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Abstract

Dengue fever remains a major global health threat, and mathematical models are crucial
for predicting its spread and evaluating control strategies. This study introduces a highly
flexible dengue transmission model using a novel piecewise fractional derivative frame-
work, which can capture abrupt changes in epidemic dynamics, such as those caused by
public health interventions or seasonal shifts. We conduct a rigorous comparative analysis
of four widely used but distinct mechanisms of disease transmission (incidence rates): Har-
monic Mean, Holling Type II, Beddington–DeAngelis, and Crowley–Martin. The model’s
well-posedness is established, and the basic reproduction number (ℜ0) is derived for each
incidence function. Our central finding is that the choice of this mathematical mechanism
critically alters predictions. For example, models that account for behavioral changes
(Beddington–DeAngelis, Crowley–Martin) identify different key drivers of transmission
compared to simpler models. Sensitivity analysis reveals that vector mortality is the most
influential control parameter in these more realistic models. These results underscore that
accurately representing transmission behavior is essential for reliable epidemic forecasting
and for designing effective, targeted intervention strategies.

Keywords: piecewise fractional operator; dengue transmission model; numerical analysis;
simulation; incidence functions

1. Introduction
Dengue fever, a mosquito-borne viral illness, poses a significant global health chal-

lenge, particularly in tropical and subtropical regions [1]. Mathematical modeling plays a
crucial role in understanding its transmission dynamics, predicting outbreaks, and evaluat-
ing control strategies [2–4]. Traditional compartmental models often employ simple bilinear
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incidence rates [5,6], which may not adequately capture the complex interaction dynamics
between human and mosquito populations, especially when factors such as saturation
effects, preventive measures, or behavioral changes come into play. Consequently, various
non-linear incidence rates, including Holling type II [7], Beddington–DeAngelis (B–D) [8],
Harmonic Mean [9,10], and Crowley–Martin [11,12], have been proposed to offer more
realistic representations of disease transmission.

The four non-linear incidence rates investigated in this study—Harmonic Mean,
Holling Type II, Beddington–DeAngelis, and Crowley–Martin—were specifically cho-
sen to represent a spectrum of increasing complexity in transmission dynamics. They
are canonical forms widely used in mathematical biology and epidemiology to move be-
yond the limitations of simple bilinear assumptions. The Harmonic Mean type provides a
baseline non-linear model where transmission is limited by the lower abundance of the
two interacting populations. The Holling Type II rate introduces the concept of saturation,
accounting for limitations in the contact or handling capacity, such as a mosquito’s finite
biting rate. Building on this, the Beddington–DeAngelis function incorporates interference
or protective behaviors from both susceptible and infectious populations. Finally, the
Crowley–Martin type models mutual interference, where the presence of other individuals
in both populations can reduce contact rates. By systematically comparing these four
well-established functional forms within the same piecewise fractional framework, we can
directly assess how these distinct biological assumptions influence epidemic dynamics and
control implications, providing a robust basis for model selection.

While classical models provide foundational insights [13,14], their assumption of
bilinear incidence often fails to capture real-world complexities. Consequently, the field
has moved toward non-linear incidence rates to better model phenomena like behavioral
changes and saturation effects. The Holling type II function, for instance, is widely used to
represent a saturating infection rate due to factors like limited vector biting capacity [15].
More sophisticated forms, such as the Beddington–DeAngelis (B–D) and Crowley–Martin
functions, have been proposed to account for mutual interference or protective measures
from both susceptible and infectious populations. At the same time, the importance of
memory and non-local effects in biological systems has led to the increasing use of frac-
tional calculus. Operators like the Atangana–Baleanu–Caputo (ABC) fractional derivative,
with its non-singular Mittag–Leffler kernel, have proven effective in capturing these long-
range dependencies in epidemiological models [16–18]. However, disease dynamics are
rarely static. The initial phase of an outbreak may follow classical patterns, whereas later
stages can be influenced by cumulative public health interventions or memory effects,
necessitating a more flexible modeling approach. To address this, Atangana and Araz
introduced piecewise differential operators, which uniquely combine classical and frac-
tional derivatives over different time intervals [19]. This “crossover” behavior has been
successfully applied to model various real-world phenomena, including other infectious
diseases [20,21], demonstrating its power in capturing temporal shifts in system dynamics.

The piecewise modified Atangana-Baleanu-Caputo (PMABC) operator [22] provides
this flexibility, allowing for a “crossover” in system behavior. The PMABC fractional opera-
tor is a potent analytical tool, with foundational details provided in key references [23–25].
Its effectiveness has been demonstrated in modeling various phenomena in the real world
and exploring associated crossover behaviors [26,27]. These studies confirm that employ-
ing the PMABC operator yields a deeper understanding of system dynamics, particularly
concerning the underlying characteristics of disease progression. Although fractional
dengue models and various incidence rates have been studied separately [28,29], this
article presents a comprehensive and novel investigation by integrating these concepts
within a unified framework.
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Dengue outbreaks are often multiphasic. For instance, an outbreak may start with
classical exponential growth, but its dynamics can fundamentally change following a
major event, such as the onset of a monsoon season (altering vector breeding sites) or
the implementation of a large-scale public health intervention (e.g., city-wide fogging,
community cleanup campaigns). After such an event, the transmission dynamics might
exhibit memory effects (cumulative impact of vector control) or non-local behavior, which
are better captured by fractional derivatives. The PMABC operator is uniquely suited to
model this “crossover” in system behavior.

Researchers have integrated various nonlinear interaction terms into biological system
models. For example, the concept of saturating interaction rates (like Holling type-II)
has been foundational in studies of consumer-resource dynamics [30] and has also been
applied to investigate strategies for managing disease spread within populations [15].
Alternative functional responses, such as the Beddington–DeAngelis type incorporating
intracellular processing time [31] or the Crowley–Martin function accounting for mutual
interference [32], have been used to model virus lifecycles and compartmental disease
progression (SEIR structure), respectively. Analytical attention in these studies often centers
on determining conditions for population persistence, equilibrium states of the system, and
the potential for cyclic dynamics leading to species elimination [33].

Beyond traditional differential equations, noninteger-order calculus provides distinct
modeling tools. The dynamics of infectious agents such as the Ebola virus have been
explored using fractional derivative definitions, specifically the Grunwald–Letnikov ap-
proach, which facilitates efficient analysis of the long-term evolution of the system [34].
The same fractional methodology (Grunwald–Letnikov) was then utilized to examine the
spread characteristics of the COVID-19 pandemic [35]. In addition, fractional-order frame-
works have been applied to understand behavioral patterns, such as smoking habits, using
numerical solution techniques based on iterative calculations, spatial segmentation, and
truncated memory effects [36].

