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Abstract

Triangular shapes have been studied from different perspectives over a wide temporal
frame since ancient times. Initially, fundamental theorems were formulated to demonstrate
their geometrical properties. Philosophy and art leveraged the peculiar aspects of triangles
as building blocks for more complex geometrical shapes. This paper will review triangles
by adopting a multidisciplinary approach, recalling ancient science and Plato’s arguments
in relation to their connection with philosophy. It will then consider the artistic utilization
of triangles, particularly in compositions created during the medieval era, as exemplified by
the Cosmati Italian family’s masterpieces. Various scientific environments have explored
triangular 2D and 3D shapes for different purposes, which will be briefly reviewed here.
After that, Sierpiniski geometry and its properties will be introduced, focusing on the
equilateral shape and its internal complexity generated by subdividing the entire triangle
into smaller sub-triangles. Finally, examples of triangular planar shapes that fulfill the
Sierpiriski geometry will be presented as an application in signal processing for high-
frequency signals in the microwave and millimeter-wave range.

Keywords: triangles; philosophy; artistic triangular decorations; Sierpiriski; microwaves;
millimeter waves; planar components; antennas

1. Introduction

This paper reviews the meaning of triangles from different perspectives, including
mathematics, philosophy, and art. It discusses the applications of triangular shapes as
resonating elements for microwave planar components and antennas.

Numbers initially motivated the Greek philosophers and mathematicians, who tried
to reduce the interpretation of the world to specific numeric combinations and geomet-
rical shapes. From this perspective, triangles were a focal point of the mathematical and
philosophical efforts of Pythagoras and Plato, giving rise to the famous theorems and the
dialogue known as Timaeus [1-4]. Sierpiriski also published about Pythagorean triangles
in [5]. Of course, the number “3” is also related to triangles because of the three edges of
the geometrical figure. It has been invoked for reasons pertaining to its magic and religious
nature, encompassing Catholic culture and several examples since the early historical ages.

In many ancient traditions, “3” is the counterpart to “4”, comparing the male and
female principle or the complementarity of the sky and the earth. The number “4” has
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also been related to the four essential elements studied in the early stage of philosophy
and science, i.e., water, air, earth, and fire. “3” + “4” gave rise to the number “7”, also
considered “magic” for other reasons (one-fourth of the lunar cycle; the so-called “planets”
of antiquity, including the moon and sun, the Pleiades, etc.) [6].

Concerning art, reutilizing small marble pieces coming from the destruction of old
Roman temples, mainly columns and wall or floor slides, a medieval Roman family of mar-
ble workers invented the so-called Cosmatesque style, whose products are visible in many
Catholic churches in Italy, but sometimes also abroad [7-9]. Geometrical representations
with squares, circles, or spirals were manufactured from the XI to the XIII Century by the
Cosmati family, and triangles were available in many compositions as building blocks of
picturesque wide floors that looked like mosaics. More ancient artifacts are available in
other places. It is interesting to see a handmade decoration from the Museum of Malta, La
Valletta, which can be considered a preliminary fractal geometry (see Figure 1).

2023/5/28'711

Figure 1. Piece of a decoration exhibited in the Archeological Museum of La Valletta (Malta) with
inner triangles embedded in a triangular frame (900 B.C., approximately; personal photo).

The Sierpinski triangles are figures belonging to the more general group of frac-
tals [10,11]. They are obtained by a progressive subdivision of whole triangles into many
internal triangles of decreasing size. From a mathematical point of view, many publications,
software tools, and potential applications have been considered in past decades [12-16].
Triangles are possible elementary cells in the finite element method (FEM) of calculation
for electromagnetic 2D and 3D simulations, where each side can represent a lumped
element [17]. They are building blocks in manufacturing processes like 3D printing, con-
tributing to mechanically stable structures, especially when combined in hexagons [18].

Finally, equilateral triangles can be seen as regular shapes resonating at specific fre-
quencies when adequately sized and excited by a feeding system. A key point about
resonators and antennas for high frequencies is the need for a feeding network to achieve
an effective resonant response and good radiative performance for the antennas. This is
especially important when the triangles are characterized by an additional internal com-
plexity, as in Sierpinski geometry [19,20]. Like any other resonator, the coupling degree
(electrical matching) determines the quality factor and bandwidth. In the case of planar
components or antennas, the specific difference between them is necessary for substrates
compatible with manufacturing processes for electronic components (high dielectric con-
stant) or radiative elements (low dielectric constant). In both cases, the intrinsic frequency is
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determined by the size and the choice of substrate. Moreover, triangles are building blocks
that are suitable for applications in resonating or radiative arrays, properly combining
several of them [20].

In this paper, the triangle is presented from a complementary viewpoint rather than
its applications, and some configurations inspired by the Sierpiriski geometry will also be
proposed for specific configurations in high-frequency signal processing.

The visual representation proposed in this paper serves as a tool for introducing the
general reader to the topic. This contribution compiles examples from various scientific,
philosophical, and artistic fields that showcase the triangular shape, aiming to provide a
comprehensive review and highlight the inspiration derived from this shape in diverse
applications. Consequently, the sections of this paper that introduce the Sierpinski and
simple triangles have been extended and detailed, focusing not only on the microwave engi-
neering aspects, which are reserved for the final section, where high-frequency applications
are discussed.

