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Abstract

Accurate prediction of natural gas production is of great significance for optimizing devel-
opment strategies, simplifying production management, and promoting decision-making.
This paper utilizes partial differentiation to effectively capture the spatiotemporal character-
istics of natural gas data and the advantages of grey prediction models. By introducing the
fractional damping accumulation operator, a new fractional order partial grey prediction
model is established. The new model utilizes partial capture of details and features in the
data, improves model accuracy through fractional order accumulation, and extends the
metadata of the classic grey prediction model from time series to matrix series, effectively
compensating for the phenomenon of inaccurate results caused by data fluctuations in the
model. Meanwhile, the principle of data accumulation is effectively expressed in matrix
form, and the least squares method is used to estimate the parameters of the model. The
time response equation of the model is obtained through multiplication transformation,
and the modelling steps are elaborated in detail. Finally, the new model is applied to the
prediction of natural gas production in Qinghai Province, China, selecting energy produc-
tion related to natural gas production, including raw coal production, oil production, and
electricity generation, as relevant variables. To verify the effectiveness of the new model,
we started by selecting the number of relevant variables, divided them into three categories
for analysis based on the number of relevant variables, and compared them with five other
grey prediction models. The results showed that in the seven simulation experiments of
the three types of experiments, the average relative error of the new model was less than
2%, indicating that the new model has strong stability. When selecting the other three types
of energy production as related variables, the best effect was achieved with an average
relative error of 0.3821%, and the natural gas production for the next nine months was
successfully predicted.

Keywords: partial grey prediction mode; fractional damping accumulation; GMC(1,N)
model; natural gas production forecasting

1. Introduction
Natural gas, as a clean source of fossil energy, is gradually becoming one of the

main sources of energy and will be an important guarantee for China’s energy strategy
and carbon emission reduction implementation for a long time [1]. Accurate forecasting
of natural gas production plays an important role in optimizing development strategies,
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streamlining production management, and facilitating decision-making [2]. Qinghai natural
gas plays an irreplaceable role in guaranteeing national energy security, promoting regional
economic development, and facilitating new energy transformation. Its abundant natural
gas resources and stable production and supply capacity have given Qinghai an important
position in the energy map of western China. Stable production and supply are important
to ensure the diversification of the national energy mix and the peaking capacity. Adequate
natural gas reserves are a key factor in achieving improved energy supply capacity and new
energy bases. Accurate gas production forecasts can provide strong support to governments
and energy companies in developing long-term energy strategies and policies.

2. Literature Review
2.1. Introduction to Three Types of Natural Gas Production Prediction Methods

The earliest oil and gas field production prediction methods in China were life cycle
models, including generalized Weng’s model and Hubbert’s model, etc., which regarded
the cyclical change of production as a life cycle process and predicted it by constructing
the corresponding cyclic model. For example, Chen [3] extended Weng’s prediction model
by using probabilistic statistics to derive a generalized model for predicting oil and gas
field production, which extended the practical value of Weng’s prediction. Chen et al. [4]
proposed a model modification method based on multiplicative and exponential correction
coefficients for predicting natural gas production for the traditional Weng and Weibull
production prediction models. In the subsequent development, a variety of conventional
decline analysis methods (e.g., Arps hyperbolic decline, Arps harmonic decline, extended
exponential decline, and DUONG decline) have been widely applied to the prediction
of natural gas production, and these methods have demonstrated good results in the
prediction of the decline period of gas wells. For example, Chen et al. [5] conducted a
detailed comparative analysis of the prediction results of four commonly used decreasing
prediction models at different production stages. Despite the success of the above methods
in natural gas production forecasting, there are some limitations of these models. They are
prone to the phenomenon of multiple solutions, which reduces the fitting accuracy, while
the model itself is not easy to generalize, and these factors may limit the effectiveness of
their application to some extent.

The second category of traditional time-series forecasting methods is based on sta-
tistical principles of modelling the course, direction, and trend of a time series, which is
then extended and extrapolated to achieve the forecasting objective. For example, Wang
et al. [6] used the ARIMA prediction method to predict natural gas production, and the pre-
diction results have high accuracy and are consistent with the change in coalbed methane
production. Manowska et al. [7] combined an autoregressive sliding average summation
model with a long and short-term memory neural network (LSTM) to construct a combined
model for integrated forecasting of natural gas production. Chen et al. [8] constructed a
low-cost adsorbed natural gas content estimation model based on geological parameters
using a statistical learning approach, which can effectively estimate natural gas production.
Smajla et al. [9] statistically analysed the natural gas consumption data and forecasted the
natural gas consumption data in a short time. Kani et al. [10] developed a smooth transition
regression model from a regression model and assessed and forecasted the demand for
natural gas in Iran and obtained better results. All of the above statistical methods have
yielded good results in natural gas production and consumption forecasting. However,
general statistical learning prediction methods make it difficult to obtain parameters to
meet the current needs of daily oilfield development, which affects the prediction accuracy
of the model to a certain extent.
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With the arrival of the big data era, oil and gas field automation technology is devel-
oping rapidly; machine learning and deep learning methods provide an effective way for
the digital construction of oil and gas fields. At the same time, they have also become the
current hotspot of research in various fields [11]. As a machine learning technique, artificial
neural networks have shown great potential in unconventional oil and gas production. For
example, Ji et al. [12] who used random forests for shale gas production prediction, solved
the problem of poor accuracy of production prediction of multi-stage horizontal wells in
shale gas wells under idealised models. Qiao et al. [13] constructed a combinatorial model
based on wavelet transform for predicting the monthly production variance of natural gas
in the United States. Zhu et al. [14] combined adaptive threshold denoising (ATD) with BP
neural networks to predict shale gas well production based on reservoir modification data.
In addition, Zha et al. [15] combined a neural network model (CNN) with a long short-term
memory neural network (LSTM) to build a combined CNN-LSTM model to predict the
monthly production of natural gas. And̄elković and Bajatović [16] used a machine learning
approach to predict urban natural gas consumption from weather prediction data. These
above cases of applying methods such as neural networks have yielded good results in
natural gas production forecasting and can converge quickly to an acceptable solution.
However, their drawbacks are that the direction of convergence may have some deviation,
the stability is relatively poor, and the computational efficiency needs to be improved.

2.2. Research on Grey Prediction Model and Its Application in Natural Gas Production Prediction

The grey prediction has become a research hotspot in recent years because of its simple
structure, and easy calculation, and is well-suited for small sample system research [17,18].
With the development over the past 40 years, the grey prediction model has been widely ex-
panded from the initial GM(1,1) model through model parameter optimization [19], model
structure expansion [20], and model modelling mechanism analysis [21–23], and has been
successfully applied to a variety of domains such as transportation [24], environment [25],
energy [26], and economy [27]. In natural gas production and consumption prediction,
grey prediction also plays a significant role. For example, Han et al. [28] combined the grey
model with the support vector machine to predict shale gas production, which provided
reliable data for the later evaluation of the decreasing law of gas wells and the calculation of
the recoverable reserves of gas wells. Zeng et al. [29] established a grey model with a new
structure from the classical Verhulst model and applied it to national natural gas production
forecasting. Ma et al. [30] combined the kernel ridges of generalized Morlet wavelets with
the depth of a grey prediction model to establish a combined model and applied it to
natural gas production forecasting. Ding [31] established a new adaptive intelligent grey
model and applied it to natural gas demand forecasting in China. Hu et al. [32] established
a new multi-order time-lagged fractional grey model using the fractional order principle
for the phenomenon of time-lagged natural gas consumption in the Chinese manufactur-
ing industry. These are the development processes of the grey forecasting model and its
application to natural gas production, demand, and consumption, which have achieved
better results.

2.3. Research Limitations, Contributions, and Structure of This Paper

However, both univariate and multivariate grey models use time series as inputs.
The metadata used in the literature [28–32] for applications in natural gas systems is time
series in the form of vectors, which is processed in such a way that the spatio-temporal
characteristics of the data are relatively weakly represented. To more fully represent the
spatio-temporal properties of the data, the input data can be expanded from vector form
to matrix form. Duan and Wang [33] established a partial differential grey prediction
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model for the spatio-temporal nature of traffic flow, which was successfully applied to
short-time traffic flow prediction. Zhou and Duan [11] used the volatility of traffic flow
data to establish a grey prediction model with second-order partial differentiation from the
nature of traffic flow and applied it to short-time traffic flow.

At the same time, the grey multivariate model mentioned above for natural gas
production forecasting takes into account relevant variables that are factors other than
energy production. Aiming at the spatio-temporal characteristics of natural gas production
data and combining the advantages of high prediction accuracy of the grey GMC(1,N)
model, this paper establishes a new partial grey prediction model. To verify the validity
of the new model, the monthly data of natural gas production in Qinghai, China, as well
as related serial data of oil, raw coal production, and electricity production are used as
inputs. The results show that the new model exhibits good stability and its prediction is
much better than the other five grey prediction models. The contributions of this paper are
as follows:

1. Given the spatiotemporal and nonlinear characteristics of natural gas production data,
this paper utilizes the advantages of partial differentiation to effectively capture details
and features in the data. Fractional order damping accumulation can improve model
accuracy and effectively compensate for the phenomenon of inaccurate results caused
by data fluctuations. A new fractional order multivariate biased grey prediction
model is established.

2. In terms of model structure, the classic grey prediction model is extended from
ordinary differential form to partial differential form, and the fractional order accu-
mulation principle is integrated into the partial grey prediction model to expand the
structure of the classic grey prediction model. This improvement enables the model
to more effectively capture various complex features such as time and space of data,
improve model accuracy, and greatly broaden the structural framework and scope of
application of the grey prediction model.