While previous studies have effectively applied fractional calculus to dengue mod-
eling [28,29] or have compared nonlinear incidence rates within classical integer-order
frameworks, a critical gap remains in understanding how these two powerful concepts
interact. To our knowledge, no prior study has conducted a systematic comparative
analysis of multiple sophisticated incidence functions (Harmonic Mean, Holling Type II,
Beddington–DeAngelis, Crowley–Martin) within a piecewise fractional framework.

Our primary and novel contribution is therefore twofold: first, we introduce a dengue
model using the PMABC operator, which uniquely captures temporal heterogeneity by
allowing a transition from classical to fractional dynamics, reflecting shifts in an epidemic’s
evolution. This specific operator enables the model to exhibit classical dynamics initially
(up to a time ι1) and fractional dynamics subsequently, reflecting potential changes in
transmission characteristics over the course of an epidemic. Second, by embedding these
four canonical incidence rates into this advanced structure, we provide the first direct
comparison of how different assumptions about transmission mechanisms (e.g., saturation,
behavioral change, and mutual interference) alter key epidemiological outcomes when
memory effects are also considered. This integrated approach allows us to disentangle the
influence of the incidence function from the memory effects, offering novel insights into
model selection and the design of time-dependent control strategies.
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2. Description of the Model
The authors of [37] studied the transmission dynamics of dengue disease between

human and mosquito populations.

Dα
ι HS(ι) = µhNh − b f (HS,VI)− µhHS(ι),

Dα
ι HE(ι) = b f (HS,VI)− (µh + ηh)HE(ι),

Dα
ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),

Dα
ι HR(ι) = δhHI(ι)− µhHR(ι),

Dα
ι VS(ι) = Am − b f (VS,HI)− µvVS(ι),

Dα
ι VE(ι) = b f (VS,HI)− (kv + µv)VE(ι),

Dα
ι VI(ι) = kvVE(ι)− µvVI(ι),

with the initial conditions

HS(0) > 0, HE(0) > 0, HI(0) > 0, HR(0) > 0,

VS(0) > 0, VE(0) > 0, VI(0) > 0,

where the transmission terms are initially defined using standard mass action scaled by the
human population size: f (HS,VI) =

(
βhHS(ι)VI(ι)

Nh

)
for mosquito-to-human transmission

and f (VS,HI) =
(

βvVS(ι)HI(ι)
Nm

)
for human-to-mosquito transmission. Here, Nh and Nm

represent the total constant sizes of the human and mosquito populations, respectively.
The total human population Nh is stratified into four epidemiological compartments:
susceptible (HS), exposed (HE), infectious (HI), and recovered (HR). Similarly, the total
mosquito population Nm is divided into three compartments: susceptible (VS), exposed
(VE), and infectious (VI). The model assumes uniform mixing between the populations,
implying that every mosquito has an equal probability of biting any given human host.
The per-mosquito biting rate is denoted by b. Disease transmission occurs only from
infectious humans (HI) to susceptible mosquitoes (VS) and from infectious mosquitoes (VI)
to susceptible humans (HS).

Let βh denote the transmission probability from an infectious mosquito to a susceptible
human per bite, and let βv denote the transmission probability from an infectious human
to a susceptible mosquito per bite. Consequently, the per capita rate at which susceptible
humans acquire infection (the force of infection) is given by b

(
βhVI(ι)

Nh

)
. Similarly, the

per capita rate at which susceptible mosquitoes acquire infection is b
(

βvHI(ι)
Nm

)
. These

rates, dependent on the relevant population compartments and transmission probabilities,
govern the flux of individuals from susceptible to exposed states in both populations.
Individuals in the exposed compartments (HE and VE) are infected but not yet infectious;
they transition to the infectious state (HI and VI) at rates ηh (human incubation rate) and
kv (mosquito extrinsic incubation rate), respectively. The model considers a single strain of
the Dengue virus responsible for all infections.

The parameters are defined as follows:

µh : The natural death rate of humans;
µv : The natural death rate of mosquitoes;
βh : The mosquito-to-human transmission probability per bite;
βv : The human-to-mosquito transmission probability per bite;
δh : Recovery rate of humans;
Am : Recruitment rate of mosquitoes;
ηh : The human incubation rate (inverse of latent period);
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kv : The mosquito extrinsic incubation rate (inverse of latent period);
b : The mosquito biting rate.

This study aims to investigate a Dengue model incorporating four distinct types of
nonlinear incidence rates to more accurately describe the disease’s evolutionary dynamics.
This analysis is conducted within the framework of piecewise-modified ABC fractional
derivatives. The resulting model equations can be expressed as follows:

PMAB
0 Dς

ι HS(ι) = µhNh − b f (HS,VI)− µhHS(ι),
PMAB
0 Dς

ι HE(ι) = b f (HS,VI)− (µh + ηh)HE(ι),
PMAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),
PMAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι),
PMAB
0 Dς

ι VS(ι) = Am − b f (VS,HI)− µvVS(ι),
PMAB
0 Dς

ι VE(ι) = b f (VS,HI)− (kv + µv)VE(ι),
PMAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι),

(1)

PMAB
0 Dς

ι is the piecewise modified fractional derivative of order ς. At time ι,
Nh(ι) = HS(ι) +HE(ι) +HI(ι) +HR(ι) and Nm(ι) = VS(ι) +VE(ι) +VI(ι).

The mathematical framework presented in model (1), visually clarified by the
schematic in Figure 1, elucidates the system’s temporal dynamics. These representa-
tions detail the interplay between the distinct population groups by defining the specific
parameters for transmission, recuperation, and mortality.

Figure 1. Flow chart of model (1).