The introductory part of the present contribution can be considered a review that
demonstrates the intriguing characteristics of and fascination with triangular shapes, as
well as their utilization as basic forms in various contexts. Starting from this approach,
the same shapes have been studied for microwave engineering purposes, proposing full
and Sierpinski geometries in guided wave structures and free propagation, discussing
applications for signal filtering and antennas of equilateral shapes. The main advantage
of fractal Sierpiniski configurations, as discussed in this paper, is the possibility of using
them as building blocks in arrays to design both microwave filters and antennas. This
approach allows for the combination of resonance frequencies or tuning them due to the
increasing internal complexity while maintaining the same edge length. This characteristic
is particularly fascinating when designing edge-coupled configurations, as it influences
the structure’s central frequency and bandwidth. Limitations of Sierpinski triangles in
microwave applications include the more complex design due to the high number of
discontinuities generated by their internal subdivisions, as well as the necessity to account
for grating widths or non-equilateral shapes. On the other hand, the triangular shape
and other fractal geometries are also invoked for miniaturization purposes. In our case,
coplanar resonators are presented as counterparts to the devices already studied with
microstrip feeding, and specific bowtie Sierpiriski antennas with an original feeding system
are also presented.

2. Philosophy, Mathematics, and Art

Early philosophical currents have always considered mathematics and geometry
interrelated and able to bring an inner meaning to understanding the natural order through
symbols and specific shapes. This initial thinking was usual when no specialization was
present among the scientific disciplines, and ancient thinkers had an intermediate profile
between science and philosophy, trying to propose a unitary vision of the world based on
general concepts linked to many knowledge fields, like astronomy and basic mathematics.
Such a holistic vision of the world is also typical of Eastern philosophy, but in that case,
another, more spiritual approach is pursued. In ancient Greece, a logical and scientific
methodology puzzled scientists and philosophers, who were able to open schools with the
ambition to select people able to understand matters considered “esoteric”, i.e., reserved
for a selected group of students. This definition has nothing to do with other currents
inspired by the magic meaning of numbers and shapes, which was trendy, especially in the
XIX century.
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2.1. Plato

The Timaeus essay of Plato, dating back to 360 B.C., treats the triangle as a building
block figure giving rise to solid figures. His understanding of reality was based on the
World of Ideas and Forms, such that the original theory of the four elements evolved
considering the presence of basic shapes, which are regular geometrical solids: Tetrahedron
(fire), Octahedron (air), Icosahedron (water), and Cube (earth). Following this approach,
the shapes correspond one by one to the four fundamental elements introduced in previous
times to model reality. All the natural manifestations resemble their counterparts in the
World of Ideas, with the possibility of exchanging their nature and being transformed
into another shape. This way of proceeding preludes to the development of alchemy
during the Renaissance period, to study the possibility of transforming basic materials
into noble ones. The typical goal was to start from lead to obtain gold using one of the
properties of the so-called philosopher’s stone [21]. Paracelsus was one of the most famous
alchemists, introducing new concepts and materials even in toxicology [22]. Without
forcing the comparison, we can say that the intuition of Plato, and successively that of the
Alchemists, also preludes to modern findings, with chemical and nuclear reactions able
to obtain different elements from proper initial conditions, energy, and involved elements
or materials. It can be noted that the term “alchemical” is still used to indicate a process
during which a chemical species is transformed into another via a pathway of nonphysical
(alchemical) states, as discussed in [23,24] concerning free energy calculations. The Arab
alchemist Jabir ibn Hayyan is considered one of the first to link the four elements to alchemy,
a term derived from the Arab language meaning “chemistry”. In ancient times, Aristotle
introduced the principles of heat or cold and dryness or moisture, relating them to the
four basic elements. In the historic alchemical approach, dating mainly to the so-called
Renaissance period (15th—16th centuries), the reason for using triangles was to indicate the
preferred direction of the four basic elements. So air and fire are described by triangles
pointing upward, while water and earth are symbolized by triangles pointing downward.
In particular, the triangles representing earth and air are plotted with a line bisecting the
triangle, as shown in Figure 2 [25].

Fire Water

Air Earth

Figure 2. Alchemical representation of the four basic elements. The shape, the orientation, and the
segment distinguishing the up or down position are the signature of each element.

Returning to Plato, his perfect polyhedral shapes comprise triangular faces with
internal angles of 30-60-90 and 45-45-90 degrees, respectively. In detail, half of a square
and half of an equilateral triangle are considered by Plato to be the fairest geometrical
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figures, able to give rise to all the others. See, for instance, [26]. An interesting recent
book about ancient mathematics, including Plato’s approach to philosophy using geometry,
is [27]. That book emphasizes that studying ancient mathematics means forgetting about
analytical developments, as this kind of formalism is a recent advancement. Formulas
cannot be immediately applied to geometrical and physical scenarios that only now have a
synthetic representation using equations. Sometimes, it is questionable even to translate
the Greek term “dpOpov” with “number”. In [27], it is also remembered that Plato defined
God as a geometer, citing other authors who claimed the role of God as a mathematician.
The above consideration exemplifies a well-known phenomenon in previous times, when
philosophy and science were part of a unique discipline, sometimes mediated by religious
aspects. In Plato’s case, his personal growth was mainly in philosophy; first as a student of
Socrates and after that following a personal path proposing his approach to an ideal state.
Returning to Athens after long periods spent in Sicily with tyrants Dionysius I and II, he
founded the Academia, inviting high-level students with different backgrounds, including
mathematics. He was so enthusiastic about mathematics that he mixed that matter with his
philosophical interests, giving rise to an original theory to use special triangles to obtain 2D
and 3D polygons and linking ideal shapes to the above-mentioned four basic elements. It is
sometimes difficult to translate correctly an ancient text that has been written colloquially,
and nowadays, there are still doubts about an authentic interpretation of Plato’s texts.
The complete picture of Plato’s philosophical approach to nature includes the presence
of a Demiurge, i.e., an alternative definition of a God that is not a Creator but a superior
entity creating order using pre-existent elements. From this point of view, the Platonic
Solids are building blocks linked to the four basic elements, plus the presence of a fifth
one, considered later in the Medieval Age and defined as a quintessence, identified with
the dodecahedron. A description of the Platonic Solids and their relationships with fire,
air, water, and earth can be found in the original essay of Johannes Kepler [28], and it is
reproduced in Figure 3.