3. In terms of application practice, this study applies the newly constructed partial grey
prediction to the field of natural gas production forecasting. Based on the selection
of oil, raw coal, and electricity production as the relevant series, the validity of the
model is analysed in-depth through seven specific cases in three categories. The
results showed that the average relative error of the new model was around 1% in all
seven cases, and its prediction performance is significantly better than the other five
grey prediction models. In addition, the model has successfully achieved an accurate
forecast of natural gas production for the next nine months.

The rest of the paper is organized as follows: Section 3 develops a fractional order
multivariate partial grey model and examines the parameter estimation and modelling
steps of the model. Section 4 analyses the validity of the new model using data on natural
gas and three types of energy production in Qinghai, China. Section 5 applies the new
model to the problem of forecasting monthly natural gas production and analyses the
results. Finally, Section 6 gives the conclusions of the study and proposes relevant policies.

In the full text, the different abbreviations are for different grey prediction models.
Abbreviations and their meanings are listed in Table 1.
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Table 1. Abbreviations of the models.

Number Abbreviation Definition

1 GM(1,1) Grey model with one variable and one first order equation
2 GMC(1,N) A first-order n-variable grey differential equation model [34]
3 GM(1,N) Grey model of the first order with n variables [35]
4 GMVM(1,N) The grey multivariable Verhulst model [36]
5 NSGM(1,N) The new structured grey model [37]
6 NMGM(1,N) Novel multi-variable grey model [38]

7 DPGMC(1,N,ζ) The damping fractional order multivariate partial grey
prediction model

3. Modelling Partial Grey Differential Equations in First-Order
Individual Variables
3.1. Grey Differential Equation Model with First-Order Individual Variables

This section introduces the damping accumulation generation operator into the partial
grey prediction model, establishes a new fractional order partial grey prediction model,
estimates the model process parameters, optimizes the fractional order using the particle
swarm optimization algorithm, solves the time response equation of the model, and obtains
the modelling steps.

Definition 1. Let X(0)
1 = (x(0)1 (1), x(0)1 (2), . . . , x(0)1 (n)) be a sequence of system character-

istic data, X(0)
r = (x(0)r (1), x(0)r (2), . . . , x(0)r (n)), r = 2, 3, . . . , N is the sequence of relevant

factors. X(1)
r is the accumulative generation sequence (1-AGO) of the original sequence X(0)

r ,
r = 1, 2, . . . , N, Z(1)

1 is the mean sequence generated by consecutive neighbours of X(1)
1 , establish-

ing the whitening equation:

dX(1)
1 (t)
dt

+ aX(1)
1 (t) = b2X(1)

2 (t) + b3X(1)
3 (t) + . . . + bN X(1)

N (t) + u (1)

is a first-order n-variable grey differential equation model, denoted GMC(1,N). Where a is called the
system development coefficient, u is the grey control parameter of the system, br(r = 2, 3, . . . , N) is
the driving coefficient, and brX(1)

r (t)(r = 2, 3, . . . , N) is the driving term.
Let

f (t) = b2X(1)
2 (t) + b3X(1)

3 (t) + . . . + bN X(1)
N (t) + u (2)

The model solution for the system 1-AGO sequence can be obtained as

X̂(1)
1 (t) = X(1)

1 (1)e−b1(t−1) +
∫ t

1
e−b1(t−τ) f (τ)dτ (3)

The convolution integral term
∫ t

1 e−b1(t−τ) f (τ)dτ in Equation (7) can be approximated
by the convolution method and the trapezoidal norm in the discrete domain, and the
following model solution is obtained from the initial value X̂(1)

1 (1) = X(1)
1 (1) = X(0)

1 (1).
This leads to the following theorem.

Theorem 1. Solution of the GMC(1,N) model

X̂(1)
1 (t) ∼= X(0)

1 (1)e−b1(t−1) +
1
2

e−b1(t−1) f (1) +
1
2

f (t) +
t−1

∑
τ=2

[e−b1(t−τ) f (τ)] (4)
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Doing a cumulative generative operation on X̂(1)
1 (t) gives the X̂(0)

1 (t) whitened value, which
is the predicted value.{

X̂(0)
1 (1) = X̂(1)

1 (1)

X̂(0)
1 (t) = X̂(1)

1 (t)− X̂(1)
1 (t− 1), t = 2, 3, . . . , n

(5)

3.2. Modelling Partial Grey Differential Equations in First-Order Individual Variables

Definition 2. Assuming there is a non-negative equidistant sequence
X(0) =

{
x(0)(1), x(0)(2), . . . , x(0)(n)

}(
x(0)(k) > 0

)
, X(ξ) =

{
x(ξ)(1), x(ξ)(2), . . . , x(ξ)(n)

}
is an ξ order damping accumulation sequence of X(0).

The damping accumulation generation operator (ξ − AGO) is defined as

x(ξ)(k) =
k

∑
i=1

(
x(0)(i)
ξ i−1

)
, k = 1, 2, . . . , n, ξ ∈ (0, 1] (6)

The matrix representation of ξ order damping accumulation is


x(ξ)(1)
x(ξ)(2)
x(ξ)(3)

...
x(ξ)(n)

 =



1 0 0 . . . 0
1 1

ξ 0 . . . 0
1 1

ξ
1
ξ2 . . . 0

...
...

...
. . .

...
1 1

ξ
1
ξ2 . . . 1

ξn−1




x(0)(1)
x(0)(2)
x(0)(3)

...
x(0)(n)

 (7)

Firstly, the definition of matrix sequence is given as follows

Definition 3. Let X(0)
r (r = 1, 2, . . . , N) be a matrix sequence formed by n m×m order matrices

X(0)
1 = (X(0)

1 (1), X(0)
1 (2), . . . , X(0)

1 (n))
X(0)

2 = (X(0)
2 (1), X(0)

2 (2), . . . , X(0)
2 (n))

...

X(0)
N = (X(0)

N (1), X(0)
N (2), . . . , X(0)

N (n))

(8)

where

X(0)
r (k) =


X(0)

r(1,1)(k) X(0)
r(1,2)(k) . . . X(0)

r(1,m)
(k)

X(0)
r(2,1)(k) X(0)

r(2,2)(k) . . . X(0)
r(2,m)

(k)
...

...
. . .

...

X(0)
r(m,1)(k) X(0)

r(m,2)(k) . . . X(0)
r(m,m)

(k)

, (r = 1, 2, . . . , N, k = 1, 2, . . . , n)

where X(0)
r(i,j)(k) represents the values of X(0)

r (k) in rows i and columns j.



Fractal Fract. 2025, 9, 422 7 of 27

Definition 4. X(ξ)
r (r = 1, 2, . . . , N) is the damping accumulation generated sequence of the

original matrix sequence X(0)
r (r = 1, 2, . . . , N)

X(ξ)
1 = (X(ξ)

1 (1), X(ξ)
1 (2), . . . , X(ξ)

1 (n))
X(ξ)

2 = (X(ξ)
2 (1), X(ξ)

2 (2), . . . , X(ξ)
2 (n))

...

X(ξ)
N = (X(ξ)

N (1), X(ξ)
N (2), . . . , X(ξ)

N (n))

(9)

where

X(ξ)
r (k) =


X(ξ)

r(1,1)(k) X(ξ)
r(1,2)(k) . . . X(ξ)

r(1,m)
(k)

X(ξ)
r(2,1)(k) X(ξ)

r(2,2)(k) . . . X(ξ)
r(2,m)

(k)
...

...
. . .

...

X(ξ)
r(m,1)(k) X(ξ)

r(m,2)(k) . . . X(ξ)
r(m,m)

(k)

, (r = 1, 2, . . . , N, k = 1, 2, . . . , n)

X(ξ)(k) =
k
∑

i=1

(
X(0)(i)

ξ i−1

)
=



1 0 . . . 0

1
1
ξ

. . . 0

...
...

. . .
...

1
1
ξ

. . .
1

ξk−1


X(0)(k), ξ ∈ (0, 1], X(ξ)

r(i,j)(k) represents

the values of X(ξ)
r (k) in rows i and columns j.

Definition 5. Z(1)
1 is the mean sequence generated by consecutive neighbours of X(1)

1

Z(ξ)
1 = (Z(ξ)

1 (1), Z(ξ)
1 (2), . . . , Z(ξ)

1 (n)) (10)

where

Z(ξ)
1 (k) =


Z(ξ)

1(1,1)(k) Z(ξ)
1(1,2)(k) . . . Z(ξ)

1(1,m)
(k)

Z(ξ)
1(2,1)(k) Z(ξ)

1(2,2)(k) . . . Z(ξ)
1(2,m)

(k)
...

...
. . .

...

Z(ξ)
1(m,1)(k) Z(ξ)

1(m,2)(k) . . . Z(ξ)
1(m,m)

(k)

, (k = 1, 2, . . . , n)

Z(ξ)
r (k) = X(ξ)

r (k−1)+X(ξ)
r (k)

2 , (k = 2, . . . , n). Z(ξ)
1(i,j)(k) represents the values of Z(ξ)

1 (k) in
rows i and columns j.

Definition 6. Z(ξ)
1x and Z(ξ)

1y represent the horizontal and vertical partial derivative matrix sequence

of Z(ξ)
1 , respectively,

Z(ξ)
1x (k) =


Z(ξ)

1x(1,1)(k) Z(ξ)
1x(1,2)(k) . . . Z(ξ)

1x(1,m)
(k)

Z(ξ)
1x(2,1)(k) Z(ξ)

1x(2,2)(k) . . . Z(ξ)
1x(2,m)

(k)
...

...
. . .

...