The incidence rate, representing the rate at which new infections occur per unit
time, is a critical component of epidemiological models, as it mathematically encodes
the assumed mechanism of disease transmission. Understanding its functional form is
vital for accurately predicting disease spread. This study explores four distinct non-linear
incidence rate formulations, commonly employed in mathematical biology to capture
different interaction dynamics beyond simple mass action, often selected based on the
specific biological context:
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• Harmonic Mean type: This formulation assumes transmission is limited by the less
abundant interacting population.

f (HS,VI) =
βhHS(ι)VI(ι)

HS(ι) +VI(ι)

f (VS,HI) =
βvVS(ι)HI(ι)

VS(ι) +HI(ι)

• Holling Type II (Saturated): Proposed by Holling (1959) [7], this rate represents
saturation in the infection process, e.g., due to limited mosquito biting capacity or
handling time, as the density of infectious individuals (VI or HI) increases. The form
for mosquito-to-human transmission is

f (HS,VI) =
βhHS(ι)VI(ι)

1 + θ1VI(ι)
,

where θ1 > 0 is the saturation constant for infectious mosquitoes. A corresponding
form f (VS,HI) = βvVS(ι)HI(ι)

1+θ2HI(ι)
applies for human-to-mosquito transmission, with a

saturation constant θ2 > 0.
• Beddington–DeAngelis (B–D) type: Introduced independently by Beddington et al.

and DeAngelis et al. (1975) [8], this rate incorporates density dependence related
to both susceptible and infectious populations. The form for mosquito-to-human
transmission is

f (HS,VI) =
βhHS(ι)VI(ι)

1 + a1HS(ι) + a2VI(ι)
,

where a1 ≥ 0 reflects inhibition effects due to susceptible human density (e.g., avoid-
ance, protective measures) and a2 ≥ 0 represents inhibition/interference among
infectious mosquitoes. A corresponding form f (VS,HI) =

βvVS(ι)HI(ι)
1+a3VS(ι)+a4HI(ι)

applies
for human-to-mosquito transmission, with coefficients a3, a4 ≥ 0.

• Crowley–Martin type: Proposed by Crowley and Martin [38], this form models mutual
interference among both interacting populations. The form for mosquito-to-human
transmission is

f (HS,VI) =
βhHS(ι)VI(ι)

(1 + ϕ1HS(ι))(1 + ϕ2VI(ι))
,

where ϕ1, ϕ2 > 0 are positive constants representing the strength of interference from
susceptible humans and infectious mosquitoes, respectively. A corresponding form
f (VS,HI) =

βvVS(ι)HI(ι)
(1+ϕ3VS(ι))(1+ϕ4HI(ι))

applies for human-to-mosquito transmission, with
constants ϕ3, ϕ4 > 0.

Investigating these different functional forms is crucial, as the choice of incidence rate
significantly impacts model dynamics and predictions regarding disease spread and control,
potentially addressing limitations in simpler models of Dengue transmission behavior.

The parameters embedded within the model are crucial representations of the diverse
biological and epidemiological factors driving Dengue transmission. They encapsulate
rates related to disease progression (incubation, recovery), inter-species transmission, vector
behavior (biting), and host/vector vital dynamics. The model utilizes these parameters to
enable a quantitative exploration of the complex interactions between human and mosquito
populations and their influence on the spread of dengue fever.

Crossover Behavior

Epidemiological systems like dengue transmission may exhibit different dynamic
characteristics at various stages. To account for such potential temporal heterogeneity, we
utilize the piecewise modified Atangana–Baleanu–Caputo (PMABC) fractional operator.
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This operator structures the model across distinct time segments. Specifically, the total
time interval [0, T] is divided at a designated crossover point ι1. The crossover point, ι1,
is intended to represent the precise moment a significant event alters the transmission
dynamics, such as the start of a government-mandated vector control program, a docu-
mented shift in public awareness and behavior, or a key seasonal change. In the initial
segment [0, ι1], corresponding perhaps to the early outbreak phase, the system’s evolution
is described by the classical integer-order derivative. For the subsequent segment [ι1, T], the
dynamics are governed by the modified ABC (mABC) fractional operator. The rationale for
this switch is that phenomena such as long-range memory effects or the cumulative impact
of past states (non-local dependencies) might be more effectively captured by fractional
calculus in the later stages of disease transmission. The PMABC operator thus explicitly
models the crossover behavior, which presents a transition in the governing dynamics
from classical to fractional. This hybrid approach, combining the strengths of both classical
and fractional derivatives within their respective hypothesized domains of applicability,
aims to provide a more nuanced and potentially more accurate description of the complete
epidemic trajectory. A crucial aspect of the piecewise framework is the identification of
the crossover point ι1, which marks the transition from classical to fractional dynamics. In
this theoretical study, ι1 was chosen illustratively to demonstrate the model’s capacity to
handle such transitions. For practical application to real-world epidemic data, this point
would need to be determined rigorously. There are two primary methods for this. The
first is through epidemiological justification, where ι1 is aligned with a known, significant
event that alters transmission dynamics, such as the implementation of a large-scale public
health intervention (e.g., lockdowns or vector control programs), a documented shift in
population behavior, or a key seasonal change. The second, more data-driven approach
is through statistical identification. Here, ι1 is treated as a parameter to be estimated. A
common technique involves performing a grid search over a range of possible values for ι1.
Consequently, the model equations based on (1) take the following piecewise form:

PMAB
0 Dς

ι HS(ι) =


d
dιHS(ι) = µhNh − b f (HS,VI)− µhHS(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι HS(ι) = µhNh − b f (HS,VI)− µhHS(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι HE(ι) =


d
dιHE(ι) = b f (HS,VI)− (µh + ηh)HE(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι HE(ι) = b f (HS,VI)− (µh + ηh)HE(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι HI(ι) =


d
dιHI(ι) = ηhHE(ι)− (δh + µh)HI(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι HR(ι) =


d
dιHR(ι) = δhHI(ι)− µhHR(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι VS(ι) =


d
dιVS(ι) = Am − b f (VS,HI)− µvVS(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι VS(ι) = Am − b f (VS,HI)− µvVS(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι VE(ι) =


d
dιVE(ι) = b f (VS,HI)− (kv + µv)VE(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι VE(ι) = b f (VS,HI)− (kv + µv)VE(ι), ι ∈ [ι1, T],

PMAB
0 Dς

ι VI(ι) =


d
dιVI(ι) = kvVE(ι)− µvVI(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι), ι ∈ [ι1, T],
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where

• ι1 is the crossover point, which presents a transition in the governing dynamics from
classical to fractional.

• d
dt η(ι) is the classical derivative of a function η.

• mABDς
0η(ι) is MABC fractional derivative defined as

mABDς
0η(ι) =

1 − ς

▽(ς)

[
η(t)− η(0)

]
+

ς

1 − ς

[RL Iς
0 (η(t)− η(0))

]
.

3. Mathematical Properties of the PMABC Model (1)
Here, we discuss some important qualitative behavior of PMABC dengue model (1).