Figure 3. Platonic Solids and their relationships with basic natural elements: cube is earth, tetrahedron
is fire, icosahedron is water, octahedron is air, and dodecahedron is universe. Later, the fifth solid
figure was interpreted as quintessence. Re-elaboration from [28].

Using a simple geometrical approach, all the 2D polygons can be subdivided using
triangles (equilateral, rectangular, and isosceles). A triangle can be used as a building
block for creating 2D polygons and, in the limit for a small angle « in the upper corner (or
vanishing length s of the circular sector), a circle. An example of this construction is shown
in Figure 4.
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Figure 4. Construction of a planar polygonal shape using triangles, leading to a circle in the limit
conditions. The blue sections are elementary slices, with small arcs s and corresponding angles «, and
the dashed line indicates the path to fill the entire circle.

The same procedure can be applied to 3D figures using a tetrahedral pyramid, i.e., a
polyhedron that connects a polygonal square base and the apex. In this case, we can even
produce a sphere for the same limit conditions, considering a volumetric extension of the
infinitesimal pyramid.

An interesting paper about art and mathematics discussing the Platonic Solids in this
framework is given in [29]. It is also stressed that the number of regular polygons is infinite
but the number of regular solids is finite.

It is worth noting that Plato’s approach was affected by an error, as Johannes Miiller
von Konigsberg (1436-1476), better known as Regiomontanus, demonstrated and discussed
in [30]. Using a more precise demonstration, not affected by the understandable approxi-
mations of the initial approach, probably due to the utilization of imperfect wood models,
we can conclude that an approximately 7° angle is still needed to complete a solid figure
using only tetrahedra.

2.2. Ancient Art and Cosmatesque Decorations

In the Introduction, it was underlined that despite their symbolic meaning, triangles
are part of many artistic decorations. Crossing lines was probably one of the initial ways
humans created shapes, together with other preliminary techniques, continuing with artistic
hunting scenes and everyday life pictures in the caves. After that, many authors have
used numbers and shapes with specific intents over the centuries [31,32], with alchemical
meanings or indications that someone belongs to a group. The triangle is the Catholic
symbol that means the triple God identity (Father, Son, and Saint Spirit). That symbol, with
the same meaning, is even used in the American one-dollar banknote.

After the fall of the Roman Empire, several ancient buildings were destroyed by exter-
nal populations, conquering the previous domain of Rome. Marble from the Mediterranean
area, initially used for columns, floors, and walls in buildings belonging to the emperor and
rich families, was abandoned and no longer maintained. Then, pieces of precious marble
could be reutilized in decorative items, arranged in fragments, and proposed in original
designs. In this framework, the Cosmati family developed a style based on geometrical
configurations, primarily used for church floors, in response to the Pope’s requirements [7].
A mathematical approach, accompanied by a detailed description of Cosmatesque triangles
and carpets, is interpreted using Sierpiriski theory, as presented in [33,34]. A few examples
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of Cosmatesque representations, including Sierpinski triangles, are shown in Figure 5
from the Roman church “San Lorenzo fuori le mura” (San Lorenzo outside the walls), but
several other examples can be easily found, where triangles are used as the main shape
or are part of a more complicated figure, like in Figures 6 and 7. Another classic example
of Cosmatesque art is in the Saint Nilo Abbey (an orthodox church with a Christian rite,
in Grottaferrata, a small town very close to Roma), as shown in Figure 8. From all of
these examples, it is evident that triangular shapes sometimes have an inner meaning,
like indicating a direction to be followed, or they are just an easy geometrical shape to be
produced from the original pieces.

Figure 5. Roman church of “San Lorenzo fuori le mura” (outside the walls). Two examples of a
Sierpiniski-like floor decoration made by fragments of old imperial material. Medieval age, around
1200 (personal photo).

Figure 6. Cont.
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Figure 6. Triangles used in a Cosmatesque floor: above, from the dome in Civita Castellana, near
Roma (internet photo from https://cosmati.wordpress.com/category/pavimenti-cosmateschi/ (ac-
cessed on 29 June 2025), by Nicola Severino) and below from the church “Santa Maria in Trastevere”
(personal photo).

Figure 7. Labyrinth symbolizing the path toward the truth in the dome of Ravenna, Italy
(personal photo).

Figure 8. Cont.
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Figure 8. Cosmatesque style with triangles from the Saint Nilo abbey in Grottaferrata, near Roma
(personal photo).

2.3. Other Cultural Environments Using Triangles

Several other fields, both scientific and non-scientific, utilize triangles for various
purposes. In psychology, Robert Sternberg from Cornell University developed the trian-
gular theory of love to explain passion, intimacy, and commitment as building blocks in
human relationships [35].

Several examples of triangular arrangements of stars and planets are found in astron-
omy. Even if we know that constellations do not exist, in the sense that sometimes we see
a specific shape using stars that only apparently belong to the same group or are close to
each other, in some cases a “conjunction” can be claimed using the positions of planets and
satellites as we see them from the Earth. In many instances, it is rare to see a triangular
geometry involving planets, stars, and satellites, as is the case with the moon and planets
within the solar system. An example is from the National Geographic Magazine in [36],
where the Moon-Jupiter-Venus conjunction is photographed in a triangular configuration,
whose next appearance will be in 2040.

Triangles can be illusions, like the Kanisza triangle, which is the result of an elaboration
of our mind but does not exist as a real triangle. The above case is part of the general topic
about illusory contours, i.e., the figures resulting from boundary conditions that lead the
observer to the conviction that a specific shape is present even when it is not plotted [37].