Z(ξ)
1x(m,1)(k) Z(ξ)

1x(m,2)(k) . . . Z(ξ)
1x(m,m)

(k)

, (k = 2, 3, . . . , n)
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Z(ξ)
1y (k) =


Z(ξ)

1y(1,1)(k) Z(ξ)
1y(1,2)(k) . . . Z(ξ)

1y(1,m)
(k)

Z(ξ)
1y(2,1)(k) Z(ξ)

1y(2,2)(k) . . . Z(ξ)
1y(2,m)

(k)
...

...
. . .

...

Z(ξ)
1y(m,1)(k) Z(ξ)

1y(m,2)(k) . . . Z(ξ)
1y(m,m)

(k)

, (k = 2, 3, . . . , n)

Z(ξ)
1x(i,j)(k) represents the values of Z(ξ)

1x (k) in rows i and columns j. Z(ξ)
1x(i,j), Z(ξ)

1y(i,j)
satisfy the following property:

Property 1. Let Z(ξ)
1x(i,j), Z(ξ)

1y(i,j) be the values of Z(ξ)
1x , Z(ξ)

1y respectively, in rows i and columns j
and satisfy the following two conditions:

(1) Z(ξ)
1x(i,j)(k) = Z(ξ)

1(i,j)(k)− Z(ξ)
1(i−1,j)(k)

(2) Z(ξ)
1y(i,j)(k) = Z(ξ)

1(i,j)(k)− Z(ξ)
1(i,j−1)(k)

Definition 7. Let X(0)
1 (k), X(ξ)

r (k), Z(ξ)
1 (k), Z(ξ)

1x (k), Z(ξ)
1y (k) as defined in 3–6, the grey deriva-

tives dx(ξ)1 (k)
dk = X(ξ)

1 (k)− X(ξ)
1 (k− 1), Z(ξ)

r (k) is the background value of the sequence, which can

be obtained using the trapezoidal formula Z(ξ)
r (k) = X(ξ)

r (k−1)+X(ξ)
r (k)

2 ,

X(ξ)
1 (k)− X(ξ)

1 (k− 1) + aZ(ξ)
1x (k) + bZ(ξ)

1y (k) + cZ(ξ)
1 (k) =

N

∑
r=2

brX(ξ)
r (k) + µ (11)

is the damping fractional order multivariate partial grey prediction model, abbreviated as
DPGMC(1,N,ζ), where, a, b, c, b2, . . . bN are the parameter estimation variable, and µ is the m×m
constant matrix:

µ =


µ11 µ12 . . . µ1m

µ21 µ22 . . . µ2m
...

...
. . .

...
µm1 µm1 . . . µmm


dX(ξ)

1 (t)
dt

+ a
∂X(ξ)

1 (t)
∂x

+ b
∂X(ξ)

1 (t)
∂y

+ cX(ξ)
1 (t) = b2X(ξ)

2 (t) + b3X(ξ)
3 (t) + . . . + bN X(ξ)

N (t) + u (12)

is the whitening equation of DPGMC (1,N,ζ).

Theorem 2. Least squares calculation of parameter vectors for the DPGMC(1,N,ζ)

p̂ = [a, b, c, b2, . . . bN , µ11, . . . µmm]
T

satisfies
p̂ = (BT B)

−1
BTY (13)

where

B =



−Z(ξ)
1x(1,1)(2) −Z(ξ)

1y(1,1)(2) −Z(ξ)
1(1,1)(2) X(ξ)

2(1,1)(2) . . . X(ξ)
N(1,1)(2) 1 0 . . . 0

−Z(ξ)
1x(1,2)(2) −Z(ξ)

1y(1,2)(2) −Z(ξ)
1(1,2)(2) X(ξ)

2(1,2)(2) . . . X(ξ)
N(1,2)(2) 0 1 . . . 0

...
...

...
...

...
...

...

−Z(ξ)
1x(i,j)(k) −Z(ξ)

1y(i,j)(k) −Z(ξ)
1(i,j)(k) X(ξ)

2(i,j)(k) . . . X(ξ)
N(i,j)(k) 0 0 . . . 0

...
...

...
...

...
...

...

−Z(ξ)
1x(m,m)

(n) −Z(ξ)
1y(m,m)

(n) −Z(ξ)
1(m,m)

(n) X(ξ)
2(m,m)

(n) . . . X(ξ)
N(m,m)

(n) 0 0 . . . 1


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Y =



X(ξ)
1(1,1)(2)− X(ξ)

1(1,1)(1)

X(ξ)
1(1,2)(2)− X(ξ)

1(1,2)(1)
...

X(ξ)
1(i,j)(k)− X(ξ)

1(i,j)(k− 1)
...

X(ξ)
1(m,m)

(n)− X(ξ)
1(m,m)

(n− 1)


Proof. Referring to the proof process of Theorem 1 in the literature [11]. �

Theorem 3. The time response sequence of the DPGMC(1,N,ζ) is as follows:

X̂(ξ)
1 (k) =

N
∑

r=2
brX(ξ)

r (k) + µ− aZ(ξ)
1x (k)− bZ(ξ)

1y (k)−
(

1
2

c− 1
)

X(ξ)
1 (k− 1)

1
2

c + 1

Perform the inverse operation of ξ − AGO, the cumulative reduction value can be obtained as

X̂(0)
1 (k) =

 X(0)
1 (1) k = 1(

X̂(ξ)
1 (k)− X̂(ξ)

1 (k− 1)
)

ξk−1 k = 2, 3, . . .
(14)

Proof. Carrying Z(ξ)
r (k) = X(ξ)

r (k−1)+X(ξ)
r (k)

2 into Equation (11) gives

X(ξ)
1 (k)− X(ξ)

1 (k− 1) + aZ(ξ)
1x (k) + bZ(ξ)

1y (k) + c
X(ξ)

r (k− 1) + X(ξ)
r (k)

2
=

N

∑
r=2

brX(ξ)
r (k) + µ

then(
1 +

1
2

c
)

X(ξ)
1 (k) =

N

∑
r=2

brX(ξ)
r (k) + µ−

(
1
2

c− 1
)

X(ξ)
1 (k− 1)− aZ(ξ)

1x (k)− bZ(ξ)
1y (k)

so

X̂(ξ)
1 (k) =

N
∑

r=2
brX(ξ)

r (k) + µ− aZ(ξ)
1x (k)− bZ(ξ)

1y (k)−
(

1
2

c− 1
)

X(ξ)
1 (k− 1)

1
2

c + 1

Therefore, the reduction is reduced to

X̂(0)
1 (k) =

 X(0)
1 (1) k = 1(

X̂(ξ)
1 (k)− X̂(ξ)

1 (k− 1)
)

ξk−1 k = 2, 3, . . .

Theorem 3 is proven. �

Due to the DPGMC (1,N,ζ) using accumulation before restoration, the accumulation
sequence helps smooth the data and reduce fluctuations. In the parameter-solving stage,
the objective function is usually to minimise the fitting error of the cumulative sequence.
However, the goal of modelling is to minimise the fitting error of the raw data. Therefore,
the errors introduced during the restoration process cannot be ignored. The following
theorem can explain the relationship between the accuracy of model prediction and the
cumulative order ζ.
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Theorem 4. X(ξ)
1 =

{
X(ξ)

1 (1), X(ξ)
1 (2), . . . , X(ξ)

1 (k)
}

is the damping accumulation generated

sequence for the main X(0)
1 column, and X̂(0)

1 =
{

X̂(0)
1 (1), X̂(0)

1 (2), . . . , X̂(0)
1 (k)

}
is the fitted

restoration value for the main X(0)
1 sequence. If

∣∣∣X(ξ)
1 (k)− X̂(ξ)

1 (k)
∣∣∣ < ε, (k = 1, 2, . . . , n), then∣∣∣X(0)

1 (k)− X̂(0)
1 (k)

∣∣∣ < 2εξk−1.

Proof. Because X(ξ)
1 (1) = X(0)

1 (1),
∣∣∣X(ξ)

1 (1)− X(0)
1 (1)

∣∣∣ < ε, ∀k ∈ {1, 2, . . . , n},∣∣∣X(ξ)
1 (k)− X̂(ξ)

1 (k)
∣∣∣ < ε,

then∣∣∣X(0)
1 (k)− X̂(0)

1 (k)
∣∣∣ =

∣∣∣(X(ξ)
1 (k)− X(ξ)

1 (k− 1)
)

ξk−1 −
(

X̂(ξ)
1 (k)− X̂(ξ)

1 (k− 1)
)

ξk−1
∣∣∣

=
∣∣∣(X(ξ)

1 (k)− X(ξ)
1 (k− 1)− X̂(ξ)

1 (k) + X̂(ξ)
1 (k− 1)

)
ξk−1

∣∣∣
≤
(∣∣∣X(ξ)

1 (k)− X̂(ξ)
1 (k)

∣∣∣+ ∣∣∣X(ξ)
1 (k− 1)− X̂(ξ)

1 (k− 1)
∣∣∣)∣∣∣ξk−1

∣∣∣
≤ 2εξk−1.

Theorem 4 is proven. �

When ζ is small, especially ξ < 1, the restoration error is 2εξk−1 < ε. Therefore, to
reduce the restoration error, the range of ζ is set to [0, 1].

The damping accumulation generation operator in the DPGMC(1,N,ζ) model sets
different weights to distinguish the influence of new and old data on the predicted val-
ues. The data after damping accumulation is more in line with the trend of exponential
growth, ensuring the calculation accuracy of the DPGMC(1,N,ζ) model. This ensured the
computational accuracy of the DPGMC(1,N,ζ) model.

3.3. Modelling Steps and Modelling Process for the DPGMC(1,N,ζ)

From the sequence definition in Section 2.2, the definition and parameter estimation
of the DPGMC(1,N,ζ) model, and the time response equation, the main modelling steps of
the model are given as follows:

Step 1. Input raw data. By Definition 3, input the matrix sequence of raw data, where
X(0)

1 is the main sequence, X(0)
2 , X(0)

3 , . . . , X(0)
N are the correlation sequence.

