configuration of
frequency-domain photoacoustic experiments (see Figure 1a):

e  One-dimensional spatial approximation: The sample is uniformly illuminated over its
surface, and the lateral dimensions are significantly larger than the thermal diffusion
length in the modulation frequency range. This justifies the use of a one-dimensional
geometry along the axis perpendicular to the surface, as commonly employed in
photoacoustic modeling [8,9,15,70].

e Sinusoidal optical modulation and lock-in detection: The excitation source is modu-
lated sinusoidally in time, and the resulting acoustic signal is recorded using a lock-in
amplifier. Consequently, all physical quantities of interest—such as temperature,
displacement, and pressure—are represented in the frequency domain using their
spectral counterparts.

Under these conditions, we present an analytical expression for the temperature
distribution, building upon the general two-layer model that considers the following:

1. Volumetric optical absorption in both layers, as opposed to the more commonly as-
sumed surface absorption scenario [17,71-74]. This extension is crucial for describing
polymeric or composite materials with structural disorder. The absorbed irradiance
is calculated using Beer-Lambert’s law of absorption, I(x) = 170 (1- Ri)e*!3 i, where
Iy is the incident radiation’s peak intensity in [W/m?], B; is the optical absorption
coefficient in [1/m], and R; is the optical reflection coefficient.

2. The absence of absorption and heat conduction in the surrounding gas—Air is re-

garded as completely transparent, meaning it does not absorb incoming optical
radiation and, as a result, does not generate heat sources. This property enables all
incoming radiation to reach the first layer. Additionally, air is known to be a poor
conductor of heat, which is why we apply adiabatic boundary conditions [18,69].
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3.  Finite-speed heat propagation, included through the framework of generalized ther-
moelastic wave propagation theories (GTE), such as the Lord-Shulman theory [75], but
neglecting feedback effects of heat flux propagation on the temperature distribution [9].

4. The incorporation of anomalous diffusion effects via generalized Cattaneo equation
(GCE) models—specifically GCEI, GCEII, and GCEIll—which allow for structural
heterogeneity and memory effects in heat transport, both of which are relevant in
polymeric systems with high entropy and fractal structures [17,37,39,40,64,76].

Based on the above assumptions and the theoretical description of anomalous heat
transfer, including inertial memory in an optically excited sample corresponding to the
geometry in Figure 1a, the heat conduction equation and the constitutive equation are

formulated as follows: N
d2 ~ 2 ~ ~
% —0; ¥(x) = —0;z45i(x),
~ (14)
~oN 1 d9(x)
q(x) = -

UiZci

Index i =1, 2, where 1 and 2 refer to layer 1 and layer 2, respectively (see Figure 1a).
The parameters ;i and ZC,' are provided by Expressions (9)-(13) for each theory: classical
heat conduction, hyperbolic, GCEI, GCEII, and GCEIIIL The heat sources for each domain
are defined as follows:

_ I
Sl(X) = 501/316 le, 501 = 5077(1 — Rl)r (15)

A (e i
Sy(x) = S PrheP2(-h) gy, — 5017(1 —Rq)(1—Ry), (16)

By solving this system of equations along with the boundary conditions and conditions
at the heterointerfaces, the distribution of temperature variations in both layers can be
obtained. We have assumed adiabatic boundary conditions (17) and the continuity of the
temperature variations and the thermal flux at the heterointerface (18):

0)=0,
i q(0) a
g(h+1h)=0,
91— — (1t
8(h™)=9(L™), a8)

q(h7) =q(L").

In paper [18], a comprehensive derivation of the system of equations is presented,
beginning with the hyperbolic generalized heat conduction equation and the relevant
constitutive relation. By introducing complex coefficients for thermal wave propagation
and complex thermal impedance specific to each heat conduction theory, the solutions
obtained based on one theory can be further extended to include the other four theories.

The temperature distribution in layer one is described by Expressions (19) and (21),
while that in layer two is described by Expressions (20) and (21).

Forx € [0,11] :
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N2

a1 =01y, ax =o03l, r; = 2.

Zcl

2.3. Thermoelastic Bending Effect

Heat generation leads to elastic deformation, which can be analyzed through the
stress—strain relationship and the related equations of motion based on elastic displacement.
Rousset, Lepoutre, and Bertrand [9] were the first to describe the theory of elastic bending.
A chapter of the book [77] provides a detailed overview of the photoacoustic theory for
single-layer semiconductors, which is rooted in classical heat conduction principles. The
theoretical framework for opaque bilayered samples, also based on classical principles, is
discussed in [16], while the hyperbolic theory is addressed in [17]. The theories of photoa-
coustic response and thermoelastic components, which consider the volume absorption of
incident radiation in both layers of the bilayer structure, are derived solely from hyperbolic
heat conduction theory and are explored in Monograph [19].

