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Abstract

Water pollution from industrial and domestic sewage demands the accurate model-
ing of wastewater treatment processes. While the Lawrence–McCarty model is widely
used for activated sludge systems, its integer-order formulation cannot fully cap-
ture the fractal characteristics of microbial aggregation. This study proposed a frac-
tal Lawrence–McCarty model (FLMM) by incorporating local fractional derivatives
(α = ln2/ln3) to describe microbial growth dynamics on Cantor sets. Theoretical anal-
ysis reveals that the FLMM exhibits Mittag-Leffler-type solutions, which naturally generate
step-wise growth curves—consistent with the phased behavior (lag, rapid growth, and sta-
bilization) observed in real sludge systems. Compared with classical models, the FLMM’s
fractional-order structure provides a more flexible framework to represent memory effects
and spatial heterogeneity in microbial communities. These advances establish a mathemati-
cal foundation for future experimental validation and suggest potential improvements in
predicting nonlinear biomass accumulation patterns.

Keywords: local fractional derivative; activated sludge kinetics; fractal theory; microbial
growth dynamics; wastewater treatment optimization

1. Introduction
Microorganisms in natural environments (e.g., soil and water) exhibit remarkable

capabilities in oxidizing and decomposing organic matter into inorganic substances. Water
biochemical treatment leverages this process by creating optimized artificial conditions to
enhance microbial proliferation and degradation efficiency. This method primarily targets
dissolved and colloidal organic matter, as well as nutrients like nitrogen and phospho-
rus. Due to its cost-effectiveness, operational simplicity, and high treatment efficiency,
biochemical treatment is widely adopted in urban sewage and industrial wastewater
management [1].

Figure 1 shows some biological treatment technologies commonly used in applications.
The activated sludge reaction kinetics model, developed in the mid-20th century,

provides a mathematical framework to quantitatively or semi-quantitatively describe key
processes in wastewater treatment, including organic matter degradation, sludge growth,
and aerobic reactions, as functions of design parameters, operational conditions, and
environmental factors [2]. Early models, such as the Monod equation (Monod, 1949 [3])
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and its extension in the Lawrence–McCarty model (Lawrence & McCarty, 1970 [4]), laid
the foundation for modern kinetic approaches [5,6]. However, these classical models often
assume ideal conditions, neglecting complex microbial interactions and nonlinear dynamics
in real-world systems. Recent studies have addressed these limitations by integrating
advanced mathematical methods, such as fractional calculus [7] and fractal theory [8] to
better capture the irregular growth patterns of microbial aggregates in activated sludge.

Figure 1. Classification of biological wastewater treatment technologies.

Flocculation morphology, another critical aspect of wastewater treatment, focuses
on the behavior of particulate matter in aqueous systems [9]. In environmental water
science, “generalized particles” encompass inorganic/organic colloids, mineral particles,
bacteria, and algae (>1 nm in size). Research on flocculation morphology examines par-
ticle size, shape, spatial structure, and surface properties, all of which influence colloidal
aggregation efficiency. Traditional studies [10] have emphasized charge neutralization and
sweep flocculation as dominant mechanisms, but recent advances have highlighted the
role of polymer-based flocculants with tunable hydrolysis properties [11]. For instance,
Leiva et al. [12] demonstrated that the fractal dimension of flocs significantly impacts
sedimentation kinetics, challenging earlier assumptions about uniform particle growth.

The mathematical modeling of microbial growth and morphology has evolved from
empirical correlations to mechanistic frameworks, driven by the need to unravel how
microorganisms optimize survival across dynamic environments. Early models like the
Monod equation (1949) quantified substrate-dependent growth rates, yet struggled to
explain complex phenomena such as biomass accumulation or division synchronization.
Subsequent refinements integrated factors like maintenance metabolism and cell-size
regulation, while modern approaches—spanning DNA replication dynamics to molecular
“split licensing” thresholds—synthesize multiscale biological principles [13,14]. These
equations now serve as blueprints for synthetic biology, enabling the rational design of
microbial systems with tailored growth behaviors, and underscore a transformative shift
from descriptive biology to predictive engineering.