Step 2. Processing the matrix sequence. Definition 2 calculates the damping accu-
mulation to generate the matrix sequence X(ξ)

i (i = 1, 2, . . . , N), Definition 5 calculates the

adjacent mean of X(0)
1 to generate the matrix sequence Z(ξ)

1 , and Definition 6 calculates the

horizontal and vertical partial derivative matrix sequences Z(ξ)
1x and Z(ξ)

1y of Z(ξ)
1 .

Step 3. Estimate the parameters and build the model. Use Theorem 2 to construct the
matrix B, Y and compute the values of the parameter estimation vectors p̂ = (BT B)−1BTY,
using the particle swarm optimization algorithm to perform optimisation calculation on ζ.

Step 4. Calculate the simulated values. Calculate the simulated value X̂(0)
1 using

equation Theorem 3.
Step 5. Calculation error. Mean Absolute Percentage Error (MAPE), Mean Absolute

Error (MAE), Mean Square Error (MSE), R-squared (R2), and Root Mean Squared Error

(RMSE), are used to test prediction performance. X(0)
1 (k) is the average value of the real

data. Their definitions are as follows:

MAPE =
1
n
(

m

∑
k=1

∣∣∣X(0)
1 (k)− X̂(0)

1 (k)
∣∣∣

X(0)
1 (k)

)× 100%, k = 1, 2, . . . , n (15)
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MAE =
1
n

n

∑
k=1

∣∣∣X(0)
1 (k)− X̂(0)

1 (k)
∣∣∣, k = 1, 2, . . . , n (16)

MSE =
1
n

n

∑
k=1

(
X(0)

1 (k)− X̂(0)
1 (k)

)2

, k = 1, 2, . . . , n (17)

R2 = 1−

n
∑

i=1

(
X(0)

1 (k)− X̂(0)
1 (k)

)2

n
∑

i=1

(
X(0)

1 (k)− X(0)
1 (k)

)2 (18)

RMSE =
√

MSE =

√
1
n

n

∑
k=1

(
X(0)

1 (k)− X̂(0)
1 (k)

)2
(19)

Step 6. Forecasting future trends. If the simulation result passes the error test, the
future is predicted using the sequences predicted by the GM(1,1) and Verhulst models
brought into the new model. If the simulation results do not pass the error test, return to
Step 1.

According to the above steps, the DPGMC(1,N,ζ) flowchart is as shown in Figure 1.

Figure 1. Flowchart of the DPGMC(1,N,ζ).

4. Effectiveness Analysis of DPGMC(1,N,ζ)
As the main enterprise in natural gas production in the Qinghai region, Qinghai

Oilfield’s output continues to grow. With the promotion and use of clean energy by the
country, natural gas, as a clean and highly efficient energy source, is also actively promoting



Fractal Fract. 2025, 9, 422 12 of 27

the utilisation and development of natural gas in the Qinghai region to achieve sustainable
economic and social development.

The data on the production of major energy products in Qinghai Province in this
section are all sourced from the National Bureau of Statistics (http://data.stats.gov.cn/).
To better reveal the seasonal changes and fluctuations in energy use, this section selects
the production data of natural gas, crude oil, raw coal, and power generation in Qinghai
Province from March to November each year from 2021 to 2023, as shown in Table 2.

Table 2. Data from March to November each year in Qinghai Province from 2021 to 2023.

Month Natural Gas Production Crude Oil Production Raw Coal Production Electric Power Generation

Mar. 2021 5.6 19.9 76.4 65.6
Apr. 2021 5.4 19.2 83.8 84.4
May. 2021 5.5 19.9 88.3 70.3
Jun. 2021 5.3 19.2 102.9 72.9
Jul. 2021 5.4 19.9 86.4 89.6

Aug. 2021 4.7 19.9 84.0 84.5
Sep. 2021 4.4 19.2 98.9 67.1
Oct. 2021 4.7 19.9 116.7 72.3
Nov. 2021 5.1 19.2 111.5 77.3
Mar. 2022 5.2 20.0 67.5 73.4
Apr. 2022 5.0 19.4 53.5 78.8
May. 2022 5.2 20.0 42.1 70.2
Jun. 2022 5.0 19.4 73.3 77.7
Jul. 2022 4.8 20.0 75.1 82.8

Aug. 2022 5.1 20.0 75.2 71.2
Sep. 2022 4.9 19.3 74.9 55.5
Oct. 2022 5.1 19.9 76.5 64.0
Nov. 2022 4.8 19.3 97.1 70.9
Mar. 2023 5.1 19.5 67.0 76.7
Apr. 2023 4.9 19.2 70.7 76.7
May. 2023 5.1 20.0 63.4 73.1
Jun. 2023 4.9 19.5 60.9 75.9
Jul. 2023 4.8 20.0 63.7 82.0

Aug. 2023 5.0 20.3 67.3 82.0
Sep. 2023 4.9 19.4 70.5 70.2
Oct. 2023 5.1 19.9 69.3 68.7
Nov. 2023 4.9 19.3 73.2 72.6

Table 2 presents data on natural gas production (Unit: Billion cubic meters), raw coal
production (Unit: 10,000 tons), crude oil production (Unit: 10,000 tons), and electric power
generation (Unit: Billion kilowatt hours). To verify the effectiveness of the DPGMC(1,N,ζ)
model, the original sequence of natural gas production is denoted as X(0)

1 , and the original
sequences of raw coal production, crude oil production, and power generation are denoted as
X(0)

2 , X(0)
3 , X(0)

4 , respectively. The natural gas production forecast sequence is denoted as X̂(0)
1 .

This section uses the data in Table 2 to simulate and predict natural gas production in
Qinghai Province from three different perspectives. Due to the strong correlation between
natural gas production and the other three types of production, the related sequences are
divided into three categories for research: The first category is to analyse three independent
related variables: raw coal, crude oil, and power generation. The second category is to
combine raw coal, crude oil, and power generation in pairs to form different correlation
sequence combinations for analysis. The third category is to analyse raw coal, crude oil,
and power generation as three related sequences. To compare the effectiveness of the
DPGMC(1,N,ζ) model, five multivariate grey prediction models were selected for compar-
ison, including the GMC(1,N) model, GM(1,N) model, GMVM(1,N) model, NSGM(1,N)
model, and NMGM(1,N) model, to demonstrate the effectiveness of DPGMC(1,N,ζ). To
illustrate the comparison results between the model and other methods, LSTM [39] is
introduced as the comparison model. As this article mainly compares and explains the grey
prediction model, only Case 1 is compared, which is specifically explained here.

http://data.stats.gov.cn/
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Explanation: Convert the columns of data for natural gas, raw coal, and crude oil in
Table 2 into three 3× 3 order matrices. Due to the construction method of grey prediction
models and the characteristics of data processing, the first data point in the original data
is usually not simulated. In the DPGMC(1,N,ζ), when the input raw data is in matrix
form, the data in the first matrix (3× 3 order) will also not be simulated. To maintain data
consistency and ensure accuracy, error analysis was conducted only for a total of 18 data
points from March to November in 2022 and 2023 when calculating MAPE (with four
decimal places retained in this article). For the other five comparison models, only the
errors of the last 18 data points are calculated.

4.1. Analysis of the Effectiveness of the First Category DPGMC(1,N,ζ)

This section focuses on the main characteristic sequence of natural gas production and
conducts effectiveness analysis on three independent related variables: raw coal, crude oil,
and power generation. It is divided into three cases, as follows:

Case 1. Natural gas as the main sequence, and raw coal as the related sequence
Selecting natural gas and raw coal data from March to November each year from 2021

to 2023 as the modelling objects, 18 natural gas data from 2022 to 2023 were used to test
the effectiveness of the model. The simulated values and MAPE of DPGMC(1,N,ζ) and the
comparative model were calculated, and the results are shown in Table 3. According to
Table 3, trend charts are drawn for the predicted data of six models as shown in Figure 2.

Table 3. Comparison results of six models for natural gas and raw coal in Case 1.

Month X(0)
1

X̂(0)
1

DPGMC(1,1,ζ)
ζ = 0.0178 GMC(1,1) GM(1,1) GMVM(1,1) NSGM(1,1) NMGM(1,1) LSTM

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000 4.5860
Apr. 2021 5.4 5.4000 5.3221 1.9171 5.3003 5.4420 5.6043 5.9785
May. 2021 5.5 5.5000 5.3027 4.7737 5.2531 5.3151 5.3132 4.5090
Jun. 2021 5.3 5.3000 5.2666 6.8709 5.2309 5.1924 5.1285 6.2710
Jul. 2021 5.4 5.4000 5.2309 6.6953 5.2087 5.1218 5.0441 4.5351

Aug. 2021 4.7 4.7000 5.2106 6.6617 5.2019 5.0701 4.9989 6.5843
Sep. 2021 4.4 4.4000 5.1794 7.5430 5.2437 5.0061 4.9543 4.9369
Oct. 2021 4.7 4.7000 5.1194 8.6381 5.3428 4.9279 4.9063 6.3443
Nov. 2021 5.1 5.1000 5.0469 8.2215 5.4148 4.8746 4.8854 4.8361
Mar. 2022 5.2 5.2211 5.0144 5.1461 5.2924 4.9015 4.9293 6.2642
Apr. 2022 5.0 4.9813 5.0312 4.0544 5.2393 4.9446 4.9720 5.0140
May. 2022 5.2 5.2277 5.0703 3.1641 5.1728 4.9963 5.0109 6.1109
Jun. 2022 5.0 5.0008 5.0937 5.2229 5.4071 4.9881 4.9935 5.1525
Jul. 2022 4.8 4.8233 5.0891 5.2986 5.4849 4.9789 4.9813 6.0543