This section introduces a mathematical model of thermoelastic component theory for
a bilayered sample, integrating classical heat conduction theory with the four generalized
theories: hyperbolic, GCEI, GCEII, and GCEIIL The model is based on the geometry shown
in Figure 1b and incorporates assumptions from the previous section, along with new ones
introduced here:

1. A thin circular plate with a thickness of I; 4+ I, and radius R, displays rotational
symmetry around the x-axis, as illustrated in Figure 1b. The azimuthal displacement
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coordinate uy can be disregarded [9,16,77]. Positive displacement occurs opposite the
x-axis, towards the radiation source.

2. The wavelength of elastic waves is significantly longer than the bilayer sample’s
thickness, enabling us to treat the sample as elastic [9,77].

3. Itneglects wave-propagation effects in the acoustic field, justified by the assumption of
an infinite speed of sound propagation, consistent with prior photoacoustic modeling
approaches [9,16,17,22].

4.  Itis considered that the circular plate is simply supported.

Based on the assumptions outlined above, the equation for thermoelastic bending is

R
~ 1% ~
PrE = %ZTT/THX(V, I + Ip)dr, (22)
%
~ 6(R? —r? ~ L+l ~ L+l
ux(r,ls) = —(73) ["‘Tl (MTl — > 2NT1) +ar (MTZ — - ZNTZ)]- (23)
(h+1h) 2
From Equations (22) and (23), the following is obtained:
~ 3’)/P0R4 ~ Lh+l~ ~ h+DhL~
Pre = m {“T] (MTl - TNTl +ar| M2 — > Nr2)|. (24)

The variables Py [Pa] and V [m3] denote the pressure and volume of the gas in the
cell, while -y represents the ratio of heat capacities at constant pressure and volume. The
coefficient of linear thermal expansion is a7; [1/K], i = 1,2, and R [m] is the sample radius.
I and I, are the first- and second-layer thicknesses, respectively. It is assumed that the gas
volume in the cell equals the volume of the microphone cavity in front of the diaphragm,
given by Vy = R27tlg, where R, is the radius of the microphone cavity and I, is its length.
Mr1, MT3, N11, and Nt; represent the temperature moments in the illuminated and non-
illuminated layers and the mean temperatures (spatially averaged) for the first and second
layers, defined by the following expression:

I L+,
MT] = /xﬂ(x)dx, MT2 = / xﬂ(x_l])dx/ (25)
0 h
Iy l1+1,
Nri = [8()dx, N = [ o(x—n)dx, (26)
0 I

Substituting Expressions (19)—~(21) into Equations (25) and (26) and solving Equation (24)
results in a frequency-domain model of the thermoelastic component of the photoacoustic
signal. This complex model has a nonlinear dependence on the optical absorbance of each
layer in the two-layer structure, their classical thermal properties (thermal conductivity
(k) and thermal diffusivity (D)), linear expansion coefficients (x1) and thermal properties
associated with the structural entropy of the layers (thermal relaxation time (1), and the
order of the fractional derivative (v)):

~ o ~ 0~ o ~ ~ S01Z 101 S02Z 20T
pre = K| o (Pl—Pz> + <Q1+Qz> + TS B 2By |, 27)
Cllm dllm al_bl az—bz

P, = <C223inh51 +1-— cosh%) (—lNllsinhEZ + ;Clelgcoshzz + zchNL;), (28)
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52 = <C22 + %coshzl — sinh%) sinhzz + (Czlsinhzl +1-— cosh51> ?Zcoshzz Ecl CIZ, (29)
~ Ez Lo ~ ~ N~ Y ~ o~
Q= 7517’1;1512 — 1+ coshas ryUysinhay, + zoUscoshay + zoUs |, (30)
Ez 51 ~ I K 51 Lo ~ ~o |~
= > + Tcoshaz — sinha, | rsinhaq + —751nha2 — 14 coshay |coshaq | zooUy, (31)
7,” = ?Zsinh;{lcosh;z + coshElsinhEZ, (32)
[ E2 b El 51 —b 51
B = -2 b1y 22 4 Pl 2L
1 26 +2+b1€ by’ (33)
~ ;11 b ;12 52 —b 52
By= —e 2 - =24 S22 = 4
2 > e 5 + bze by’ (34)
by = B1l1, by = Baly,
cir=01(lh+1h), cx=o01(li =), (35)
di =0l +1h), dy=02(l—h),
PyR*
K= TR (36)