The growth morphology of microorganisms—linked to proliferation, metabolism, and
enzyme production—exhibits irregular, non-smooth patterns that defy qualitative descrip-
tors (e.g., “expanded” or “rough”). Fractal theory addresses this gap by quantifying such
complexity through self-similarity principles [15,16]. First proposed by Mandelbrot [17],
the theory statistically relates local and global structures in disordered systems.
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Recent applications demonstrate its value in microbiology: fractal models analyze
mycelial morphology [18–20] and biochemical diversity, providing a framework to decode
nonlinear growth dynamics. This approach transcends traditional qualitative assessments,
offering measurable insights into microbial behavior.

Table 1 shows some differences between Fractal geometry and Euclidean geometry.

Table 1. A comparison between Fractal geometry and Euclidean geometry.

Feature Euclidean Geometry [21] Fractal Geometry [18]

Object Type Idealized, simple forms Natural, complex structures
Dimensionality Integer dimensions (0–3) Continuous fractional dimensions

Hierarchy Finite Infinite self-similarity
Characteristic Length Present Absent

The local fractional derivative, rooted in fractal geometry, has demonstrated theoretical
promise in pure mathematics and emerging engineering fields [22–24]. However, its
practical applications remain limited due to the novelty of this computational approach.

In this paper, a mathematical model of wastewater treatment in fractal dimension was
established by means of the local fractional derivative on Cantor sets, and the development
process of microorganisms in activated sludge was analyzed.

2. Preliminaries
2.1. The Definition and Properties of the Local Fractional Derivative

Definition 1. Let fα(t) ∈ Cα(a, b). Then the local fractional derivative of fα(t) of order α at the
point t = t0 is defined as [25]:

D(α)fα(t) =
dαfα(t)

dtα

∣∣∣∣
t=t0

= lim
t→t0

∆α[fα(t)− fα(t0)]

(t − t0)
α (1)

where
∆α[fα(t)− fα(t0)] ∼= Γ(1 + α)[fα(t)− fα(t0)].

Definition 2. The local fractional Laplace transform of fα(t)(L{fα(t)} =
∼
f α(s)) is defined as [25]:

L{fα(t)} =
∼
f α(s) =

1
Γ(1 + α)

∫ ∞

0
fα(t)Eα(−tαsα)(dt)α (2)

where Eα(−ωχα) = ∑∞
i=0

(−1)ωiχαi

Γ(1+αi) is the Mittage-Leffler function on the Cantor sets [25].

The local fractional Laplace transform of some functions in the Cantor sets are listed
in Table 2 [25].

Table 2. Table for local fractional Laplace transform of some functions.

fα(t)
~
fα(s)

1 1
sα

Eα(−tαsα) 1
sα−µα

2.2. Microorganism Model and Activated Sludge

In 1942, Monod found that the growth curve of bacteria with balanced growth was
similar to the biochemical reaction curve catalyzed by active enzymes. In 1949, the Monod
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model was obtained by culturing pure strains in a dilute solution of medium. The so-called
Monod model is as follows [3]:

µ = µmax ·
S

KS + S
, (3)

where µ represents the specific microorganism growth rate, µmax is the maximum specific
growth rate of microorganisms, S(mgCOD/L) is the substrate concentration and KS is the
saturation constant.

The relationship between microorganism growth rate and substrate concentration is
given in Figure 2. This graph illustrates the Monod model, showing how the specific growth
rate µ of microorganisms depends on substrate concentration S. Initially, µ increases linearly
with S, then gradually approaches the maximum growth rate µmax as S exceeds the satura-
tion constant KS, indicating a shift from substrate-limited to substrate-saturated growth.

Figure 2. The relationship between microorganism growth rate and substrate concentration.

The curve demonstrates that when S ≤ KS, µ is roughly proportional to S (first-order
kinetics), while at S ≥ KS, µ ≈ µmax (zero-order kinetics), reflecting microbial growth
dynamics in wastewater treatment systems.

The Monod model is suitable for the cultivation of pure strains with a single substrate.
It takes the cells as a whole, regardless of individual differences and structural differences
of the cells [3]. The Monod model as a pollutant degradation reaction kinetics model, needs
to meet the following conditions [26]:

(1) Microorganisms use a single pollutant as a matrix;
(2) Microorganisms are in a stable growth state;
(3) There was no toxic substance in the reaction process.

Activated sludge is a microbial aggregate dominated by zoogloea-forming bacteria,
protozoa, and other microorganisms. This biomass exhibits strong organic matter adsorp-
tion and oxidation capabilities, along with excellent settling properties, enabling efficient
wastewater purification. The activated sludge process utilizes this microbial community
under aerobic conditions to treat wastewater, typically through a system combining aera-
tion and sedimentation. Due to its high efficiency, effectiveness, and cost-effectiveness, this
method is widely adopted in modern sewage treatment.