Additionally, the triangular shape is used in other scientific contexts, which are also
quite distinct. A typical example is the prism utilized in optics to decompose the spectrum of
visible light into the wavelengths that give rise to the colors of a rainbow. Another example
is using a triangular diagram to study the equilibrium state of a compound formed by
three different chemical species in the right thermodynamic conditions for temperature
and pressure, which is helpful in material science and medical applications [38].

A relatively new result for using triangular shapes is in manufacturing processes
based on 3D printing to enhance a structure’s mechanical properties [39].
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3. Mathematics and Geometry of Sierpinski Fractals

Triangles are categorized into distinct groups based on their shape. Equilateral, isosce-
les, and rectangular triangles are all suitable for arrangement in a more complicated planar
structure. Still, equilateral ones are easier to subdivide and combine in an array, especially
for applicative purposes.

Sierpiniski triangles can be considered a fractal geometry derived from creating a series
of internal triangles with decreasing size. Starting from the initial one, you can subdivide it
by considering empty or full triangles and a frame with a specific thickness surrounding
all the created sub-triangles. Independent of the above choice, Equation (1) describes the
total number of triangles created by the internal subdivision:

N =3", (1)

where 7 is the complexity level and N; is the number of sub-triangles generated. So
far, n = 0 means an entire single triangle, and n = 1 means three sub-triangles plus an
empty triangular shape, and so on. This situation is represented in Figure 9, where, for
completeness, Sierpiriski triangles are shown by creating holes in the usual way or the
complementary one. As an example related to high-frequency engineering, the generation
of Sierpiniski triangles for the design of antennas using neural networks was considered
in [40]. The “negative” subdivision is complementary and gives back empty triangles
surrounded by a frame. Choosing “positive” or “negative” (empty) sub-triangles is crucial
in specific applications, such as high-frequency signal processing. It corresponds to a
metalized or empty area photolithographically obtained onto the substrate.

AAAA AL

A4
AN

Figure 9. Iterations to obtain the third level of complexity in the Sierpinski triangle for both positive

(top line) and negative (bottom line) shapes. Dark areas and white areas represent the presence and
absence of material in the plotted shape. For high-frequency structures it means to have a metallized
or non-metallized area.

Sierpinski’s contribution was essential in obtaining a mathematical approach to for-
malize a theory supporting this specific shape, even if this geometry was already known,
as discussed before, for different reasons. Since then, a mathematical formulation of the
number of positive and negative sub-triangles and the area as a function of the inter-
nal complexity is available. In particular, the complexity level generates several internal
sub-triangles, whose number is defined through Equation (1), with the side length decreas-
ing as 1/2", the total perimeter going to infinity, and the area vanishing when n grows.
P =3™*1 /2" gives the perimeter for a triangle with a unitary edge length, while the area is
A =(3/4)"Ay, where Ay = 1/3/4. These simple rules can be used to verify their consistency
with a possible general law that predicts the frequency of resonance in high-frequency res-
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onators. Sierpifiski triangles are typically considered to originate from an equilateral initial
shape, but generalized approaches based on non-equilateral shapes are also available [41].

4. High-Frequency Applications

The utilization of equilateral triangles and their fractal evolution, namely Sierpirski
ones, in antennas and resonators has been documented since the 1980s up to evolutions for
carpet Sierpiniski geometries [42].

Several configurations have been studied, including different feeding solutions, to
capitalize on the unique characteristics that enable the modulation of geometry and the gen-
eration of multiple frequencies. Most of the literature is focused on equilateral triangles, but
modifications are suggested to calibrate the frequency and control the spectrum. This task is
not trivial because the analytical approach to predicting the resonance frequency is already
complex, and electromagnetic simulations must often be used to support it for a direct
comparison. The primary challenge is accounting for a structure that presents three signifi-
cant electromagnetic discontinuities in the simple triangle and an increasing complexity
when internal figures are introduced. For this reason, some papers are missing the spectra,
probably because they match the expected resonances but are poorly excited [43]. In other
papers, it was possible to make a comparison using simulations and experiments, but not
formulae [44]. To the best of my knowledge, only in [45,46] was a numerical approach
supported by measures successful in the spectrum prediction. Most other papers discuss
comparisons between different methods, but they are often only occasionally supported by
an experiment, even when suggesting valuable modifications to the original theory. An
interesting approach is given in [47]. Additional considerations can be found in [48-51].

The engineering applications proposed in this paper encompass both planar devices
(resonators) and free-space propagation (antennas). Some results have already been pre-
sented in other contributions, where the optimization of resonators’ performance is also
discussed as a function of the distance between the triangle and several developed proto-
types. Additionally, this section presents results confirming the predicted performance,
including prototypes for GPS applications and radiation patterns. Other results presented
here are numerical and were obtained for heuristic purposes. Nevertheless, various findings
are confirmed by feeding the single resonators or more complex structures in [50].

It is important to note that several parameters should be considered for a general
approach in studying this specific fractal figure. Additionally, other fractal structures, not
necessarily triangular, are often examined by focusing on a particular geometry, without
aiming to generalize the theoretical framework. Among these parameters, two are critical
for analyzing the Sierpinski geometry for microwave engineering purposes: the feeding
method and the width of the planar grating. Notably, the second parameter limits the
potential for increasing internal complexity, based on the fundamental understanding of
the photolithographic processes needed to manufacture the Sierpinski triangle. Typically,
for the mass production of planar microwave devices, the minimum strip metal width
on a dielectric substrate is around 10 um. The reasonable maximum number of internal
triangles depends on the grating width used to separate them. Even in the lowest mi-
crowave bands, below the X-frequencies (i.e., below 12 GHz), higher complexity does not
reasonably exceed C5. When plotting a Sierpiniski triangle, it is evident that the grating
could be absent, which is an intriguing mathematical characteristic to consider regarding
internal complexity, such as a perturbation of the whole patch (when the grating is present)
or a collection of tightly connected individual triangles (when the grating is absent). An-
other challenge in generalizing the concept is studying non-equilateral triangles, which
is explored in some detail in the paper [41]. For these reasons, several papers on Sier-
piniski triangles for use in microwave subsystems are now available. However, all of them
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focus on specific geometries, boundary conditions, or feeding solutions (microstrips or
coplanar waveguides) [20,50].