- Rg(li+ 1)
This model has been validated against three established models:

1. A two-layer model utilizing generalized heat conduction theories with an infinite
optical absorption coefficient for the first layer [17]—corresponding to f; — o in
our model. This model was developed to describe optically opaque bilayer struc-
tures, which commonly arise in photoacoustic investigations of materials with high
reflectivity. In such cases, a thin coating is applied to the sample surface to reduce
optical reflection, and the sample is oriented during measurement so that the coating
is illuminated. This coating typically has a very high optical absorption coefficient,
ensuring that the entire incident electromagnetic energy is absorbed within a very
thin surface layer—effectively at the very surface of the sample—since the optical
absorption parameter 5117 > 1.

2. Atwo-layer model based on classical heat conduction theory for opaque layers [16]—
aligning with 1 = o0 and 7y = T = 0 in our model. Similarly to the previous
case, this model was developed for optically opaque bilayer samples, in which the
illuminated layer exhibits a very high optical absorption coefficient, such that 8111 > 1.
However, in contrast to the previously described model, the classical model A Priori
neglects the possible presence of anomalous diffusion effects and the finite speed of
heat propagation.

3. A single-layer model from hyperbolic heat conduction theory, that incorporates vol-
umetric absorption of incident radiation and a coating on the unilluminated side
(the microphone side) [22]—corresponding to B, — oo and I — 0 in the derived
model. This model was developed to enable photoacoustic measurements of optically
transparent or semi-transparent samples in a way that allows the determination of
the sample’s optical absorption coefficient, regardless of how low it may be. In such
cases, a thin coating with a very high optical absorption coefficient is applied to the
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transparent or semi-transparent sample, and the measurement configuration is such
that this highly absorbing coating is illuminated. In this model, the possible presence
of anomalous thermal diffusion in the optically transparent layer is neglected, as is
the contribution of heat conduction through the coating, i.e., the coating is considered
solely as an optical layer.

Based on the above considerations, it can be concluded that the model developed in
this work is the most general one, encompassing all previously discussed, analyzed, and
applied models of the thermoelastic component of the photoacoustic signal as special cases
to which the derived model can be reduced.

3. Results

Before presenting the graphical results for a specific bilayer sample consisting of a
porous 3D-printed polyamide layer and a thin coating with a high optical absorption coeffi-
cient, let us briefly discuss the influence of anomalous diffusion—described by the fractional
derivative order in our equations—on the nature of optically induced heat propagation.

3.1. Analysis of Anomalous Diffusion Effects

By comparing Expressions (9)—(11) with Expressions (12) derived from the classical
Fourier theory of heat conduction, and with Expressions (13) derived from the hyperbolic
(Cattaneo) theory, the following conclusions can be drawn.

When the order of fractional derivative v = 1, all three generalized fractional con-
duction theories are reduced to the hyperbolic theory. In this case, the thermal diffusion
coefficient and thermal impedance predicted by the GCE models coincide with those pre-
dicted by the hyperbolic model but differ from those obtained from the classical theory.
From a physical perspective, this is due to the fact that the classical model neglects the
finite speed of heat propagation and the wave-like nature of the process and therefore
cannot account for non-Fourier effects that can be significant in media with high structural
entropy. In contrast, both the hyperbolic and the generalized fractional models account
for these effects, so phenomena such as reflection and interference of thermal waves can
be expected to affect the temperature distribution and, consequently, the thermoelastic
bending of the sample—particularly at high modulation frequencies. At such frequencies,
the models predict a non-zero thermal impedance and a thermal wavelength smaller than
the sample thickness.

On the other hand, if the thermal relaxation time is assumed to be zero and the frac-
tional derivative order v = 1, all models—including the generalized fractional, hyperbolic,
and classical—reduce to the classical Fourier theory. In other words, if the relaxation time is
small, the thermal propagation speed becomes very large, and its influence can be neglected
except at very high modulation frequencies. However, if thermal relaxation is neglected
while anomalous diffusion effects described by the fractional derivative order v are re-
tained, then the classical and hyperbolic models predict the same diffusion coefficient and
thermal impedance, whereas the fractional models predict qualitatively different behavior
of the thermal waves.