Aug. 2022 5.1 5.0711 5.0827 5.2712 5.5599 4.9715 4.9743 5.0913
Sep. 2022 4.9 4.9099 5.0763 5.2260 5.6388 4.9661 4.9706 5.9866
Oct. 2022 5.1 5.1209 5.0687 5.3188 5.7489 4.9594 4.9665 5.1058
Nov. 2022 4.8 4.8377 5.0421 6.7273 6.1502 4.9219 4.9381 5.9004
Mar. 2023 5.1 5.2085 5.0224 4.6431 5.8386 4.9395 4.9599 5.1154
Apr. 2023 4.9 5.0095 5.0253 4.8921 5.9923 4.9475 4.9678 5.7983
May. 2023 5.1 5.2083 5.0312 4.3842 5.9578 4.9653 4.9815 5.1734
Jun. 2023 4.9 5.0088 5.0457 4.2087 5.9939 4.9831 4.9924 5.7112
Jul. 2023 4.8 4.8096 5.0604 4.3999 6.1411 4.9928 4.9952 5.2856

Aug. 2023 5.0 5.1101 5.0699 4.6470 6.3259 4.9948 4.9922 5.5445
Sep. 2023 4.9 4.9103 5.0738 4.8668 6.5241 4.9913 4.9864 5.3726
Oct. 2023 5.1 5.1103 5.0760 4.7834 6.6227 4.9904 4.9846 5.4490
Nov. 2023 4.9 4.8110 5.0761 5.0521 6.8713 4.9837 4.9787 5.4437
MAPE (%) 0.9507 2.6117 10.6134 18.2251 2.3439 2.2724 11.0028

MAE 0.0474 0.1288 0.5293 0.9009 0.1174 0.1137 0.5439
MSE 0.0040 0.0232 0.6023 1.0985 0.0188 0.0174 0.4775
R2 0.7563 −0.4029 −35.4246 −65.4012 −0.1382 −0.0490 −27.8616

RMSE 0.0635 0.1523 0.7763 1.0481 0.1372 0.1317 0.6910
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Figure 2. Comparison trend of six models for natural gas and raw coal in Case 1.

From Table 3, the four indicators of the DPGMC (1,1,ζ) model are optimal among
the seven models. The MAPE of the four models PGMC (1,1), GMC (1,1), NSGM (1,1),
and NMGM (1,1) are all below 5%; LSTM has a performance of 11.0028%, which is better
than GMVM (1,1) and close to GM (1,1). Among them, the MAPE of DPGMC(1,1,ζ) is
0.9507%, which is much better than the simulation results of the other six models. The R2

of the DPGMC (1,1,ζ) model is 0.7563, which is similar to 1. The overall fitting effect of the
model is good, while other models show R2 < 0, indicating that other models may have
overfitting. Figure 2 shows the trend charts of seven models, from which it can be more
intuitively seen that the original data overlaps with the DPGMC(1,1,ζ) simulation data,
while the trends of other models have significant differences compared to the original data.

Case 2. Natural gas as the main sequence, and crude oil as the related sequence
Selecting natural gas and crude oil data from March to November each year from 2021

to 2023 as modelling objects, the simulated values and MAPE of DPGMC(1,N,ζ) and the
comparative model were calculated, and the results are shown in Table 4. According to
Table 4, draw trend charts for the predicted data of six models as shown in Figure 3.

Figure 3. Comparison trend of six models for natural gas and crude oil in Case 2.
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Table 4. Comparison results of six models for natural gas and crude oil in Case 2.

Month X(0)
1

X̂(0)
1

DPGMC(1,1,ζ)
ζ = 0.9000 GMC(1,1) GM(1,1) GMVM(1,1) NSGM(1,1) NMGM(1,1)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 4.8564 4.2758 5.2770 5.3342 5.5273
May. 2021 5.5 5.5000 4.8806 5.1209 5.2388 5.2693 5.2927
Jun. 2021 5.3 5.3000 4.8934 4.8830 5.2080 5.1501 5.1076
Jul. 2021 5.4 5.4000 4.9088 5.0590 5.1871 5.1268 5.0621

Aug. 2021 4.7 4.7000 4.9387 5.0589 5.1739 5.1087 5.0372
Sep. 2021 4.4 4.4000 4.9378 4.8810 5.1647 5.0257 4.9672
Oct. 2021 4.7 4.7000 4.9427 5.0589 5.1702 5.0304 4.9850
Nov. 2021 5.1 5.1000 4.9408 4.8810 5.1738 4.9651 4.9386
Mar. 2022 5.2 5.1762 4.9484 5.0843 5.1980 4.9933 4.9773
Apr. 2022 5.0 4.9555 4.9545 4.9318 5.2151 4.9560 4.9504
May. 2022 5.2 5.1586 4.9641 5.0843 5.2552 4.9863 4.9838
Jun. 2022 5.0 4.9320 4.9665 4.9318 5.2833 4.9506 4.9540
Jul. 2022 4.8 4.7799 4.9732 5.0843 5.3409 4.9821 4.9858

Aug. 2022 5.1 5.0143 4.9938 5.0843 5.3951 5.0065 5.0032
Sep. 2022 4.9 4.8891 4.9859 4.9064 5.4345 4.9564 4.9566
Oct. 2022 5.1 5.0602 4.9820 5.0589 5.5176 4.9767 4.9792
Nov. 2022 4.8 4.8149 4.9742 4.9064 5.5675 4.9334 4.9434
Mar. 2023 5.1 5.0503 4.9595 4.9572 5.6506 4.9195 4.9398
Apr. 2023 4.9 4.8916 4.9433 4.8810 5.7183 4.8792 4.9138
May. 2023 5.1 5.0821 4.9503 5.0843 5.8455 4.9267 4.9637
Jun. 2023 4.9 4.9338 4.9594 4.9572 5.9153 4.9143 4.9510
Jul. 2023 4.8 4.7403 4.9704 5.0843 6.0462 4.9540 4.9841

Aug. 2023 5.0 5.0638 5.0019 5.1606 6.1770 5.0143 5.0264
Sep. 2023 4.9 4.8218 5.0031 4.9318 6.2298 4.9723 4.9774
Oct. 2023 5.1 5.0698 4.9978 5.0589 6.3844 4.9890 4.9906
Nov. 2023 4.9 4.7660 4.9863 4.9064 6.4587 4.9429 4.9497
MAPE (%) 0.9192 2.3101 1.7746 14.4265 2.0889 2.1594

MAE 0.0458 0.1156 0.0878 0.7132 0.1048 0.1081
MSE 0.0031 0.0178 0.0147 0.7169 0.0154 0.0158
R2 0.8147 −0.0752 0.1140 −42.3333 0.0684 0.0422

RMSE 0.0554 0.1334 0.1211 0.8467 0.1241 0.1259

From the data in Table 4, it can be concluded that the average absolute percentage
error (MAPE) of the GMVM (1,1) model is 14.4265%, while the MAPE values of the other
five models are all below 5%. Specifically, the MAPE of the DPGMC(1,1,ζ) model is only
0.9192%, indicating that the predictive performance of the DPGMC(1,1,ζ) model is the best.
Additionally, its R2 is also close to 1, indicating a good overall fitting effect. In the trend
charts of the six models shown in Figure 3, it can be more intuitively seen that the original
data overlaps with the DPGMC(1,1,ζ) simulation data. The GMVM (1,1) simulation data
shows a linear upward trend, which is significantly different from the fluctuation of the
original data. The trend charts of other models also have significant differences from the
original data.

Case 3. Natural gas as the main sequence, and electric power generation as the
related sequence.

Selecting natural gas and power generation data from March to November each
year from 2021 to 2023 as the modelling objects, the simulated values and MAPE of
DPGMC(1,N,ζ) and the comparative model were calculated, and the results are shown in
Table 5. According to Table 5, trend charts are drawn for the predicted data of six models
as shown in Figure 4.
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Table 5. Comparison results of six models for natural gas and electric power generation in Case 3.

Month X(0)
1

X̂(0)
1

DPGMC(1,1,ζ)
ζ = 0.7151 GMC(1,1) GM(1,1) GMVM(1,1) NSGM(1,1) NMGM(1,1)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 5.3818 3.7821 5.2706 5.3673 5.5417
May. 2021 5.5 5.5000 5.3835 5.3309 5.2321 5.3095 5.3183
Jun. 2021 5.3 5.3000 5.4212 5.2045 5.2021 5.2453 5.1753
Jul. 2021 5.4 5.4000 5.4070 6.1805 5.1916 5.0820 5.0129

Aug. 2021 4.7 4.7000 5.3547 5.7842 5.1833 4.9836 4.9419
Sep. 2021 4.4 4.4000 5.3628 4.5831 5.1605 5.0195 4.9826
Oct. 2021 4.7 4.7000 5.4103 4.9346 5.1671 5.0141 4.9818
Nov. 2021 5.1 5.1000 5.4318 5.2750 5.1877 4.9764 4.9578
Mar. 2022 5.2 5.1762 5.4507 5.0087 5.1964 4.9718 4.9621
Apr. 2022 5.0 4.9577 5.4680 5.3772 5.2405 4.9321 4.9392
May. 2022 5.2 5.1451 5.4945 4.7903 5.2394 4.9571 4.9664
Jun. 2022 5.0 4.9336 5.5285 5.3021 5.3119 4.9275 4.9468
Jul. 2022 4.8 4.7812 5.5279 5.6501 5.3952 4.8696 4.9113