Examining the studied devices, we can distinguish between the typical performance
required by resonators and antennas, as both are resonating structures, but with distinct ap-
plications and specific definitions. The common feature of both structures is the frequency
spectrum, and it is derived from the theory developed in [52] for equilateral triangles. On
the other hand, a direct comparison between theory (an analytical approach or electromag-
netic simulation) and experiment is possible when the triangular structure is excited by
a feeding that is ideally electrically matched with the triangle; otherwise, the equivalent
electrical circuit involving the feeding network and the triangle should include parasitic
elements that are able to substantially modify the resonance frequency, the bandwidth,
and, consequently, the quality factor. Classical antennas, like the patch ones with circular
or square shape, were compared in [20] to demonstrate that the triangular choice helps
mainly for three reasons: (i) the edge length determines the frequency of resonance, and a
triangle has a smaller planar size than a square with the same edge by a factor of almost 2;
(ii) the comparison with a square demonstrates that higher frequencies are possible for the
main mode of this structure; and (iii) they are suitable for edge coupling instead of the
well-known circles, which easy to design but impossible to be used side-by-side. Further,
in the case of a Sierpinski arrangement including C0 and C1, or other combinations of
Sierpinski geometry, the pattern can benefit from beam steering in a well-defined direction
by design, as demonstrated later by comparing the C0, C1, and C0-C1 antennas.

The simulation software used in this contribution is Microwave Office Release 17.1 by
AWR-CADENCE. I utilized the AXIEM environment implemented in this software, which
is based on the method of moments, specifically examining the in-plane currents of the
microwave structure. The frequency range for evaluating the high-frequency performance
of the simulated structures spans from GPS to K-Band frequencies for antenna applications
and includes X-Band frequencies for the resonators. This does not limit the use of such a
geometry, as the primary resonance mode occurs at a frequency that strictly depends on
the planar size and the substrate’s dielectric constant. The proposed geometries can serve
as guidelines for design, tailored to specific applications, with no restrictions on frequency
selection, except for the internal complexity associated with higher frequencies, such as
millimeter waves, which demand extremely high resolution in manufacturing processes.

4.1. Resonance Frequencies

Polygonal shapes and their resonance frequencies for microwave applications were
studied decades ago using precise electromagnetic field calculations. Microstrip-excited
polygonal planar structures have been reviewed in [51,53], based, for triangles, on the
analytical developments in [52]. Triangles were initially proposed with attention given
to both theoretical and experimental findings, because they slightly enhance the quality
factor of resonators and may be used as magnetic materials with this specific shape for
circulator applications [54]. The simulated contour of the electromagnetic field indicates a
higher value at the vertices of the triangles; this finding suggests that the vertex could be
the ideal location to place the feeding of a triangular shape for resonators and antennas.
However, we will see that general agreement with the first analytically derived mode is
achieved through lateral coupling, thus favoring the edge, at least for planar resonators.
In contrast, antennas require further investigation to reach the optimal solution for the
radiation properties of the configuration. Despite the efficiency of excitation at resonance,
the modes excited in a triangular shape are obtained using well-established formulas that
consider the indices of the transverse magnetic and electric excitation modes. Three indices
must be defined, fulfilling the basic equation m + n + 1 = 0, to solve the wave equation
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for the EM field components, where the abovementioned indices are all related to field
components and are not independent variables. The fundamental mode is described by
the (1, 0, —1) set of index values, from which the resonance wavevector value is k = 477/3a,
where a is the edge length of the triangle. The resonance frequency of the fundamental

mode is given by [43]:
2c

- 30\/8

where c is the light speed in a vacuum and ¢ is the dielectric constant. From preliminary

fr ()

phenomenological evaluations about the necessity of introducing an effective size or an
effective dielectric constant, it appeared that e must not be corrected, while changing a to
an effective value give us a more precise prediction of the resonating frequency [43]. Other
modes can be excited, belonging to a series of resonances determined by the change of the
indices [52]. It should also be noted that the resonance frequency prediction is a theoretical
result of the bare structure when the excitation is optimized, ensuring electrical matching.
It is well known that feeding is critical for efficient coupling with the desired resonance
mode; otherwise, a significant frequency shift and modifications to the band shape are
experienced. In the following paragraphs, this item will be considered again for resonators
and antennas. Like any other geometrical figure manufactured for planar high-frequency
applications, a triangle is a structure with resonance frequencies determined by its size.
Additional properties can be considered if magnetic materials, such as Permalloy [55] or
the classical garnets and ferrites [56], or ferroelectric materials [57] are used for tunability.
As discussed above, the feeding network is crucial for enhancing the antenna’s radiation
capabilities. A reasonably accurate design procedure for triangular antennas and arrays
is described in [51,58]. The reason for having a microstrip excitation on the opposite side
of the antenna is the necessity of avoiding metal radiative contributions on the same side,
especially for substrates with a lower dielectric constant, where the microstrip can be broad
and comparable to the antenna size. Another contribution to predicting the resonance
frequencies for Sierpiniski antennas is given in [40]. The fractal dimension enables the
creation of a multi-band response, which is enhanced compared to the simple triangle. A
good review of fractal configurations useful for radiation and filtering applications is given
in [59]. The internal complexity of the Sierpiniski geometry or a combination in an array
can also modulate the expected resonance frequency. Still, we shall see that it can affect
other radiator properties [60]. Many parameters are involved to determine the resonance
frequency of a Sierpinski triangle, and equations governing this prediction should include
(i) complexity level; (ii) grating width; (iii) a possible representation of the triangle with
“positive” or “negative” complexity, i.e., with empty or full sub-triangles; (iv) a feeding
solution and its coupling efficiency; (v) the modification of the resonance frequency when
coupled triangles are considered; (vi) substrate material; and additional details still to be
considered. This task is deferred to other possible papers, or even to a book. The current
scientific literature gives a solution to the triangle’s spectrum based on the entire patch
and not for Sierpinski figures. For the latter, a software-supported prediction is often
considered in comparison to experimental results. Of course, more equations should be
helpful, and not only one, to predict the resonance frequencies. Iterations in the increase
in the Sierpinski complexity have been performed for microwave applications, primarily
to ensure nearly the same coupling efficiency between the resonators or antennas and
the feeding system while achieving frequency tuning due to the increased number of
sub-triangles. The electromagnetic response of the Sierpinski structures changes because
the electromagnetic field is locally altered, and the spectrum is consequently altered. In
reference [44], only resonators on silicon wafers have been studied by feeding them in
a CPW environment. In contrast, this paper uses microstrips for feeding, changes the
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substrate materials, alters the edge size and operational frequencies, and treats antennas,
not only resonators.