Before giving the fundamental properties of the PMABC model (1), we restructure the
PMABC model (1) as a compact form as follows:

PMAB
0 Dς

ι U(ι) =
{

d
dιU(ι) = K(ι,U(ι)), ι ∈ [0, ι1],

mAB
0 Dς

ι U(ι) = K(ι,U(ι)), ι ∈ (ι1, T],
(2)

where U(ι) = (HS(ι),HE(ι),HI(ι),HR(ι),VS(ι),VE(ι),VI(ι))
T , and

K(ι,U(ι)) =



K1(ι,HS(ι))

K2(ι,HE(ι))

K3(ι,HI(ι))

K4(ι,HR(ι))

K5(ι,VS(ι))

K6(ι,VE(ι))

K7(ι,VI(ι))


=



µhNh − b f (HS,VI)− µhHS(ι),
b f (HS,VI)− (µh + ηh)HE(ι),

ηhHE(ι)− (δh + µh)HI(ι),
δhHI(ι)− µhHR(ι),

Am − b f (VS,HI)− µvVS(ι),
b f (VS,HI)− (kv + µv)VE(ι),

kvVE(ι)− µvVI(ι),


. (3)

The integral form of the model (2) is given as follows:

U(ι) =



U(0) +
∫ ι

0 K(s,U(s))ds, ι ∈ [0, ι1],

U(ι1) + 1−ς
∇(ς)

K(ι,U(ι)) + ς
∇(ς)Γ(ς)

∫ ι
ι1
(ι − s)ς−1K(s,U(s))ds

− 1−ς
∇(ς)

K(ι1,U(ι1))
(

1 +
ς

1−ς

Γ(ς+1) ις
)

, ι ∈ (ι1, T].

Let U(t) be the vector of state variables in the Banach space C[0, T] with the norm

||U|| = sup
ι∈[0,T]

|U(t)|.

3.1. Lipschitz Property of the Kernels K(ι,U(ι))
Theorem 1. Let HS,HE,HI ,HR,VS,VE,VI , ĤS, ĤE, ĤI , ĤR, V̂S, V̂E, V̂I ∈ C[0, T]. Let
ξi > 0, i = 1, 2, ..., 7 such that

||HS|| = sup
ι∈[0,T]

|HS(t)| < ξ1, ||HE|| = sup
ι∈[0,T]

|HE(t)| < ξ2,

||HI || = sup
ι∈[0,T]

|HI(t)| < ξ3, ||HR|| = sup
ι∈[0,T]

|HR(t)| < ξ4,

||VS|| = sup
ι∈[0,T]

|VS(t)| < ξ5, ||VE|| = sup
ι∈[0,T]

|VE(t)| < ξ6,

||VI || = sup
ι∈[0,T]

|VI(t)| < ξ7.
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Then, the Kernels K(ι,U(ι)) satisfy a Lipschitz conditions with Lipschitz constant
ℓ = max7

i=1{ℓi} > 0, where

ℓ1 = b
(

βhξ7

ξ1 + ξ7

)
+ µh, ℓ2 = µh + ηh, ℓ3 = δh + µh,

ℓ4 = µh, ℓ5 = b
(

βvξ3

ξ5 + ξ3

)
+ µh, ℓ6 = kv + µv, ℓ7 = µv.

Proof. For the Kernel K1(ι,HS(ι)), let HS, ĤS ∈ C[0, T]. Then, in the case of Harmonic
Mean type f (HS,VI) =

βhHS(ι)VI(ι)
HS(ι)+VI(ι)

and f (VS,HI) =
βvVS(ι)HI(ι)
VS(ι)+HI(ι)

, we have

∥∥∥K1(ι,HS(ι))−K1

(
ι, ĤS(ι)

)∥∥∥ =

∥∥∥∥∥∥
(

µhNh − b
(

βhVI
HS+VI

)
HS − µhHS

)
−
(

µhNh − b
(

βhVI
HS+VI

)
ĤS − µhĤS

) ∥∥∥∥∥∥
≤ b

(
βh∥VI∥

∥HS∥+ ∥VI∥

)∥∥∥HS − ĤS

∥∥∥+ µh

∥∥∥HS − ĤS

∥∥∥
≤

(
b
(

βhξ7

ξ1 + ξ7

)
+ µh

)∥∥∥HS − ĤS

∥∥∥.

Let ℓ1 =
(

b
(

βhξ7
ξ1+ξ7

)
+ µh

)
. Then

∥∥∥K1(ι,HS(ι))−K1

(
ι, ĤS(ι)

)∥∥∥ ≤ ℓ1

∥∥∥HS − ĤS

∥∥∥. Similarly,
we can get the following∥∥∥K2(ι,HE(ι))−K2

(
ι, ĤE(ι)

)∥∥∥ ≤ ℓ2

∥∥∥HE − ĤE

∥∥∥,∥∥∥K3(ι,HI(ι))−K3

(
ι, ĤI(ι)

)∥∥∥ ≤ ℓ3

∥∥∥HI − ĤI

∥∥∥,∥∥∥K4(ι,HR(ι))−K4

(
ι, ĤR(ι)

)∥∥∥ ≤ ℓ4

∥∥∥H4 − ĤR

∥∥∥,∥∥∥K5(ι,VS(ι))−K5

(
ι, V̂S(ι)

)∥∥∥ ≤ ℓ5

∥∥∥VS − V̂S

∥∥∥,∥∥∥K6(ι,VE(ι))−K6

(
ι, V̂E(ι)

)∥∥∥ ≤ ℓ6

∥∥∥VE − V̂E

∥∥∥,∥∥∥K7(ι,VI(ι))−K7

(
ι, V̂I(ι)

)∥∥∥ ≤ ℓ7

∥∥∥VI − V̂I

∥∥∥.

Let ℓ = max7
i=1{ℓi} > 0. The Kernels K(ι,U(ι)) satisfy a Lipschitz condition with Lipschitz

constant ℓ. In the same manner, we can prove that K(ι,U(ι)) satisfies a Lipschitz condition
with respect to other incidence rates.

3.2. Existence of Unique Solutions

Theorem 2. Assume that the Kernel K(ι,U(ι)) satisfies a Lipschitz conditions with Lipschitz
constant ℓ defined by Theorem 1. Then, the PMABC dengue model (1) has a unique solution,
provided that

0 < max
{
ℓι1, ℓ

(
1 − ς

∇(ς)
+

ςTς

∇(ς)Γ(ς + 1)

)}
< 1.