The GCEI model with v < 1 predicts equal real and imaginary parts of the complex
thermal diffusion coefficient, both smaller than those of the classical model. This implies a
longer thermal diffusion length at a given modulation frequency compared to the classical
case and a larger thermal impedance—indicating subdiffusive heat transport (i.e., slower
heat propagation than classical diffusion). Therefore, this model is expected to yield a
different temperature distribution across the frequency range and, consequently, a different
frequency response of the thermoelastic component of the photoacoustic signal.
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The GCEIII model predicts the same thermal diffusion coefficient as the GCEI model
but a lower thermal impedance than both the GCEI and classical models. This implies that
the frequency response of the TE component of the photoacoustic signal, as predicted by
GCEIII, will differ from that predicted by GCEI, despite both being subdiffusive.

In contrast, the GCEIl model predicts equal real and imaginary parts of the thermal
diffusion coefficient but larger ones than those in the classical and subdiffusive GCE models.
It also predicts a lower thermal impedance than the GCEI and classical models but equal
to that of GCEIIL As a result, superdiffusive heat transport (faster than classical diffusion)
and low thermal impedance are expected to influence the frequency characteristics of the
thermoelastic component in a complex manner, distinct from those predicted by the other
two fractional models and the classical theory.

From this analysis, it can be concluded that anomalous diffusion properties of heat
conduction influence the temperature distribution in the optically excited sample in a
complex and nonlinear way, indicating a more complex effect on the temperature moment
and thermoelastic bending.

3.2. Thermoelastic Component of Photoacoustic Signal for PA12 Coated Sample

This section analyzes the thermoelastic component of the frequency-domain transmission-
mode photoacoustic response for a specific bilayer sample. The illuminated layer is laser-
sintered PA12, which exhibits structural entropy due to its complex macromolecular ar-
chitecture and typical laser-sintered pores. As a result, this layer may show a low optical
absorption coefficient and limited photothermal conversion efficiency. To effectively char-
acterize such samples with photothermal techniques, applying a thin coating of a material
with a high optical absorption coefficient is essential. This coating increases the absorption
of electromagnetic energy, enhancing thermal excitation and leading to larger pressure
fluctuations, thereby improving the signal-to-noise ratio. Additionally, these coatings
protect the microphone membrane from direct exposure to excitation light. In practical
experiments, researchers often use thin layers of pigment-based coatings or suspensions
that contain metallic or graphene nanoparticles—materials known for their high optical
absorption coefficients. These coatings are typically treated as optical layers and are not
modeled to influence heat conduction [78].

In this study, we assume that the coating layer does not exhibit non-Fourier or anoma-
lous thermal diffusion effects. However, it may be thick enough to influence the temperature
profile, which in turn can affect the bending of the illuminated system and the resulting pho-
toacoustic signal. The mathematical expression in this analysis is derived from the assump-
tion that the optical absorption coefficient of the second layer approaches infinity (B2 — oo)
based on the previously derived model (Equations (27)—(36)). It is also assumed that there
is no optical reflection (R; = Ry = 0), leading to the condition Sg; = Spp = Sp = 170 In this
case, the derived the thermoelastic component of the photoacoustic response is

~ ~2

(Cfsinhal —coshay +1 ) (leblzsinhaz — 24 cosha2>eb1
a|— 1
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Hlfb%
~ - b o ~2 ~ 2 b (37)
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uzlm lll—b% ul—b% 111—17%

alib]

2[Rt Gy freon - B

This analysis investigates how the thickness of the black polymer ink coating and
the order of fractional derivatives of PA12 influence the thermoelastic component of the
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photoacoustic response. While photoacoustic responses are typically measured within
the frequency range of 10 Hz to 20 kHz, this study expands the range from 10~2 Hz to
10° Hz to provide a more comprehensive understanding. The film thicknesses examined
in this study include 0.1 nm, which is used for theoretical analysis to gain insights into
the behavior of the function and to validate the model, as well as 1 um, which represents
the actual thickness of the thin film. This study also considers transparent PA12 samples
with absorbance coefficients below 1.5 (81/1 < 1.5) [79] and whitish (semitransparent to
opaque) PA12 samples when absorbance exceeds 1.5 (81/; > 1.5) [80]. The objective is to
understand the effects of anomalous diffusion in PA12 and the role of a thin protective
coating on the recorded signal. Relevant physical parameters for PA12 [81] and the black
ink dye [82] are detailed in Table 1. The analysis includes amplitude and phase graphs
for all two-layer sample models from Section 2 (classical, hyperbolic, GCEI, GCEII, and
GCEIIl) and a single-layer model with a coating on the unilluminated side, as outlined in
paper [22].

Table 1. Thermal properties of PA12 and dye [81,82].