4.2. Antennas

An example of the frequency response of the sequence from CO to C3 (from the Oth
to the 3rd iteration in the internal complexity) of a Sierpiniski antenna is given in the
simulations shown in Figure 10, where the substrate is the commercially available material
Rogers 5880 (RO5880), with a dielectric constant € = 2.2 and dielectric losses tand = 0.0009
for frequencies higher than 10 GHz [61]. A low dielectric constant impedes the excitation
of substrate modes, otherwise lowering the overall antenna performance. The substrate
thickness has been fixed at d = 1.575 mm, which is typical for commercially available ones.
The metal thickness is t = 35 um, which is also better for power applications, and the antenna
is grounded. A frame of 200 um surrounds the entire structure and each sub-triangle. A
bowtie configuration with internal feeding has been chosen to show how the spectrum
can be complicated by the internal sub-triangles of the antenna, whose feeding might be
optimized depending on the frequency and the application. In Figure 10, the simulated
configurations and the spectrum of the antennas are plotted, with evidence of a complicated
response, with an increase in the number of the excitation modes as a function of the sub-
divisions, even if identifying the modes to be compared is still subject to interpretation, as
also the frequency shift appears to be not monotone with internal complexity. The excited
mode strictly depends on the coupling solution. The S-parameters used to represent the
electromagnetic response of resonators and antennas are typical quantities in microwave
engineering, obtained as ratios between reflected and input voltage signals (S11 and 522)
or between output and input signals (S21 and S12). They are a matrix of normalized
non-dimensional quantities, often expressed in dB. In the simple case of passive structures,
521 = 512, with a reciprocal and symmetric response.

The radiation pattern at resonance exhibits a narrow lobe when measured in the
middle of the two wings. It is broader in the 90° position, as shown in the plot in Figure 11
at resonance for C0, i.e., at approximately 26 GHz. The expected antenna gain is on the
order of 7 dB. Qualitatively, the same radiation pattern is predicted for all the configurations
at resonance. Nevertheless, better matching is obtained for C1, which exhibits a gain of
around 7.8 dB at 20 GHz and enhanced sidelobe suppression, as shown in Figure 12. The
presence of a substrate and the ground condition alter the response of the naked structure.
Still, it is necessary to simulate a situation closer to the experimental one, where a feeding
line should be present, and the ground helps improve the antenna gain.

Concerning the feeding network, having a line on the opposite side of the antenna
helps vanish its contribution for radiation purposes, and the radiation and gain are related
mainly to the antenna itself and not to the feeding lines. Moreover, the microstrip will be
narrow if designed on a substrate with a higher dielectric constant than the antenna. Two
options can be used to excite the radiating element: a direct connection with a via hole
or a slot. We shall see the simulation results using a via hole combined with a particular
shape for the slot. The antennas previously studied with “internal ports” were fed using a
microstrip line designed onto a 254 um thick RO3006 substrate with € = 6.5. A via hole was
introduced to connect the microstrip to the center of the bowtie, and the coupling between
the microstrip and the antenna was optimized using a slot geometry with the shape of a
St. Andrew cross, designed on the ground plane of the feeding microstrip. Passing close
to the antenna edges, the electric field appears better coupled instead of using conven-
tional circular or rectangular slots. A few antennas have been studied for possible GPS
frequency applications.
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Figure 10. Configurations and spectrum (in dB) of the Sierpiriski bowties. Simulation by Microwave

Office 17.1.

An array makes a natural implementation of single radiating elements, primarily to

obtain improvements in the power handling and antenna gain. In this case, triangles or

shapes like triangles can be arranged to obtain more complicated structures [62]. While the

bowtie is suitable for preliminary information because of its straightforward structure, an

array needs a proper feeding network to be studied, accounting for the initial information

on the single elements [63,64]. The above consideration implies that the heuristic approach

used with internal ports to evaluate the behavior of single triangles fails for a structure that

includes more elements. For this reason, bowties are studied in this section, accounting for
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feeding using a 50 ohm microstrip placed on a substrate on the opposite side of the radiator
and with a via hole connecting the feeding line to the central position of the antenna.
Of course, this approach requires a different formulation and definition of the boundary
conditions. In a 2.5D simulation typical of the AXIEM simulation environment for the
software Microwave Office release 17.1 distributed by AWR-CADENCE, an additional
metal plane with a finite size has been included to provide the ground for the microstrip.
Specifically, a 330 um wide microstrip, designed onto a RO3006 substrate with ¢ = 6.5,
tand = 0.002 and thickness t = 254 um, is used to excite the antennas, with a via hole passing
through the ground plane with a diameter equal to the microstrip width and an external
hole in the ground with a diameter doubled compared to the microstrip width.