Proof. The existence and uniqueness of the solution for the model (1) are established by
applying the Banach Fixed-Point Theorem to the equivalent integral equations. Consider
the bounded, forward-invariant, and biologically feasible region G defined by

G =

{
(HS,HE,HI ,HR,VS,VE,VI) ∈ R7

+ : HS,HE,HI ,HR ≤ K,VS,VE,VI ≤
Am

µv
+ ϵ

}
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Define an operator P : C[0, T] → C[0, T] as

P(U(ι)) =


U(0) +

∫ ι
0 K(s,U(s))ds, ι ∈ [0, ι1],

U(ι1) + 1−ς
∇(ς)

K(ι,U(ι)) + ς
∇(ς)Γ(ς)

∫ ι
ι1
(ι − s)ς−1K(s,U(s))ds, ι ∈ (ι1, T].

Let U, Û ∈ G. Then, for ι ∈ [0, ι1], we have∥∥∥P(U(ι))−P
(
Û(ι)

)∥∥∥ ≤
∫ ι

0

∥∥∥K(s,U(s))−K
(

s, Û(s)
)∥∥∥ds

≤ ℓι1

∥∥∥U− Û
∥∥∥. (4)

Next, for ι ∈ (ι1, T], we have∥∥∥P(U(ι))−P
(
Û(ι)

)∥∥∥ ≤ 1 − ς

∇(ς)

∥∥∥K(ι,U(ι))−K(ι, Û(ι))
∥∥∥

+
ς

∇(ς)Γ(ς)

∫ ι

ι1
(ι − s)ς−1

∥∥∥K(s,U(s))−K
(

s, Û(s)
)∥∥∥ds

≤ ℓ

(
1 − ς

∇(ς)
+

ςTς

∇(ς)Γ(ς + 1)

)∥∥∥U− Û
∥∥∥. (5)

By (4) and (5), we have∥∥∥P(U(ι))−P
(
Û(ι)

)∥∥∥ ≤ max
{
ℓι1, ℓ

(
1 − ς

∇(ς)
+

ςTς

∇(ς)Γ(ς + 1)

)}∥∥∥U− Û
∥∥∥.

Thus, the operator P is a contraction if max
{
ℓι1, ℓ

(
1−ς
∇(ς)

+ ςTς

∇(ς)Γ(ς+1)

)}
< 1. By the Banach

Fixed-Point Theorem, the PMABC dengue model (1) has a unique solution in the interval
[0, T]. For more information, see [20,39].

3.3. Boundedness and Positivity of Model (1)

We establish the biological feasibility of the model by showing that solutions starting
with non-negative initial conditions remain non-negative (positive) and bounded for all
future times.

Theorem 3. Let the initial conditions be HS(0) ≥ 0, HE(0) ≥ 0, HI(0) ≥ 0, HR(0) ≥ 0,
VS(0) ≥ 0, VE(0) ≥ 0, and VI(0) ≥ 0. Then the solutions of the system (1) remain non-negative
for all times ι ≥ 0.

Proof. We will prove the non-negativity of each state variable sequentially. From the first
equation of the system (1), we have

PMAB
0 Dς

ι HS(ι) = Ah − b f (HS,VI)− µhHS(ι).

Let us assume there exists a time ι∗ > 0 such that HS(ι
∗) = 0 and HS(ι) > 0 for all ι ∈ [0, ι∗).

At this point, we have

PMAB
0 Dς

ι HS(ι
∗)|HS=0 = Ah − b f (0,VI)− 0.

For all standard incidence functions, f (0,VI) = 0. Therefore, we have

PMAB
0 Dς

ι HS(ι
∗)|HS=0 = Ah.
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Since Ah > 0, the rate of change is positive when the population reaches zero, preventing
it from becoming negative. Thus, HS(ι) ≥ 0 for all ι ≥ 0. A similar argument holds for
VS(ι), as its equation contains a constant inflow term Am > 0, ensuring VS(ι) ≥ 0. From
the second equation of system (1), we have

PMAB
0 Dς

ι HE(ι) = b f (HS,VI)− (µh + ηh)HE(ι).

Since HS(ι), VI(ι), and all parameters are non-negative, the incidence term b f (HS,VI) ≥ 0.
This leads to the differential inequality

PMAB
0 Dς

ι HE(ι) ≥ −(µh + ηh)HE(ι). (6)

We analyze this inequality for the two intervals of the PMABC operator.
Case 1: For ι ∈ (0, ι1], the inequality (6) is a classical differential inequality given as

d
dι
HE(ι) ≥ −(µh + ηh)HE(ι).

Thus
HE(ι) ≥ HE(0)e−(µh+ηh)ι.

Since HE(0) ≥ 0, we have HE(ι) ≥ 0 for all ι ∈ (0, ι1].
Case 2: For ι ∈ (ι1, T], applying the Laplace transform to the mABC version of

inequality (6) (starting from ι1) and solving for L{HE(ι)}(s), then taking the inverse Laplace
transform, yields a solution involving the Mittag–Leffler function, which is non-negative
for non-negative arguments. This gives

HE(ι) ≥ HE(ι1)Eς,1

(
− (µh + ηh)ς(ι − ι1)

ς

1 − (µh + ηh)(1 − ς)

)
,

where Eς,1 is the one-parameter Mittag–Leffler function. Since HE(ι1) ≥ 0 from Case 1 and
Eς,1(z) > 0 for real z, it follows that HE(ι) ≥ 0 for ι ∈ (ι1, T]. Combining both cases, we
conclude HE(ι) ≥ 0 for all ι ≥ 0.

The proofs for the remaining compartments follow the same logic.

• For HI(ι), the equation is PMAB
0 Dς

ι HI = ηhHE − (δh + µh)HI . Since we have
shown HE(ι) ≥ 0, the inflow term ηhHE ≥ 0. This leads to the inequality
PMAB
0 Dς

ι HI ≥ −(δh + µh)HI , which, by the same argument as for HE, implies
HI(ι) ≥ 0.

• For HR(ι), the equation is PMAB
0 Dς

ι HR = δhHI − µhHR. With HI(ι) ≥ 0, we get
PMAB
0 Dς

ι HR ≥ −µhHR, which implies HR(ι) ≥ 0.
• Similarly, for the vector compartments, having established VS(ι) ≥ 0 and HI(ι) ≥ 0:

– The equation for VE gives the inequality PMAB
0 Dς

ι VE ≥ −(kv + µv)VE, implying
VE(ι) ≥ 0.

– With VE(ι) ≥ 0, the equation for VI gives PMAB
0 Dς

ι VI ≥ −µvVI , implying
VI(ι) ≥ 0.

Since all compartments are shown to be non-negative for all ι ≥ 0, the solutions of the
dengue model (1) are positive and biologically meaningful. This completes the proof.