Aug. 2022 5.1 5.0219 5.5444 4.8586 5.3794 4.8998 4.9454
Sep. 2022 4.9 4.8754 5.6423 3.7872 5.3050 5.0288 5.0394
Oct. 2022 5.1 5.0449 5.7727 4.3672 5.4103 5.0769 5.0542
Nov. 2022 4.8 4.8085 5.8687 4.8381 5.5285 5.0699 5.0303
Mar. 2023 5.1 5.0635 5.9352 5.2339 5.6617 5.0256 4.9890
Apr. 2023 4.9 4.8939 5.9897 5.2339 5.7493 4.9898 4.9648
May. 2023 5.1 5.1080 6.0590 4.9882 5.7938 4.9846 4.9676
Jun. 2023 4.9 4.9283 6.1373 5.1793 5.9263 4.9618 4.9561
Jul. 2023 4.8 4.7343 6.1965 5.5955 6.1299 4.9027 4.9205

Aug. 2023 5.0 5.0432 6.2420 5.5955 6.2570 4.8548 4.8997
Sep. 2023 4.9 4.8406 6.3247 4.7903 6.1621 4.8944 4.9433
Oct. 2023 5.1 5.0804 6.4550 4.6880 6.2352 4.9366 4.9758
Nov. 2023 4.9 4.7653 6.5900 4.9541 6.4264 4.9448 4.9765
MAPE (%) 0.8624 18.4241 7.9274 14.1216 2.3354 2.3263

MAE 0.0430 0.9126 0.3934 0.6975 0.1170 0.1164
MSE 0.0028 1.0040 0.2438 0.6851 0.0193 0.0174
R2 0.8307 −59.6868 −13.7351 −41.0168 −0.1651 −0.0527

RMSE 0.0529 1.0020 0.4937 0.8337 0.1388 0.1320

Figure 4. Comparison trend of six models for natural gas and electric power generation in Case 3.

From Table 5, it can be seen that the MAPE of DPGMC(1,1,ζ), NSGM (1,1), and NMGM
(1,1) models are all below 5%, with DPGMC(1,1,ζ) having a MAPE of only 0.8624%, indi-
cating a significantly better predictive performance than the other five models. Although
the MAPE of NSGM (1,1) and NMGM (1,1) are both below 5%, their R2 is much smaller
than 1, and the overall simulation effect of DPGMC(1,1,ζ) is better. In the trend charts
of the six models shown in Figure 4, it can more intuitively be observed that the original
data almost completely overlaps with the DPGMC(1,1,ζ) simulation data. In contrast, the
lines simulated by GMC (1,1) and GMVM (1,1) models both show a linear upward trend,
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which is significantly different from the fluctuations of the original data. The fluctuation
amplitude of the GM (1,1) model is relatively large, while the fluctuation amplitudes of the
NSGM (1,1) and NMGM (1,1) models are relatively small, but they still cannot fully match
the fluctuations of the original data.

4.2. Effectiveness Analysis of the Second Category DPGMC(1,N,ζ)

This section focuses on natural gas production as the main characteristic sequence
and combines raw coal, crude oil, and power generation in pairs to form different related
sequence combinations for effectiveness analysis. It is divided into three cases, as follows:

Case 4. Natural gas as the main sequence, with raw coal and crude oil as related sequences.
Selecting natural gas, raw coal, and crude oil data from March to November each

year from 2021 to 2023 as the modelling objects, 18 natural gas data from 2022 to 2023
were used to test the effectiveness of the model. The simulated values and MAPE of
DPGMC(1,N,ζ) and the comparative model were calculated, and the results are shown in
Table 6. According to Table 6, trend charts are drawn for the predicted data of six models
as shown in Figure 5.

Table 6. Comparison results of six models with raw coal and crude oil as related sequences in Case 4.

Month X(0)
1

X̂(0)
1

DPGMC(1,2,ζ)
ζ = 0.8734 GMC(1,2) GM(1,2) GMVM(1,2) NSGM(1,2) NMGM(1,2)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 5.0003 4.2089 5.3210 5.4388 5.6012
May. 2021 5.5 5.5000 4.9732 5.2639 5.2600 5.3175 5.3160
Jun. 2021 5.3 5.3000 4.9329 5.0249 5.2614 5.1875 5.1240
Jul. 2021 5.4 5.4000 4.9091 5.1014 5.2382 5.1229 5.0459

Aug. 2021 4.7 4.7000 4.9198 5.0895 5.2459 5.0756 5.0043
Sep. 2021 4.4 4.4000 4.8962 4.9931 5.3993 5.0034 4.9510
Oct. 2021 4.7 4.7000 4.8589 5.2409 5.6992 4.9324 4.9104
Nov. 2021 5.1 5.1000 4.8177 5.0514 5.9142 4.8718 4.8820
Mar. 2022 5.2 5.2356 4.8299 5.0367 5.4608 4.9050 4.9324
Apr. 2022 5.0 4.9979 4.8788 4.8302 5.2478 4.9413 4.9684
May. 2022 5.2 5.2430 4.9390 4.9192 4.9400 4.9979 5.0126
Jun. 2022 5.0 5.0176 4.9660 4.9219 5.6115 4.9845 4.9901
Jul. 2022 4.8 4.8393 4.9707 5.0719 5.7166 4.9821 4.9849

Aug. 2022 5.1 5.0903 4.9883 5.0724 5.8207 4.9800 4.9818
Sep. 2022 4.9 4.9238 4.9804 4.9056 5.9710 4.9662 4.9689
Oct. 2022 5.1 5.1334 4.9744 5.0548 6.1166 4.9638 4.9694
Nov. 2022 4.8 4.8470 4.9489 5.0084 7.2429 4.9200 4.9349
Mar. 2023 5.1 5.1215 4.9303 4.9163 6.0758 4.9346 4.9550
Apr. 2023 4.9 4.9847 4.9268 4.8626 6.3920 4.9350 4.9571
May. 2023 5.1 5.1087 4.9451 5.0178 5.9908 4.9608 4.9803
Jun. 2023 4.9 4.9503 4.9705 4.8881 5.9415 4.9758 4.9883
Jul. 2023 4.8 4.7979 4.9933 5.0192 6.0961 4.9925 4.9977

Aug. 2023 5.0 5.0994 5.0289 5.1067 6.3659 5.0055 5.0036
Sep. 2023 4.9 4.9263 5.0318 4.9089 6.8499 4.9947 4.9884
Oct. 2023 5.1 5.1124 5.0261 5.0215 6.8014 4.9970 4.9893
Nov. 2023 4.9 4.8727 5.0130 4.8978 7.3875 4.9822 4.9752
MAPE (%) 0.6530 2.6438 2.2076 23.3142 2.3165 2.2437

MAE 0.0325 0.1326 0.1101 1.1527 0.1161 0.1122
MSE 0.0017 0.0244 0.0205 1.7536 0.0185 0.0171
R2 0.8970 −0.4751 −0.2371 −105.0031 −0.1202 −0.0317

RMSE 0.0413 0.1562 0.1431 1.3242 0.1361 0.1306

From Table 6, it can be seen that the DPGMC(1,2,ζ) model has the best performance,
with a MAPE of only 0.6530%. In contrast, GMVM (1,2) performs the worst. The values of
the other four types of MAPE are around 2%. Overall, DPGMC(1,2,ζ) has a good fitting
effect. The trend charts of the six models in Figure 5 more intuitively reflect the effectiveness
of the models. In the lower part of Figure 5, it can be observed there are significant
differences between the GMVM (1,2) and the original data. Furthermore, in the enlarged
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image of Figure 5, it can be seen that the DPGMC(1,2,ζ) model almost completely overlaps
with the original data, while other models have some differences from the original data.

Case 5. Natural gas as the main sequence, with raw coal and electric power generation
as related sequences

Selecting natural gas, raw coal, and power generation data from March to November
each year from 2021 to 2023 as the modelling objects, the simulated values and MAPE
of DPGMC(1,N,ζ) and the comparative model were calculated. The results are shown in
Table 7. According to Table 7, trend charts are drawn for the predicted data of six models
as shown in Figure 6.

From Table 7, it can be seen that from these five indicators, it is evident that
DPGMC(1,2,ζ) has a good effect. The MAPE of DPGMC(1,2,ζ), NSGM (1,2), and NMGM
(1,2) models are all below 5%. Among them, the MAPE of DPGMC(1,2,ζ) is only 1.1135%,
which is much better than the simulation results of the other five models. In contrast, the
MAPE values of GMC (1,2) and GMVM (1,2) models are higher, at 17.6279% and 22.2456%,
respectively. The trend charts of the six models in Figure 6 more intuitively reflect the effec-
tiveness of the models. It can be observed that the GMC (1,2) and GMVM (1,2) models have
significant differences from the original data, and from the enlarged image in Figure 6, it
can be found that the DPGMC(1,2,ζ) model overlaps with the original data. The fluctuation
amplitude of the NSGM (1,2) and NMGM (1,2) models is roughly the same as that of the
original data, but other models have certain differences from the original data.

Table 7. Comparison results of six models with related sequences of raw coal and electric power
generation in Case 5.