Front Side

Figure 11. Front and side view of the radiation pattern for the CO configuration at 26 GHz. The black
profile is a schematic of the transversal size of the antenna, while the colors represent the normalized
intensity of the power emitted by the radiator, from the maximum value (green) to the lowest (red
and pink).

Front Side

Figure 12. Front and side view of the radiation pattern for the C1 configuration at 20.3 GHz. black
lines are the front and side schematic representation of the antenna size, while the colors indicate
the normalized power radiated from the antenna; green on the top is the maximum value, while the
other colors measure a decreasing intensity (red and pink).
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Four antennas were simulated, also accounting for details of the packaging, designed

as a metal box surrounding the antennas and electrically matched with the internal ground

planes using via holes. The antennas have the same internal complexity studied for

the ones excited using an internal port, but a different stack-up with a thick RO5880

(2 x 3.175 mm, i.e., a superposition of two standard values for this material) and a 0.254 mm

thick RO3006 hosting on the backside the feeding microstrip and metallized at the interface

with the antenna substrate. A 10 mm separation was imposed between the microstrip plane

and the metal ground of the antenna packaging.

The four simulated antennas are shown in Figure 13, while Figure 14 gives the res-

onance curves, and the resonance frequencies are labeled. All the simulations were per-

, and the same boundary conditions and size

formed using Microwave Office release 17

for the antennas, changing the internal complexity of the Sierpiniski triangles forming

the bowtie.
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Figure 13. Four antennas were simulated by Microwave Office to study the resonance properties of a

structure suitable for immediate GPS applications, including a feeding microstrip line and a metal

packaging, with a 10 mm separation from the bottom side of a metal box. The edge length is 5.66 cm.

The St. Andrew Cross used to feed the antennas is visible below the radiating elements. The yellow

color represents the top of the structure, where the antenna has been manufactured, while external

black color is the frame of the metal box hosting the antenna. The central black line is the microstrip

feeding antenna manufactured on the back side of the substrate. The four circles on the corners are

the screws fixing the antenna in the metal box.
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Figure 14. Resonance response of the simulated antennas, namely four bowties with Sierpifiski
geometry having internal complexity of C0O, C1, C2, and C3, respectively.

From the analysis of Figure 14, it is evident that a modulation of the frequency is
possible by changing the Cn-complexity, even if an optimization is still needed, accounting
for the variation of the metal border interfacing the feeding line. The best coupling condition
is obtained when the triangle has a homogeneously filled edge. In contrast, a decrease in
the coupling efficiency is recorded when the fragmentation of the edge is imposed, and
inhomogeneities in the electric field between the triangle and the feeding structure are
caused. Nevertheless, a good response is expected up to C2 complexity, while C3 needs
further improvements. It is worth noting the decrease in the resonance frequency with an
increase in internal complexity, thus providing shape-dependent frequency tuning.

Three breadboards were manufactured to demonstrate the expected response for the
most promising configurations, i.e., CO and C1, coupled by a cross and a via hole to the
microstrip feeding. Additionally, a mixed structure was created to verify the steering effect
introduced by this specific combination because of the non-symmetric configuration of the
triangular radiators in the bow-tie arrangement. The three experimentally tested antennas
are shown in Figure 15.

In Figure 16, the radiation pattern at resonance for the manufactured antennas is
plotted, providing evidence of an almost overlapping radiation pattern at the experimental
resonance frequencies for each antenna. However, for COC1, there is a 20-degree shift of
the maximum due to the asymmetry of the chosen configuration.

In Figure 17, the resonance for C0 and C1 is plotted as a function of frequency, demon-
strating the trend in obtaining a decrease in the resonance frequency for the first level of
complexity but also the necessity to improve the feeding system when a different Cn is
considered. An additional resonance mode is also measured for C1 at lower frequencies.
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C0C1

Figure 15. Antennas CO (on the upper-left corner), C1 (on the upper-right corner), and COC1
(lower-left corner) were experimentally tested. They were manufactured according to the materials
and parameters used for the simulations, i.e., Rogers substrates RO5880 (¢ = 2.2) and RO3006

(e =6.5).
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Figure 16. Radiation pattern for the three experimentally measured antennas at resonance: C0, C1,
and COC1.
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Figure 17. Comparison between the experimentally measured antennas C0 and C1.

4.3. Resonators

The same fractal configurations used to present antenna applications are suitable for
resonating planar structures. Planar filters fed by a coplanar waveguide configuration
(CPW) based on triangles have been studied in [20]. In alternative, this section will present
some examples of resonators for notch filters fed by microstrips.

Moreover, a possible interpretation in terms of metamaterial structures has been
discussed in [65].

Following the same idea, simulations of microstrip-excited Sierpiriski triangles will be
analyzed in this section. The planar structure is now minded for planar signal processing.
Unlike antennas, the high-frequency signal must not be radiated; instead, the substrate has
a high dielectric constant to confine the electromagnetic field along the propagation path. A
standard configuration is proposed here using a 525 um thick high-resistivity silicon wafer,
for which a 420 pm wide microstrip is utilized to get a 50-ohm impedance for the feeding
line. For the sake of simplicity, we shall use the same triangles previously introduced to
propose K-band antennas with an edge 6 mm long.

Figure 18 shows the simulated structures, with a 5 pm thick metallization shape
suitable to be manufactured by photolithography on the Si substrate, followed by ordinary
electroplating. For completeness, asymmetric and symmetric configurations have been
studied to show the best response regarding the excited modes and their electrical matching.
Figure 19 shows the simulated spectrum for the asymmetric and symmetric structures.