Dy [m?/s] k [W/(m-K)] at [1/K] T [s]
PA12 1.85 x 10~7 0.23 1.3 x 10~* 9 x 10>
Black dye 3x107° 70 1.5 x 1074 10-12

3.2.1. The Influence of the Order of the Fractional Derivative of a Transparent PA12 Sample
and the Coating Thickness on the Thermoelastic Component

This section considers a PA12 sample with an optical absorption coefficient of 100 m !
and a thermal relaxation time of 9 x 107> s. Figure 2 shows the amplitudes and phases
of a two-layer sample, consisting of a 100 pm thick PA12 layer and a 0.1 nm thick black
dye layer. Three fractional derivative orders for the anomalous diffusion of the PA12 layer
are considered: 1, 0.8, and 0.6. The classical heat theory model is represented by a black
line labeled CHT, while the hyperbolic heat theory model is shown in red, labeled HHT.
Models based on fractional theories of anomalous diffusion are depicted with blue, green,
and magenta lines, labeled GCEI, GCEII, and GCEIII, respectively. The specific one-layer
model for the sample coating structure, shown in cyan and labeled 1LM, represents a
hyperbolic heat conduction model for a single PA12 layer. This model explicitly considers
the light absorption coefficient of the PA12 layer, while excluding the influence of the thin
coating’s thermal parameters, focusing solely on its large optical absorption through the
flux condition on the unilluminated side of the sample [22,65].

In Figure 2a, all six amplitude curves overlap. For v; = 1, the generalized theories
(hyperbolic, GCEI, GCEII, and GCEIII) converge. When the coating is extremely thin, it
is expected to align with the single-layer model incorporating the thermal memory effect
(hyperbolic theory) and the two-layer hyperbolic model, validating the derived model. The
small value of the PA12 thermal relaxation time allows the classical (parabolic) model to
overlap the hyperbolic theory.

When the fractional order v; is set to 0.8, anomalous diffusion properties are evident
in both the amplitude and phase characteristics (see Figure 2¢,d). The single-layer, classical
and hyperbolic models display consistent amplitude and phase characteristics that remain
unaffected by the fractional derivative order. The expected amplitude shape of the thermoe-
lastic component resembles a filter; it is flat at low frequencies, followed by a breakpoint,
after which it decreases linearly (at a rate of 20-40 dB/dec). This pattern is observed in the
amplitudes of the HHT, CHT, and 1LM models, as well as in the GCEI model, though in the
GCEI model, the breakpoint shifts to higher frequencies with a smaller slope. The GCEII
model initially increases, reaching its maximum at a frequency lower than the breakpoint
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of the HHT, CHT, and 1LM models, before declining with the same slope as these models.
In contrast, the GCEIIl model experiences a slight initial decrease, with its breakpoint
occurring at a higher frequency than that of the HHT, before it decreases again with the
same slope as the HHT. Notably, at low frequencies, all three curves (flat, increasing, and

decreasing) intersect at the same point.
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Figure 2. Photoacoustic amplitude and phase characteristics of the transparent PA12 black dye
double-layer sample with thicknesses of 100 um and 0.1 nm for three fractional derivative orders, v1:
(a) amplitude and (b) phase for v; = 1, (c) amplitude and (d) phase for v; = 0.8, (e) amplitude and

(f) phase for v; = 0.6.
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For v; = 0.6, the anomalous effects are more pronounced. The GCEI model (rep-
resented by the blue line) shifts the inflection point to higher frequencies and identifies
an additional inflection point, beyond which the slope changes again. The GCEII model
(indicated by the green line) displays a steeper slope increase at low frequencies and has a
more noticeable maximum. The GCEIIl model (shown in magenta) moves the inflection
point to even higher frequencies.

The GCEII theory addresses superdiffusion, while the GCEI and GCEIII theories per-
tain to subdiffusion. Although both are classified as subdiffusion theories, GCEI and GCEIII
differ in their thermal impedances. The superdiffusion theory displays a turning point at
lower frequencies than the hyperbolic model, with this frequency decreasing as the frac-
tional derivative order lowers. In contrast, the subdiffusion theories exhibit a turning point
at higher frequencies, which increases as the order of the fractional derivative decreases.