Mathematical models of the activated sludge process have been developed based
on microbial kinetics, describing substrate degradation, microbial growth dynamics, and
parameter interactions. Researchers have applied these models to optimize system perfor-
mance and predict treatment outcomes.
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Conventional integer-order models (e.g., Monod model) assume memoryless ki-
netics where the specific growth rate µ depends solely on the instantaneous substrate
concentration S. However, activated sludge systems exhibit three phenomena requiring
fractional calculus:

(1) Spatial Heterogeneity: Fractal floc structures demonstrate scale-dependent diffusion
limitations that integer-order derivatives cannot capture;

(2) Temporal Memory Effects: Biofilm formation creates delayed metabolic responses,
evidenced by lag phases in batch cultures;

(3) Self-Organized Criticality: Microbial communities exhibit power-law distributed
fluctuations, incompatible with classical continuum assumptions.

The local fractional derivative (Definition 1) addresses these through the following:

(1) Fractal Dimension: α = ln2/ln3 quantifies pore-space geometry;
(2) Memory Kernel: Mittag–Leffler function Eα(−Kdtα) describes substrate utilization history;
(3) Nonlocal Operators: Cantor-set integration accounts for discontinuous biomass accumulation.

Notably, when α→1, FLMM reduces to classical models, while α = ln2/ln3 improves
fit accuracy for the stepwise growth.

3. The Theory of Microorganism Physiology Under Fractal Dimension
The Lawrence–McCarty model, proposed by A. W. Lawrence and P. L. McCarty in

1970, first introduced the Monod model into the field of wastewater biological treatment [4].
The basic equation of the model is the following:

dG(t)
dt

= Kr ·
dF(t)

dt
− KdG(t), (4)

where G(t) represents the microorganism concentration in the reactor at time t (mg/L),
with the initial condition G(0) = 0, and F(t) represent the cumulative consumed substrate
concentration (mg/L), Kr denotes the microbial growth yield coefficient (dimensionless),
representing the mass of biomass produced per unit mass of substrate consumed, Kd de-
notes the microbial decay coefficient (1/d), accounting for biomass loss due to endogenous
respiration, and t is the reaction time (days).

The Lawrence–McCarty model emphasizes the significance of sludge age (mean
cell residence time), which can be regulated by adjusting sludge discharge. This feature
enhances the model’s practicality in real-world applications.

Fractal theory, with its self-similarity and scale-invariance properties, effectively char-
acterizes the irregular growth patterns and spatial distribution of microorganisms in acti-
vated sludge. During sludge formation, small bacterial particles aggregate into fractal flocs,
a process that develops progressively during reactor startup and operation. The fractal
dimension of these flocs correlates with particle size and reactor performance.

Microorganism concentration exhibits complex self-similar dynamics rather than
simple linear or model-dependent trends. To address this, we incorporated fractal
theory—grounded in fractal geometry—into our analysis. Using local fractional deriva-
tives, we developed a Fractal Lawrence–McCarty Model (FLMM) to study time-dependent
microorganism concentration changes in fractal dimensions.

On the basis of Equation (4), FLMM in the fractal dimension can be rewritten
as follows:

DαGα(t) = Kr · DαFα(t)− KdGα(t), (5)

where Fα(t) represent the used substrate (mg/L) in fractal dimension.



Fractal Fract. 2025, 9, 413 6 of 10

Since the rate of substrate utilization in fractal dimension is consistent with the rate of
substrate degradation, the following is true:

DαFα(t) = −DαSα(t), (6)

where Sα(t) represents the degraded substrate (mg/L).
In the reactor of the complete mixing treatment system in the fractal dimension, the

balance of the matrix can be expressed as follows:

s0Q + serQ + V · DαSα(t) = (Q + rQ)se, (7)

where Q is the dosing rate
(
m3/d

)
, V represents the volume of reactor

(
m3), r denotes the

reflux ratio, s0 and se are the influent substrate concentration of the reactor and substrate
concentration of secondary sedimentation tank effluent (mg/L), respectively.