Theorem 4. The solutions of the dengue model (1) are bounded in the biologically feasible region Ω.

Proof. Let the total human population be Nh(ι) = HS(ι) +HE(ι) +HI(ι) +HR(ι) and the
total vector population be Nv(ι) = VS(ι) +VE(ι) +VI(ι).
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Boundedness of the human population Nh(ι): We take the sum of the first
four equations of the system (1) to find the rate of change of the total human population:

PMAB
0 Dς

ι Nh(ι) =
PMAB
0 Dς

ι HS(ι) +
PMAB
0 Dς

ι HE(ι) +
PMAB
0 Dς

ι HI(ι) +
PMAB
0 Dς

ι HR(ι)

= (µhNh − b f (HS,VI)− µhHS(ι)) + (b f (HS,VI)− (µh + ηh)HE(ι))

+ (ηhHE(ι)− (δh + µh)HI(ι)) + (δhHI(ι)− µhHR(ι))

= µhNh − µh(HS(ι) +HE(ι) +HI(ι) +HR(ι))

= µhNh − µhNh(ι).

If we assume that the total human population size Nh in the birth term µhNh represents
the constant carrying capacity or initial size, and Nh(0) = Nh, then
PMAB
0 Dς

ι Nh(ι) = µhNh − µhNh(ι). The solution to this fractional differential equation
tends toward Nh. Therefore, the human population Nh(ι) is bounded. (If µhNh is simply
a constant influx rate, the argument is slightly different, but boundedness usually holds
under realistic parameter assumptions.) Assuming Nh is the constant total population size
implies Nh(ι) = Nh for all ι. Boundedness of the vector population Nm(ι): Summing the
last three equations of model (1), we get

PMAB
0 Dς

ι Nm(ι) =
PMAB
0 Dς

ι VS(ι) +
PMAB
0 Dς

ι VE(ι) +
PMAB
0 Dς

ι VI(ι)

= (Am − b f (VS,HI)− µvVS(ι))

+ (b f (VS,HI)− (kv + µv)VE(ι))

+ (kvVE(ι)− µvVI(ι))

= Am − µv(VS(ι) +VE(ι) +VI(ι))

= Am − µvNm(ι). (7)

By definition PMAB
0 Dς

ι , the inequality (7) becomes

PMAB
0 Dς

ι Nm(ι) =


d
dι Nm(ι) ≤ Am − µvNm(ι), ι ∈ [0, ι1],

mAB
0 Dς

ι Nm(ι) ≤ Am − µvNm(ι), ι ∈ [ι1, T],

Now, for ι ∈ [0, ι1], we have

d
dι

Nm(ι) ≤ Am − µvNm(ι). (8)

Thus, we have

Nm(ι) ≤ Nm(0)e−µv Nm(ι) +
Am

µv

(
1 − e−µv

)
.

Consequently, Nm(ι) is bounded by Am
µv

in case ι ∈ [0, ι1]. On the other hand, for ι ∈ [ι1, T],
we have

mAB
0 Dς

ι Nm(ι) ≤ Am − µvNm(ι). (9)

We apply the Laplace transform on both sides of (9), and utilizing the asymptotic behavior
of the Mittag–Leffler function, we obtain

Nm(ι) ≤
Am

µv
.
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Thus, in two cases, the solution Nm(ι) satisfies

Nm(ι) ≤
Am

µv
.

This implies that Nm(ι) is bounded. Thus, in two cases, the solution Nm(ι) satisfies

Nm(ι) ≤
Am

µv
.

This implies that Nm(ι) is bounded.

Since all individual compartments are non-negative and the total populations Nh(ι)

and Nm(ι) are bounded, each compartment HS(ι),HE(ι),HI(ι),HR(ι),VS(ι),VE(ι),VI(ι) is
also bounded. Therefore, the solutions of model (1) are bounded and remain within the
biologically feasible region

G =

{
(HS,HE,HI ,HR,VS,VE,VI) ∈ R7

+ : HS,HE,HI ,HR ≤ K,VS,VE,VI ≤
Am

µv
+ ϵ

}
,

for some K related to Nh(0) (often K = Nh(0)) and any ϵ > 0, provided the solution starts
within G. This region G is positively invariant.

The proof of boundedness is critical for extending the unique local solution, guaranteed
by Theorem 2, to a global solution. For nonlinear fractional systems, the Banach Fixed-Point
Theorem directly ensures existence and uniqueness only on a local interval. However,
since we have shown that all solutions starting in the compact, forward-invariant region G
remain within G for all times, the solution cannot blow up or develop a singularity in finite
time. This allows the unique local solution to be extended for all times ι ≥ 0. This standard
argument establishes the existence of a unique global solution for the model.

4. Comparative Analysis of Nonlinear Incidence Models
4.1. Dengue Model with Harmonic Mean Type Incidence Rate

The model (1) with Harmonic Mean type incidence rate is presented as follows:

PMAB
0 Dς

ι HS(ι) = µhNh − b
(

βhHS(ι)VI(ι)
HS(ι)+VI(ι)

)
− µhHS(ι),

PMAB
0 Dς

ι HE(ι) = b
(

βhHS(ι)VI(ι)
HS(ι)+VI(ι)

)
− (µh + ηh)HE(ι),

PMAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),
PMAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι),

PMAB
0 Dς

ι VS(ι) = Am − b
(

βvVS(ι)HI(ι)
VS(ι)+HI(ι)

)
− µvVS(ι),

PMAB
0 Dς

ι VE(ι) = b
(

βvVS(ι)HI(ι)
VS(ι)+HI(ι)

)
− (kv + µv)VE(ι),

PMAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι).