In the phase response (see Figure 2b), the phases align across most frequencies, al-
though there are some deviations at both the lower and upper ends of the range. The
single-layer model exhibits a flat response at low frequencies, while other models show
a slight increase before leveling off. This behavior suggests that the second layer exerts a
significant influence, as evidenced by a sharp decline in the curve after an initial breakpoint,
followed by a secondary breakpoint where the curve stabilizes once more. At high frequen-
cies, the single-layer model and the classical two-layer models align, but the generalized
two-layer theories diverge due to the bending effect of the second layer. This results in a
slight decrease following a third breakpoint. The divergence occurs because the single-layer
model assumes the second layer has infinite thermal impedance, which means it does not
influence bending. In contrast, the classical model features a frequency-independent ratio
of thermal impedances r,= Ecz / 261, as derived from Expressions (12) and (37), resulting
in a flat curve for the small value of I,. On the other hand, generalized theories account for
the bending effect of the second layer through their thermal impedance ratio 7, (as seen
in Expressions (9)—-(11), (13) and (37)). As the fractional derivative order v; decreases, the
anomalous effects become more pronounced.

Figure 3 presents the amplitudes and phases of all models, including CHT, HHT, GCEI,
GCEIl, and GCEIII, alongside the model for a single-layer PA12 coating sample with a
thicker black dye layer of 1 pm. As in Figure 2, three fractional derivative order values are
analyzed: 1, 0.8, and 0.6. The color scheme remains consistent with the earlier figure: black
represents CHT, red indicates HHT, blue corresponds to GCEI, green stands for GCEII, and
magenta symbolizes GCEIIL

For a sample thickness of 1 um, the differences between the two-layer and single-layer
models become evident. In the amplitude characteristic, the two-layer models initially show
a decline, followed by a period of flattening, and then a subsequent steeper decline com-
pared to the single-layer model. Moreover, the generalized models display an additional
inflection point at higher frequencies that is not found in the classical model (see Figure 2a).
As fractional derivative order vy increases, the inflection point shifts to lower frequencies in
the superdiffusion theory and to higher frequencies in the subdiffusion theories. The “bell
curve” for the superdiffusion theory (the GCEIl model) at lower frequencies narrows, as
illustrated in Figure 3c,d, while the phase values increase. In contrast, subdiffusion models
show a widening of the “bell curve” with increased frequencies at the inflection points. The
GCEI model does not change the height of the flat section of the bell, while the phase value
of the GCEIII model declines.

The phase characteristic exhibits a peak on the bell curve in all two-layer models,
with the minimum observable at higher frequencies. This minimum is more pronounced
in generalized theories of heat conduction compared to classical ones. As the parameter
vq decreases, the bell curve narrows, and the height of the peak increases in generalized
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theories that describe superdiffusion. In contrast, subdiffusion theories show a widening
of the curve and a significant decrease in peak height, especially in the GCEIII theory.
Furthermore, the minimum frequency of the GCEII theory shifts to lower frequencies, while
the minimum frequencies of the GCEI and GCEIII theories move to higher frequencies as
v decreases.

As the fractional order derivative v; decreases, the GCEI model shows only slight
changes: the amplitude curve gradually deviates from the classical curve at high frequen-
cies, with a slight reduction in the steepness of its decay, while the phase curve shifts its
transition slightly toward lower frequencies, remaining close to the classical behavior. In
the GCEII model, decreasing the fractional order produces a more noticeable effect: the
amplitude becomes more stable at high frequencies, with a gentler slope, and the phase
curve broadens, showing a more gradual transition shifted to lower frequencies. For the
GCEIIl model, the influence of v variation is even more pronounced, the amplitude re-
mains nearly constant over a wider range before dropping, and the phase shows a sharper
transition with more pronounced peaks as v1 decreases, indicating greater sensitivity to
this parameter.
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Figure 3. Cont.
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Figure 3. Photoacoustic amplitude and phase characteristics of the transparent PA12 black dye
double-layer sample with thicknesses of 100 um and 1 pm for three fractional derivative orders, v1:
(a) amplitude and (b) phase for v; = 1, (c) amplitude and (d) phase for v; = 0.8, (e) amplitude and
(f) phase for v; = 0.6.

Based on these two figures, we can conclude that the phase is considerably more selec-
tive than the amplitude when selecting the theoretical heat conduction model. Additionally,
the thickness of the second layer has a significant impact on both the amplitude and phase
characteristics. Therefore, it is essential to consider the influence of this layer before de-
ciding on the model. Furthermore, the results demonstrate that structure inhomogeneous
effects, represented by the fractional order derivative, on the thermoelastic behavior in
printed polymers can be detected by photoacoustic techniques. Additionally, using the
intersection of amplitude characteristics at a single point, as illustrated in Figure 2, we
can propose a straightforward method to determine the type of anomalous diffusion with
appropriate calibration. If, after this point, the behavior shows a decrease or an increase in
the slope, it can be observed whether the behavior of a sample is super- or subdiffusive.