Month X(0)
1

X̂(0)
1

DPGMC(1,2,ζ)
ζ = 0.6213 GMC(1,2) GM(1,2) GMVM(1,2) NSGM(1,2) NMGM(1,2)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 5.4719 3.3740 5.3189 5.4456 5.6010
May. 2021 5.5 5.5000 5.4715 5.5741 5.2632 5.3542 5.3438
Jun. 2021 5.3 5.3000 5.4834 5.8037 5.2615 5.2487 5.1658
Jul. 2021 5.4 5.4000 5.4570 6.2538 5.2171 5.0943 5.0156

Aug. 2021 4.7 4.7000 5.4158 5.8223 5.2126 4.9984 4.9470
Sep. 2021 4.4 4.4000 5.4096 5.0243 5.3805 4.9945 4.9539
Oct. 2021 4.7 4.7000 5.4072 5.5266 5.6485 4.9426 4.9209
Nov. 2021 5.1 5.1000 5.3732 5.7196 5.8065 4.8801 4.8884
Mar. 2022 5.2 5.2598 5.3676 4.9060 5.4310 4.9025 4.9281
Apr. 2022 5.0 5.0225 5.4018 5.0076 5.1809 4.9089 4.9466
May. 2022 5.2 5.2562 5.4628 4.3851 4.9910 4.9732 5.0006
Jun. 2022 5.0 5.0385 5.5195 5.2172 5.5049 4.9486 4.9736
Jul. 2022 4.8 4.8683 5.5293 5.5186 5.5480 4.8995 4.9371

Aug. 2022 5.1 5.1159 5.5509 4.8901 5.7919 4.9207 4.9574
Sep. 2022 4.9 4.9391 5.6322 4.0335 6.1672 5.0212 5.0268
Oct. 2022 5.1 5.1402 5.7367 4.5169 6.2535 5.0562 5.0358
Nov. 2022 4.8 4.8658 5.8016 5.1721 7.1353 5.0236 4.9950
Mar. 2023 5.1 5.1670 5.8501 5.0770 5.9739 5.0025 4.9803
Apr. 2023 4.9 5.0092 5.9097 5.1274 6.2233 4.9808 4.9678
May. 2023 5.1 5.1714 5.9840 4.8325 6.0322 4.9909 4.9809
Jun. 2023 4.9 4.9893 6.0738 4.9505 5.8608 4.9874 4.9811
Jul. 2023 4.8 4.8118 6.1524 5.3199 5.8574 4.9489 4.9562

Aug. 2023 5.0 5.1194 6.2194 5.3689 6.1158 4.9133 4.9376
Sep. 2023 4.9 4.9502 6.3112 4.7718 6.8594 4.9428 4.9661
Oct. 2023 5.1 5.1529 6.4382 4.6740 6.9831 4.9762 4.9898
Nov. 2023 4.9 4.8786 6.5692 4.9389 7.2853 4.9781 4.9858
MAPE (%) 1.1135 17.6279 6.8397 22.2456 2.4293 2.3169

MAE 0.0555 0.8728 0.3408 1.1007 0.1216 0.1158
MSE 0.0039 0.9352 0.1844 1.6421 0.0193 0.0170
R2 0.7623 −55.5327 −10.1480 −98.2617 −0.1689 −0.0291

RMSE 0.0627 0.9671 0.4294 1.2814 0.1391 0.1305
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Figure 5. Comparison trend of six models with raw coal and crude oil as related sequences in Case 4.

Figure 6. Comparison trend of six models with raw coal and electric power generation in Case 5.

Case 6. Natural gas as the main sequence, with crude oil and electric power generation
as related sequences.

Selecting natural gas, crude oil, and power generation data from March to November
each year from 2021 to 2023 as modelling objects, the simulated values and MAPE of
DPGMC(1,N,ζ) and the comparative model were calculated, and the results are shown in
Table 8. According to Table 8, trend charts are drawn for the predicted data of six models
as shown in Figure 7.
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Table 8. Comparison results of six models with correlation sequences between crude oil and electric
power generation in Case 6.

Month X(0)
1

X̂(0)
1

DPGMC(1,2,ζ)
ζ = 0.4363 GMC(1,2) GM(1,2) GMVM(1,2) NSGM(1,2) NMGM(1,2)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 5.0016 4.2726 5.2852 5.3840 5.5468
May. 2021 5.5 5.5000 4.9679 5.0992 5.2560 5.3742 5.3696
Jun. 2021 5.3 5.3000 4.9701 4.8934 5.2252 5.2243 5.1514
Jul. 2021 5.4 5.4000 4.9009 5.2378 5.1370 5.0864 5.0153

Aug. 2021 4.7 4.7000 4.8372 5.1756 5.0911 5.0140 4.9633
Sep. 2021 4.4 4.4000 4.8439 4.8180 5.1755 4.9744 4.9398
Oct. 2021 4.7 4.7000 4.8912 5.0271 5.1695 5.0204 4.9900
Nov. 2021 5.1 5.1000 4.8846 4.9421 5.0545 4.8971 4.8953
Mar. 2022 5.2 5.2054 4.8899 5.0613 5.1767 4.9652 4.9702
Apr. 2022 5.0 4.9861 4.8863 5.0020 5.0031 4.8739 4.9017
May. 2022 5.2 5.1713 4.9067 5.0224 5.3136 4.9719 4.9931
Jun. 2022 5.0 4.9622 4.9145 4.9886 5.0297 4.8884 4.9221
Jul. 2022 4.8 4.8054 4.8807 5.1757 4.8970 4.8819 4.9305

Aug. 2022 5.1 5.0522 4.9063 5.0346 5.4149 4.9704 5.0046
Sep. 2022 4.9 4.8996 4.9980 4.6977 6.2207 5.0496 5.0474
Oct. 2022 5.1 5.0727 5.0891 4.9261 6.1322 5.1496 5.1046
Nov. 2022 4.8 4.8351 5.0995 4.8850 5.7034 5.0726 5.0164
Mar. 2023 5.1 5.1278 5.0490 4.9973 5.4233 4.9968 4.9558
Apr. 2023 4.9 4.9455 4.9837 4.9348 5.3394 4.8825 4.8781
May. 2023 5.1 5.1576 4.9718 5.0577 6.0024 4.9555 4.9616
Jun. 2023 4.9 4.9664 4.9686 4.9876 5.6272 4.9067 4.9273
Jul. 2023 4.8 4.7729 4.9363 5.1660 5.2298 4.9035 4.9384

Aug. 2023 5.0 5.0747 4.9219 5.2285 5.3558 4.9525 4.9861
Sep. 2023 4.9 4.8775 4.9295 4.8974 6.4082 4.9332 4.9624
Oct. 2023 5.1 5.1000 4.9708 4.9833 7.0872 5.0156 5.0252
Nov. 2023 4.9 4.7903 4.9833 4.9057 6.3451 4.9484 4.9582
MAPE (%) 0.7072 2.5213 2.4869 13.3693 2.1880 2.0976

MAE 0.0352 0.1263 0.1233 0.6642 0.1096 0.1048
MSE 0.0020 0.0237 0.0275 0.7785 0.0174 0.0155
R2 0.8785 −0.4299 −0.6649 −46.0577 −0.0531 0.0615

RMSE 0.0448 0.1538 0.1660 0.8823 0.1320 0.1246

Figure 7. Comparison trend of six models with crude oil and power generation in Case 6.

From Table 8, it can be seen that the MAPE of the DPGMC(1,2,ζ) model is 0.7072%,
indicating the best performance. In contrast, the GMVM (1,2) model has the worst perfor-
mance, with a MAPE value of up to 13.3693%. The other four grey models have similar
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effects, with MAPE values around 2%. Meanwhile, based on these four indicators, it is
evident that DPGMC(1,2,ζ) has a good effect. The trend charts of the six models in Figure 7
more intuitively reflect the effectiveness of the models. It can be observed from the figures
that there are significant differences between the GMVM (1,2) model and the original data.
In the enlarged image in Figure 7, it can be seen that the trend of the DPGMC(1,2,ζ) model
is consistent with the original data. Although the GMC (1,2), NSGM (1,2), and NMGM (1,2)
models have roughly the same trend as the original data, the data simulated by the GM (1,2)
model fluctuates greatly and has significant differences from the original data.

4.3. Effectiveness Analysis of the Third Category DPGMC(1,N,ζ)

Case 7. Selecting the natural gas production from March to November each year from
2021 to 2023 as the main feature sequence, the effectiveness analysis was conducted on the
three related sequences of raw coal, crude oil, and electric power generation. The simulated
values and MAPE of DPGMC(1,N,ζ) and the comparative model were calculated, and the
results are shown in Table 9. According to Table 9, trend charts are drawn for the predicted
data of six models as shown in Figure 8.

Table 9. Comparison results of six models related to the third type of raw coal, crude oil, and electric
power generation sequences.

Month X(0)
1

X̂(0)
1

DPGMC(1,3,ζ)
ζ = 0.9900 GMC(1,3) GM(1,3) GMVM(1,3) NSGM(1,3) NMGM(1,3)

Mar. 2021 5.6 5.6000 5.6000 5.6000 5.6000 5.6000 5.6000
Apr. 2021 5.4 5.4000 5.0734 4.2107 5.3169 5.4243 5.5829
May. 2021 5.5 5.5000 5.0184 5.2433 5.2642 5.3824 5.3694
Jun. 2021 5.3 5.3000 4.9901 5.0157 5.2599 5.2324 5.1535
Jul. 2021 5.4 5.4000 4.9095 5.1678 5.2066 5.0926 5.0165

Aug. 2021 4.7 4.7000 4.8462 5.1325 5.1962 5.0145 4.9596
Sep. 2021 4.4 4.4000 4.8345 4.9569 5.3640 4.9728 4.9356
Oct. 2021 4.7 4.7000 4.8469 5.2098 5.6078 4.9779 4.9483
Nov. 2021 5.1 5.1000 4.8149 5.0582 5.7339 4.8635 4.8710
Mar. 2022 5.2 5.2238 4.8217 5.0325 5.4092 4.9267 4.9451
Apr. 2022 5.0 4.9915 4.8455 4.8682 5.1519 4.8759 4.9181
May. 2022 5.2 5.2089 4.8953 4.9115 5.0251 4.9765 5.0058
Jun. 2022 5.0 5.0082 4.9183 4.9453 5.4484 4.9108 4.9473
Jul. 2022 4.8 4.8182 4.8896 5.1092 5.4635 4.8955 4.9408