(10)

4.1.1. Equilibrium Points and Basic Reproduction Number ℜ0

To find the equilibrium points, we set all fractional derivatives in (10) to zero. In
the context of fractional calculus, an equilibrium or steady state is a constant solution,
and the Atangana–Baleanu–Caputo derivative of any constant is zero. Therefore, this
condition correctly identifies the points where the system’s dynamics cease to change;
see [40]. Setting PMAB

0 Dς
ι HS(ι) = PMAB

0 Dς
ι HE(ι) = PMAB

0 Dς
ι HI(ι) = PMAB

0 Dς
ι HR(ι)
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= PMAB
0 Dς

ι VS(ι) = PMAB
0 Dς

ι VE(ι) =PMAB
0 Dς

ι VI(ι) = 0, we solve for the disease-free
equilibrium (DFE):

0 = µhNh − 0 − µhHS(ι) =⇒ H0
S = Nh,

0 = 0 − µhHR =⇒ H0
R = 0,

0 = Am − 0 − µvVS(ι) =⇒ V0
S =

Am

µv
,

Thus, the DFE is E0 =
(

Nh, 0, 0, 0, Am
µv

, 0, 0
)

. We use the next-generation matrix (NGM)
method adapted for fractional-order systems to compute ℜ0. The infected compartments
are U = (HE,HI ,VE,VI)

T . The rate of appearance of new infections is given by F , and the
rate of transfer of individuals between compartments is V :

F =


b
(

βhHS(ι)VI(ι)
HS(ι)+VI(ι)

)
0

b
(

βvVS(ι)HI(ι)
VS(ι)+HI(ι)

)
0

, V =


(µh + ηh)HE(ι)

(δh + µh)HI(ι)− ηhHE(ι)

(kv + µv)VE(ι)

µvVI(ι)− kvVE(ι)

.

The Jacobians F = [∂Fi/∂Uj] and V = [∂Vi/∂Uj] are computed and evaluated at the
DFE E0.

V =
∂V
∂U

∣∣∣∣
E0

=


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

This implies

V−1 =


1

µh+ηh
0 0 0

ηh
(µh+ηh)(δh+µh)

1
δh+µh

0 0

0 0 1
kv+µv

0

0 0 kv
µv(kv+µv)

1
µv

.

The general Jacobian F is

Fgeneral =


0 0 0 b

(
βhH2

S(ι)

(HS(ι)+VI(ι))
2

)
0 0 0 0

0 b
(

βvV2
S(ι)

(VS(ι)+HI(ι))
2

)
0 0

0 0 0 0

.

Evaluating Fgeneral at the DFE E0 (where HS = Nh, VS = Am
µv

, HI = 0, VI = 0),

F = Fgeneral

∣∣∣
E0

=


0 0 0 bβh

0 0 0 0
0 bβv 0 0
0 0 0 0

.
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The basic reproduction number is the spectral radius of the next-generation matrix
K = FV−1 [41]. Thus, we have

K =


0 0 bβh Nhkv

µv(kv+µv)
bβh Nh

µv

0 0 0 0
bβv

Am
µv ηh

(µh+ηh)(δh+µh)

bβv
Am
µv

δh+µh
0 0

0 0 0 0

.

The basic reproduction number is the spectral radius of the next-generation matrix
ℜ0 = ρ(K). This calculation yields

ℜ0 = b

√
βhkvβvηh

µv(kv + µv)(µh + ηh)(δh + µh)
.

4.1.2. Stability of DFE Point

The stability of the DFE for fractional-order systems relates to ℜ0.

Theorem 5. The DFE point E0 =
(

Nh, 0, 0, 0, Am
µv

, 0, 0
)

of the dengue model (10) with fractional
order 0 < ς ≤ 1 is locally asymptotically stable if ℜ0 < 1, and it is unstable if ℜ0 > 1.

Proof. The local asymptotic stability of the Disease-Free Equilibrium (DFE), E0, is deter-
mined by the eigenvalues of the Jacobian matrix of the system (10) evaluated at E0. The
DFE is given by E0 =

(
Nh, 0, 0, 0, Am

µv
, 0, 0

)
. For clarity, let the two incidence functions be

f1(HS,VI) = b
βhHSVI
HS +VI

and f2(VS,HI) = b
βvVSHI
VS +HI

.

The stability analysis requires the partial derivatives of these functions evaluated at
the DFE. The Jacobian matrix J of the system (10), evaluated at the DFE E0, is given by

J(E0) =



−µh 0 0 0 0 0 −bβh

0 −(µh + ηh) 0 0 0 0 bβh

0 ηh −(δh + µh) 0 0 0 0
0 0 δh −µh 0 0 0
0 0 −bβv 0 −µv 0 0
0 0 bβv 0 0 −(kv + µv) 0
0 0 0 0 0 kv −µv


.

This is a block-triangular matrix. The eigenvalues are the entries on the main di-
agonal of the blocks. The eigenvalues corresponding to the uninfected compartments
(HS,HR,VS) are

λ1 = −µh, λ2 = −µh, λ3 = −µv.

These eigenvalues are all real and negative. For any fractional order 0 < ς ≤ 1, they satisfy
the stability condition | arg(λi)| = π > ςπ

2 .
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The stability of the DFE is thus determined by the eigenvalues of the sub-matrix
corresponding to the infected compartments (HE,HI ,VE,VI). This sub-matrix, which we
denote Jin f , is given by

Jin f =


−(µh + ηh) 0 0 bβh

ηh −(δh + µh) 0 0
0 bβv −(kv + µv) 0
0 0 kv −µv


The matrix Jin f is exactly the matrix F − V derived from the next-generation matrix

method, where F describes the rate of new infections and V describes the rate of transitions
between infected compartments. For a fractional-order system, the DFE is locally asymp-
totically stable if all eigenvalues λ of this sub-matrix satisfy the condition | arg(λ)| > ςπ

2 .
This condition is met if and only if the basic reproduction number, defined as the

spectral radius of the next-generation matrix, ℜ0 = ρ(FV−1), is less than one. If ℜ0 > 1,
then there exists at least one eigenvalue of Jin f with a positive real part, which means
| arg(λ)| < ςπ

2 , rendering the DFE unstable. This concludes the proof.

4.2. Dengue Model with Holling Type II Incidence Rate

Holling proposed the incidence rate of the form f (HS,VI) =
(

βhHS(ι)VI(ι)
1+θ1VI(ι)

)
, where

θ1 is the saturation constant. The occurrence of any disease outbreak in Holling type II
begins very low and gradually increases with infection. Furthermore, due to the crowding
effect, when the number of infected people is very large, the infection reaches a peak. The
model (1) with Holling type II incidence rate is presented as follows:

PMAB
0 Dς

ι HS(ι) = µhNh − b
(

βhHS(ι)VI(ι)
1+θ1VI(ι)

)
− µhHS(ι),

PMAB
0 Dς

ι HE(ι) = b
(

βhHS(ι)VI(ι)
1+θ1VI(ι)

)
− (µh + ηh)HE(ι),

PMAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),
PMAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι),

PMAB
0 Dς

ι VS(ι) = Am − b
(

βvVS(ι)HI(ι)
1+θ2HI(ι)

)
− µvVS(ι),

PMAB
0 Dς

ι VE(ι) = b
(

βvVS(ι)HI(ι)
1+θ2HI(ι)

)
− (kv + µv)VE(ι),

PMAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι).