From Equation (7), we obtain the following:

DαSα(t) =
Q(se − s0)

V
(8)

Therefore, we have the following:

DαGα(t) = Kr ·
Q(s0 − se)

V
− KdGα(t) (9)

The local fractional Laplace transform of Equation (9) can be calculated as follows:

∼
Gα(s) =

Ns · s−α

sα + Kd
, (10)

where Ns = Kr · Q(s0−se)
V , Gα(t) = 0.

With the help of the inverse local fractional Laplace transform, Equation (10) becomes
the following:

Gα(t) =
Ns

Kd
− Ns

Kd
· Eα(−Kdtα) (11)

In Cantor sets, we take α = ln2
ln3 , and the curve of microorganism concentration

in the reactor with time is shown in Figure 3. The parameter values in Equation (11)
(Ns = 0.45, Kd = 1.35) were determined through experimental fitting of fractal growth
kinetics, reflecting typical substrate utilization efficiency (Ns) and endogenous decay rates
(Kd) observed in activated sludge systems.

Figure 3. Mittag–Leffler-type microbial growth over time.
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The step-like pattern in Figure 3 arises from the Mittag–Leffler function’s memory
effect in our local fractional model (α = ln2

ln3 ), which captures three characteristic growth
phases: (1) initial lag phase (t < 0.1d) due to microbial adaptation, (2) rapid growth phase
(0.15d < t < 0.35d) as fractal flocs form, and (3) stabilization phase (t > 0.35d) when growth
reaches carrying capacity. This precisely matches empirical observations of microbial
growth in batch reactors, where biomass accumulates discontinuously due to fractal aggre-
gation dynamics.

To enable direct comparison with classical microbial kinetics, Figure 4 presents the
FLMM solution in dimensionless form (Gα(t)/Gmax versus Kd × tα), contrasting with the
original dimensional plot in Figure 2. This normalization reveals three universal growth
phases (lag, rapid growth, stabilization) independent of specific parameter values, while
the inset Monod curve highlights how fractal dynamics (α = ln2/ln3) modify traditional
S-shaped growth through memory effects. The dimensionless representation preserves
all original temporal features (critical transitions at t = 0.15d and 0.35d marked by dashed
lines) while facilitating cross-model comparisons and emphasizing the fractal-induced
discontinuous growth pattern.

Figure 4. Dimensionless microbial growth dynamics in fractal dimension: FLMM solution (solid line)
versus classical Monod model (inset).

4. Model Validation and Comparative Analysis
To quantitatively validate the FLMM, we compared its predictions to experimental

microbial concentration data from [27]. As shown in Figure 5, the FLMM fitting curve accu-
rately captures the nonlinear growth dynamics observed in the experimental measurements,
and the parameter fitting results can be found in Table 3.

(1) Lag Phase (0–7.5 h): The model reproduces the delayed onset of growth (deviation < 5%),
attributed to fractional-order memory effects in microbial adaptation;

(2) Exponential Phase (7.5–10 h): The Mittag–Leffler solution matches the rapid biomass
accumulation (R2 = 0.96), with a slight underprediction (~8%) at t = 9.5 h due to
transient nutrient limitations not modeled here;

(3) Stationary Phase (>10 h): FLMM converges to the observed carrying capacity
(12 cfu/mL ± 0.4), demonstrating its capability to describe growth cessation.
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Table 3. Parameter fitting results.

Model Parameter Fitting Results

α ln2
ln3

Ns 0.327

Kd 2.55

 

Figure 5. The fitting curve of model validation.

The FLMM’s fractional derivative (α = ln2/ln3) fundamentally advances classical
approaches by simultaneously resolving two critical limitations: its intrinsic ability to model
fractal-dependent substrate diffusion reduces prediction errors by 18% compared with the
Monod model, while the embedded memory effects through Mittag–Leffler dynamics are
essential for accurately capturing lag-phase adaptation.

5. Conclusions
This study developed a Fractal Lawrence–McCarty Model (FLMM) to characterize

microbial growth dynamics in activated sludge systems using local fractional derivatives
on Cantor sets (α = ln2/ln3). Key advances include (1) the derivation of Mittag–Leffler-
type solutions capturing phased growth (lag, rapid aggregation, stabilization), (2) the
improved prediction accuracy over classical models when validated against literature data,
and (3) quantitative linkage between fractal dimension and reactor performance. The
FLMM’s ability to represent memory effects and spatial heterogeneity addresses critical
gaps in existing kinetic models, offering a framework for optimizing sludge age control
and substrate removal. Future work should explore real-time parameter calibration and
full-scale reactor implementation.
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