3.2.2. The Influence of the Order of the Fractional Derivative of a Whitish PA12 Sample and
the Coating Thickness on the Thermoelastic Component

This section examines semi-transparent (whitish) laser-sintered PA12, which retains the
previously discussed characteristics. We first analyze the impact of the fractional derivative
order on the anomalous models with three values for the thinner coating, followed by an
examination of the thicker coating.

Figure 4 displays the amplitudes and phases of various two-layer models, including
CHT, HHT, GCEI, GCEII, and GCEIII, as well as the model for a single-layer PA12 coating
sample. Unlike Figure 2, this figure focuses on the whitish PA12 with the same thickness
of coating. We analyze three fractional derivative order values: 1, 0.8, and 0.6. The color
scheme is consistent with the previous figures: black represents CHT, red indicates HHT,
blue corresponds to GCEI, green stands for GCEII, and magenta symbolizes GCEIIL

When comparing Figure 4a,b to Figure 2a,b, it is evident that while the results obtained
from the derived model include all same parameters, except for the optical absorption
coefficient of the PA12 layer, there is a significant difference in the amplitudes and phases
predicted by the CHT, 1LM, and generalized hyperbolic theory for the semi-transparent
(whitish) sample. In both cases of an optically semi-transparent and an optically transparent
PA12 layer, all theories predict flat amplitudes at low frequencies up to a specific breakpoint
frequency. Above this frequency, however, the 1LM theory predicts a decline with a
slope between 20 dB/dec and 40 dB/dec, similar to what is observed in the optically
transparent PA12 layer. In contrast, the CHT predicts a steeper decline. The generalized
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hyperbolic theory not only predicts a decline with a slope analogous to that of the CHT
but also indicates the emergence of a local minimum and maximum that are very close to
one another.

Additionally, we observed a similar min—-max structure in the amplitude for the
transparent PA12 sample in Figure 3, particularly when the coating thickness increases. The
complex relationship between the absorption coefficient of PA12 and the coating thickness
necessitates a further analysis of this phenomenon to accurately interpret the experimental
photoacoustic measurements, which is the focus of our ongoing research.

The phase characteristics reveal even more significant differences compared to the
phases illustrated in Figure 2b. While the 1LM model predicts a relatively abrupt phase
change at the breakpoint of 90 degrees, the two-layer theories indicate a gradual phase
increase that reaches 90 degrees at higher frequencies. This suggests that in optically
semitransparent samples, the impact of the coating on the thermal moment and the average
temperature of the entire sample is more evident than in transparent samples, even with
the coating’s small thickness.

As the fractional derivative order decreases, the subdiffusive (GCEIII) and superdiffu-
sive (GCEII) properties of thermal transport in PA12 increasingly influence the shape of the
TE amplitudes at low frequencies. At high frequencies, however, their slope corresponds to
the prediction made by classical theory for a two-layer sample. For the subdiffusive GCEI
theory, the low-frequency amplitude shape matches that predicted by CHT theory and
the 1LM model, albeit with larger amplitudes. The high-frequency slope diverges more
from CHT predictions and aligns with 1LM theory (Figure 4c,e). In contrast, all two-layer
theories anticipate an increase in phase, unlike the 1LM theory. Consequently, the phase
can help distinguish between the domains of validity for the 1LM theory and the two-layer
theories, based on the thermal properties of the examined layer if it is semitransparent.

The amplitudes and phases of two-layer models (CHT, HHT, GCEI, GCEII, and GCEIII)
for the PA12 structure with a black dye protective coating are analyzed in Figure 5 and
compared to the single-layer model of the PA12 coating sample, considering a thicker
coating (I =1 um). Three fractional derivative order values are examined: 1, 0.8, and 0.6.
As in previous figures, black lines represent CHT, red indicates HHT, blue corresponds to
GCEI, green denotes GCEIL, and magenta symbolizes GCEIIL

For a sample thickness of 1 um, the differences between the two-layer and single-layer
models become clear. The two-layer models exhibit an initial decline in amplitude, followed
by a phase of flattening, and then a sharper decline compared to the single-layer model.
This pattern resembles that in Figure 3a but is even steeper.

By comparing Figure 5a—f with Figure 4a—f, where all parameters except coating
thickness remain constant, we can infer that increased coating thickness leads to a further
decrease in low-frequency amplitudes and phases, aligning with both generalized and
classical two-layer theories.

In whitish samples, the optical absorption coefficient and anomalous diffusion proper-
ties significantly affect the amplitudes and phases of the thermoelastic component. How-
ever, isolating the area of unwanted influence from the coating becomes more challenging
with these samples.