Compared to the CPW excited resonators, where the separation from the central
conductor, i.e., the separation between the microwave path and the side coupled resonating
structure, was also 50 um, some results are confirmed, with deeper notches when the
symmetric device is considered. Nevertheless, asymmetric configurations also achieve
acceptable performance, which must be considered when spatial occupancy is limited.

It is worth noting that it is easier to electrically match the microstrip-fed band-stop
structure in comparison with the coplanar excitation 20, with a very low loss for the mi-
crostrip transducer outside the resonance peaks. The selectivity of the entire triangle CO
compared to the multi-resonance of the C1-C2-C3 structures gives another exciting charac-
teristic of the modes in the investigated band. Table 1 shows the frequency position and
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separation for all the simulated devices in the asymmetric and symmetric configurations
within the X-band.

C0 asymmetric C1 asymmetric
: f 1l g
C2 asymmetric C3 asymmetric
o T ‘1 T2+
CO0 symmetric C1 symmetric
T T
C2 symmetric C3 symmetric

Figure 18. Simulated resonating structures. (above) The four asymmetric configurations are shown.
(below) The four symmetric ones are seen. The blue line is the feeding microstrip, 50 um from the
triangle edge. The metallization is always 5 um.

When two peaks close to each other are present, the more intense one is chosen.
Further investigations are needed to interpret the simulated spectrum correctly.

Since all the proposed configurations are also suitable for higher-frequency resonances,
this can also help in different microwave bands.

Still, the spectrum is more difficult to interpret or manipulate for a specific application.
This is evident in Figure 20, which shows the predicted full spectrum of the C3 configuration,
with promising results, especially in the K-band.
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Figure 19. Simulated response of the Sy; trasmission parameter (in dB) for the asymmetric and
symmetric resonators. Modes excited up to the X-Band (12 GHz) are shown in both cases. Simulation
by Microwave Office 17.1.

Table 1. Frequency of resonance for the simulated structures (asymmetric and symmetric). CO
symmetric and asymmetric do not show additional resonances in the same frequency range.

Resonance Frequencies [GHz]

Resonator

Fres1 Fres2 Difference

C0 asym 9.46 --- -

C1 asym 4.42 7.98 3.56
C2 asym 5.66 9.22 3.56
C3 asym 7.18 8.94 1.76
C0 sym 9.62 — -—

Clsym 4.34 7.82 3.48
C2sym 5.54 9.30 3.76

C3 sym 7.38 8.98 1.60
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Figure 20. Simulated spectral response for the 521 parameter (in dB) of the C3 resonator in the
symmetric configuration up to 32 GHz.

So far, Sierpiniski triangles can easily be considered for a multi-resonance response,
and a proper, non-canonical reorganization of the internal triangles, even renouncing
the classical equilateral shape for the building block, can help calibrate the desired
resonance frequencies.

4.4. Further Considerations, Limitations, and Future Work for Microwave Applications

The long-term debate about triangular shapes, dating back to the Greek philosophers,
is not marked by a consistent effort to use triangles for any particular purpose. Nevertheless,
despite the various fields inspired by this shape, triangles have been successfully utilized
in a wide range of applications. Initially, the quest for an elementary shape to understand
reality was the primary guideline followed by Plato, which inspired many pre-scientists,
alchemists, and philosophers for centuries. Their work involved the reinterpretation and
evolution of the original knowledge system, based on the elements of air, water, earth, and
fire. Subsequently, triangles were employed for simple decorations (e.g., mosaics), plotting
purposes (e.g., chemical phase state representations), and structural strength (e.g., 3D
printing) and as basic shapes in the mesh for electromagnetic simulations. Notably, the last
two examples illustrate how triangles serve as building blocks not only for knowledge but
also for technological applications, creating a long connection between ancient philosophers
and modern scientists. Resonators and antennas have long been a focus in high-frequency
engineering, and we discussed how to leverage this distinctive shape to achieve more
compact notch filters and radiators that can be easily arranged in arrays. The potential
to enhance triangle properties through unconventional geometry, such as that proposed
by Sierpiniski, has opened a new perspective on modulating the response of a microwave
subsystem for engineering purposes. The current work, which utilizes planar resonators
and antennas, demonstrates the feasibility of devices based on the Sierpifiski geometry
in single configurations, implementing feeding mechanisms for both types of devices. A
second level of complexity is represented in the case of the antennas by the utilization of
the bowtie configuration, which combines two Sierpifiski triangles that are, in principle,
different from one another. Further work is in progress, both theoretical and experimental,
to predict the spectrum involving the increase in complexity of the internal subdivisions,
and to determine the conditions for the optimal coupling of the resonators and antennas
with the feeding system, as well as the edge-by-edge coupling to achieve arrays of filters and
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antennas. A specific point to be discussed soon will be the opportunity to use microstrips
or CPW to obtain the best electrical results and integration capabilities.

5. Conclusions

The triangle figure, with a focus on the equilateral one and its Sierpifiski variants,
has been discussed in this contribution from different points of view. It was always
an intriguing figure, animating discussions in philosophy and mathematics about its
relationships with the elemental constituents of reality. A few examples of Cosmati art were
also presented to demonstrate its use in creating original and unique decorations. Then,
microwave engineering applications for planar signal processing and antennas have been
proposed with a very basic design, exhibiting promising responses in different frequency
bands. The possibility of obtaining a multi-frequency response has been stressed thanks to
the internal complexity generated by the Sierpiniski geometry. Additional non-canonical
variants of the internal geometry can adequately tailor the excited resonance modes for
specific multi-resonance applications of antennas and resonators.
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