Aug. 2022 5.1 5.0906 4.9118 5.0540 5.7654 4.9629 4.9931
Sep. 2022 4.9 4.8925 4.9881 4.8234 6.2331 5.0395 5.0370
Oct. 2022 5.1 5.1072 5.0653 5.0028 6.2924 5.1176 5.0764
Nov. 2022 4.8 4.8299 5.0644 4.9896 7.0310 5.0450 4.9984
Mar. 2023 5.1 5.0779 5.0188 4.9363 5.9176 4.9909 4.9609
Apr. 2023 4.9 4.9408 4.9698 4.8857 6.1296 4.9064 4.9083
May. 2023 5.1 5.1072 4.9679 5.0140 6.0482 4.9669 4.9718
Jun. 2023 4.9 4.9078 4.9770 4.9071 5.8288 4.9364 4.9527
Jul. 2023 4.8 4.7862 4.9588 5.0580 5.7566 4.9298 4.9554

Aug. 2023 5.0 5.0431 4.9532 5.1390 6.0054 4.9595 4.9823
Sep. 2023 4.9 4.9376 4.9596 4.8976 6.8459 4.9506 4.9712
Oct. 2023 5.1 5.1095 4.9930 4.9954 7.0521 5.0171 5.0183
Nov. 2023 4.9 4.8625 5.0012 4.8984 7.2136 4.9670 4.9705
MAPE (%) 0.3821 2.6781 2.3823 21.5136 2.2198 2.1290

MAE 0.0189 0.1343 0.1188 1.0649 0.1111 0.1064
MSE 0.0005 0.0265 0.0229 1.5653 0.0177 0.0157
R2 0.9683 −0.5996 −0.3883 −93.6203 −0.0716 0.0533

RMSE 0.0229 0.1627 0.1513 1.2511 0.1331 0.1251
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Figure 8. Trend chart of DPGMC(1,3,ζ) sequence related to the third type of raw coal, crude oil, and
electric power generation (A–F).

It can be seen from Table 9 that the DPGMC(1,3,ζ) model performs the best, with
an average absolute percentage error (MAPE) of only 0.3821%. In contrast, the GMVM
(1,3) model performed the worst, with a MAPE value of up to 21.5136%. The R2 of
DPGMC(1,3,ζ) is 0.9683, close to 1, and the MAE, MSE, and RMSE are all small, indicating
that the model has a good fitting effect. The trend charts of the six models in Figure 8 more
intuitively reflect the effectiveness of the models. It can be observed from the figure that the
DPGMC(1,3,ζ) model overlaps with the original data, and the error area is almost invisible,
indicating that its simulation accuracy is very high. However, the error regions between
other models and the original data are more obvious, indicating that their simulation
accuracy is relatively low. Therefore, Figure 8 further confirms that the simulation accuracy
of the DPGMC(1,3,ζ) model is superior to other models.

4.4. Summary of Effectiveness Analysis of Three Categories of DPGMC(1,N,ζ)

This section focuses on natural gas production as the main feature sequence. Based on
the number and types of related variables, the relevant sequences are divided into three
categories, and the effectiveness of the model is studied. From a horizontal comparison,
the results of the DPGMC(1,3,ζ) model in seven cases of three types all indicate that
its performance is far superior to the other five grey prediction models. Specifically,
the MAPE values simulated by the DPGMC(1,3,ζ) model did not exceed 2%, achieving
excellent results. This indicates that the simulation results of the partial grey prediction
model have significantly improved compared to the classical ordinary differential grey
prediction model. This is mainly because the biased grey prediction model considers the
spatiotemporal nature of the data, which has a good effect on improving the accuracy of
the model.
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From a longitudinal perspective, this article mainly uses simulation results of natural
gas production to demonstrate the effectiveness of the DPGMC(1,3,ζ) model. During this
process, raw coal production, crude oil production, and electric power generation, which are
closely related to natural gas production, are used as correlation sequences and modelled
based on the number of related variables. The results showed that with the increase of
relevant variables, the simulation accuracy of the DPGMC(1,N,ζ) model remained relatively
stable and improved to some extent. This indicates that the DPGMC(1,N,ζ) model has
strong stability and can effectively predict future natural gas production. Therefore, the
DPGMC(1,3,ζ) model and its extended form DPGMC(1,N,ζ) have high application value in
natural gas production prediction.

5. Application of DPGMC(1,N,ζ)
Based on the effectiveness analysis of the previous four sections, this section deter-

mines the optimal fitting effect of the DPGMC(1,3,ζ) model in natural gas production
prediction. Therefore, this section applies the model to predict natural gas production.
However, due to the limited number of available data, to reduce the possibility of significant
errors in subsequent predictions, it was decided to supplement the four variables of natural
gas production, raw coal production, crude oil production, and power generation with nine
data points from March to November 2020, and combine them with the modelling objects
in Section 4.3 to obtain the complete original dataset from 2020 to 2023. Subsequently, the
DPGMC(1,3,ζ) model was used to predict the dataset, with the prediction results rounded
to four decimal places. In data prediction, the GM (1,1) model and the Vurhulst model
are first used to make preliminary predictions on the data, and these predicted values are
used as inputs and combined into the DPGMC(1,3,ζ) model. The final predicted value
is calculated based on the parameters obtained by DPGMC(1,3,ζ). The predicted results
are shown in Table 10. To compare more intuitively with the previous data, a natural gas
production forecast chart for 2020–2024 is drawn here, as shown in Figure 9.

Figure 9. Prediction of natural gas production in Qinghai Province from March to November 2024.

Table 10. Prediction of natural gas production in Qinghai Province from March to November 2024.

Month 3 4 5 6 7 8 9 10 11

Nature Gas
Production 7.6703 7.0827 7.3308 7.3726 7.2158 7.1693 7.2791 7.5310 7.3757
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From the predicted results in Table 10 and Figure 9, it can be further observed that
the natural gas production in Qinghai Province in 2024 is relatively stable, and its trend is
consistent with the previous four years, but overall, it has slightly increased compared to
the previous four years. According to statistical data, the overall natural gas production
in Qinghai Province has remained at a relatively high level in recent years. With the
continuous advancement of natural gas exploration technology, extraction efficiency has
been improved, and new natural gas reserves have also been discovered, making the
Qaidam Basin one of the main natural gas enrichment areas in China. Due to the national
strategy of vigorously developing a green ecological economy, the demand for natural
gas as a clean energy source continues to increase. As an important energy base in the
northwest region, the increase in natural gas production in Qinghai Province will help
meet market demand and promote the sustainable development of the regional economy.
Therefore, the overall natural gas production in 2024 is slightly higher than in previous
years, and although there were fluctuations in monthly production between March and
November, this is consistent with the fluctuations in data from previous years.

According to the prediction results in Table 10 and Figure 9, it can be found that there
will be a production peak in March, May, August, and October each year, which is related
to the weather in Qinghai Province and consistent with the actual situation. Therefore,
the following suggestions are proposed for the prediction of natural gas production in
Qinghai Province:

(1) Dynamically adjust production plans and conduct equipment maintenance in advance
from January to February before peak periods occur in these months to ensure that
production equipment is in optimal condition during peak months. At the same
time, utilise low season months to conduct in-depth maintenance and technological
upgrades on equipment. Improve the efficiency of natural gas exploration, control
open costs, and optimise development plans.

(2) Data-driven decision-making, dynamically guiding and adjusting production strate-
gies based on forecast results, establishing emergency data-driven mechanisms with
surrounding provinces, coordinating exports in months of excess production, and
complementing supply in months of shortage. At the same time, responding to sea-
sonal fluctuations in natural gas demand based on forecast results, enhancing natural
gas peak shaving capabilities, and ensuring stable supply.

(3) Promote the complementary and coordinated development of natural gas and other
energy sources. With the development of clean energy in Qinghai Province, the
proportion of natural gas in the energy structure may change. Therefore, the energy
structure should be adjusted promptly according to market demand, and the produc-
tion forecast results provide an important basis for the development planning and
investment decisions of the shale gas industry.

6. Conclusions
This paper combines the principle of fractional order accumulation with the partial

grey prediction model to construct a fractional order partial grey DPGMC(1,N,ζ) model
with spatiotemporal characteristics. This model extends the traditional grey prediction
model from a single time-series input metadata to a matrix-structured partial grey pre-
diction model. By introducing the damping fractional order principle and effectively
representing the fractional order principle in a matrix, the grey prediction model is im-
proved from both the model structure and the prediction object, significantly enhancing the
stability and prediction accuracy of the model. In empirical research, the DPGMC(1,N,ζ)
model was applied to predict natural gas production in Qinghai Province, China, and its
effectiveness was analysed through seven cases in three directions. The results showed
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that the MAPE of these seven cases were all below 2%, indicating that the model has high
prediction accuracy. Compared with the five classic and optimized grey prediction models,
the DPGMC(1,N,ζ) model performs much better than other models. Based on the results
of the effectiveness analysis, the best-performing case was selected to predict natural gas
production for the next nine months, and the prediction results were analysed in depth. On
this basis, we have put forward relevant policy recommendations and provided references
for the sustainable development of the natural gas industry in Qinghai Province.

The grey DPGMC(1,N,ζ) model proposed in this article demonstrates high accuracy
in natural gas prediction and effectively predicts future natural gas production, but there is
still room for improvement. For example, in the context of policy changes, technological
innovation, or market environment, establish corresponding grey prediction models, and
combine them with this model using methods with long-term forecasting to demonstrate
the reliability of the model in long-term forecasting. Apply the model to natural gas datasets
from different regions to explore their adaptability and performance differences under
different geographical, economic, or energy structure conditions, while simultaneously
discussing the performance of the model on long-term or highly volatile data, as well as
its utility and impact in strategic planning, to expand the application scope of the model.
These will be important directions for future research.
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