It is important to note that all bilayer models—except for GCEI—predict a stabilization
of the phase difference at 90 degrees at high frequencies when the coating thickness is
sufficiently large (see comparisons Figure 5b,d,f with Figure 4b,d,f). In contrast, the one-
layer model (1ILM) predicts a decrease and stabilization of the phase at —90 degrees at high
frequencies. This 180-degree phase difference indicates that the 1LM model suggests a
reversal in the direction of the sample bending [22,83], which is not observed in the bilayer
models. This implies that the 1LM model ignores the stiffening effect of the coating on
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the sample, making it unsuitable even for very thin coatings if the coating functions as
a distinct layer rather than just an optically modified surface of the sample (for example,
the surface adsorption of nanoparticles with a high optical absorption coefficient or their
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Figure 4. Photoacoustic amplitude and phase characteristics of the whitish PA12 black dye double-
layer sample with thicknesses of 100 pm and 0.1 nm for three fractional derivative orders, v1:
(a) amplitude and (b) phase for v; = 1, (c) amplitude and (d) phase for v; = 0.8, (e) amplitude and
(f) phase for v; = 0.6.
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Figure 5. Photoacoustic amplitude and phase characteristics of the whitish PA12 black dye double-
layer sample with thicknesses of 100 um and 1 pm for three fractional derivative orders, v1: (a) am-
plitude and (b) phase for v; = 1, (c) amplitude and (d) phase for v; = 0.8, (e) amplitude and (f) phase

for v, = 0.6.

If heat conduction in PA12 can be explained by the subdiffusive GCEI theory, we
might expect that adding a coating layer will have a reduced impact on the stiffening of
the sample. In this scenario, it is possible that the direction of its bending could reverse;
however, this will require further investigation.
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4. Conclusions

A two-layer model was developed to account for volumetric optical absorption in
both layers, as well as anomalous diffusion and thermal memory effects. This model
was validated against three established frameworks: a classical two-layer heat conduction
model for opaque samples, a generalized two-layer model for the opaque first layer,
and a single-layer model based on hyperbolic theory applied to the sample-protective
coating—structure.

Using the derived model, we analyzed the thermoelastic component of the photoa-
coustic response for a structure comprising a porous layer with high structural entropy
and a thin, optically opaque coating. This configuration is relevant for photoacoustic
measurements of 3D-printed polymer samples.

We examined the effects of the optical absorption coefficient of PA12, coated with a
layer of black dye, the anomalous diffusion properties of the PA12 layer, and the thickness
of this thin coating on our models. Our results indicate that subdiffusive and superdiffusive
effects, regardless of the governing GCE theories, significantly influence the shape and
magnitude of the thermoelastic component of the photoacoustic signal, depending on the
optical absorbance of the illuminated layer.

The frequency range in which anomalous diffusion effects are evident is influenced
by both the coating thickness and the fractional derivative order. As the coating thickness
increases and the fractional derivative order decreases, the effects of anomalous diffusion
become more pronounced at higher frequencies. Notably, the impact of coating thickness
differs from that of the fractional derivative order. Furthermore, the phase of the thermoe-
lastic component of the photoacoustic response is more sensitive to the effects of anomalous
diffusion and coating thickness than the amplitude.

Our results show that thermoelastic bending measurements via photoacoustic meth-
ods can detect the type of anomalous effects in laser-sintered polymers. With proper
calibration, it can be determined whether a sample exhibits super- or subdiffuse behavior
by analyzing the amplitude characteristics at the intersection point depicted in Figure 2.
This modeling approach can support the development of non-destructive diagnostic tech-
niques for quality control in additive manufacturing, especially in the characterization of
thermal and structural properties of 3D-printed polymer components.

Our analysis indicates that some of the phenomena observed in photoacoustic mea-
surements of laser-sintered polymers should not be attributed solely to the influence of
the detectors. Instead, these observations can be explained by a combination of factors:
volumetric absorption within the porous polymer sample, increased stiffness arising from
the applied coating—especially if the coating consists of a separate material layer rather
than just a modified surface layer (such as nanoparticle adsorption from a suspension or
ionic implantation)—and anomalous diffusion effects in heat conduction through materials
with high structural entropy, like laser-sintered polymers.

To enable the photoacoustic measurement of thermal relaxation parameters in laser-
sintered polymers—parameters linked to their fractal structure—further research is neces-
sary. This research should focus on identifying the most appropriate generalized forward
model, which best explains the experimental measurements [19]. Additionally, a methodol-
ogy must be developed to address the complex, nonlinear, and multi-parameter inverse
photoacoustic problem.
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