(11)

4.2.1. Positivity and Boundedness of Model (11)

Theorem 6. The solutions of the model (11) starting in the non-negative orthant R7
+ remain

non-negative for all ι ≥ 0. Furthermore, the solutions are bounded and enter the positively
invariant region

G =

{
(HS,HE,HI ,HR,VS,VE,VI) ∈ R7

+ : HS,HE,HI ,HR ≤ K,VS,VE,VI ≤
Am

µv
+ ϵ

}
,

for some K related to Nh(0) (often K = Nh(0)) and any ϵ > 0, provided the solution starts within
G. This region G is positively invariant.

Proof. Positivity is shown by verifying that on the boundary planes of R7
+, the vector field

points into or is tangent to R7
+. For instance, if HE = 0, PMAB

0 Dς
ι HE(ι) = b

(
βhHS(ι)VI(ι)

1+θ1VI(ι)

)
≥ 0.

This holds for all variables. Boundedness follows from analyzing the total human popula-
tion Nh = HS +HE +HI +HR and total vector population Nm = VS +VE +VI . Summing
the respective equations yields PMAB

0 Dς
ι Nh = µhNh − µhNh (assuming Nh is constant total
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population) and PMAB
0 Dς

ι Nm = Am − µvNm. Standard analysis of these fractional equations
shows Nh and Nm are bounded, implying boundedness of individual compartments.

4.2.2. Equilibrium Points and Basic Reproduction Number ℜ0

The unique Disease-Free Equilibrium (DFE) is found by setting all derivatives and
infected states to zero, yielding E0 =

(
Nh, 0, 0, 0, Am

µv
, 0, 0

)
. Using the next-generation

matrix (NGM) method for the infected compartments U = (HE,HI ,VE,VI)
T , we define

the new infection terms vector F and the transition term vector V :

F =


b
(

βhHS(ι)VI(ι)
1+θ1VI(ι)

)
0

b
(

βvVS(ι)HI(ι)
1+θ2HI(ι)

)
0

, V =


(µh + ηh)HE(ι)

(δh + µh)HI(ι)− ηhHE(ι)

(kv + µv)VE(ι)

µvVI(ι)− kvVE(ι)

.

The Jacobians F = [∂Fi/∂Uj] and V = [∂Vi/∂Uj] evaluated at the DFE E0 are

F =
∂F
∂U

∣∣∣∣
E0

=


0 0 0 bβhNh

0 0 0 0
0 bβv

Am
µv

0 0

0 0 0 0

,

V =
∂V
∂U

∣∣∣∣
E0

=


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

The basic reproduction number ℜ0 = ρ(FV−1) is the spectral radius of the NGM:

ℜ0 = b

√√√√ (βhNh)kv(βv
Am
µv

)ηh

µv(kv + µv)(µh + ηh)(δh + µh)
.

This can be rewritten as

ℜ0 = b

√(
βhNhηh

(µh + ηh)(δh + µh)

)(
βvAmkv

µ2
v(kv + µv)

)
.

4.2.3. Stability of the DFE Point

Theorem 7. The DFE point E0 of the model (11) with fractional order 0 < ς ≤ 1 is locally
asymptotically stable if the basic reproduction number ℜ0 < 1, and it is unstable if ℜ0 > 1, where
ℜ0 is given above.

Proof. The stability is analyzed using the next-generation matrix method at the DFE,
E0 =

(
Nh, 0, 0, 0, Am

µv
, 0, 0

)
. The incidence functions are

f1(HS,VI) =
bβhHSVI
1 + θ1VI

and f2(VS,HI) =
bβvVSHI
1 + θ2HI

.

We compute the partial derivatives with respect to the infective populations and
evaluate them at E0. Then, we get

∂ f1

∂VI
=

(bβhHS)(1 + θ1VI)− (bβhHSVI)(θ1)

(1 + θ1VI)2 . (12)
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At E0 (where VI = 0), this simplifies as follows

∂ f1

∂VI
|E0 =

bβhNh
1

= bβhNh, (13)

and
∂ f2

∂HI
=

(bβvVS)(1 + θ2HI)− (bβvVSHI)(θ2)

(1 + θ2HI)2 . (14)

At E0 (where HI = 0), this simplifies as follows

∂ f2

∂HI
|E0 =

bβv
Am
µv

1
= bβv

Am

µv
. (15)

These derivatives form the new infection matrix F. The transition matrix V is deter-
mined by the linear terms in the infected compartments.

F =


0 0 0 bβhNh

0 0 0 0
0 bβv

Am
µv

0 0

0 0 0 0

, V =


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

The basic reproduction number is ℜ0 = ρ(FV−1). The DFE is locally asymptotically
stable if ℜ0 < 1, as this ensures all eigenvalues λ of the characteristic matrix J = F − V
satisfy the stability condition | arg(λ)| > ςπ/2. The DFE is unstable if ℜ0 > 1.

4.3. Dengue Model with Beddington–DeAngelis Type Incidence Rate

The Beddington–DeAngelis proposed the incidence rate of the form
f (HS,VI) =

(
βhHS(ι)VI(ι)

1+a1HS(ι)+a2VI(ι)

)
incorporates density dependence from both populations,

where a1 is the coefficient of preventive measures taken by susceptibles, and a2 is the
coefficient of an inhibition effect, such as treatment with infectives. The term 1 + a1HS(ι)

in the denominator can be biologically interpreted as a protective effect from the sus-
ceptible human population; for example, as disease awareness grows, more susceptible
individuals may adopt protective measures (e.g., using repellents, installing screens), which
reduces the effective contact rate. The term a2VI(ι) represents interference among infectious
mosquitoes, such as competition for hosts, which can also limit transmission. The model
(1) with THE Beddington–DeAngelis-type incidence rate is presented as follows:

PMAB
0 Dς

ι HS(ι) = µhNh − b
(

βhHS(ι)VI(ι)
1+a1HS(ι)+a2VI(ι)

)
− µhHS(ι),

PMAB
0 Dς

ι HE(ι) = b
(

βhHS(ι)VI(ι)
1+a1HS(ι)+a2VI(ι)

)
− (µh + ηh)HE(ι),

PMAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),
PMAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι),

PMAB
0 Dς

ι VS(ι) = Am − b
(

βvVS(ι)HI(ι)
1+a3VS(ι)+a4HI(ι)

)
− µvVS(ι),

PMAB
0 Dς

ι VE(ι) = b
(

βvVS(ι)HI(ι)
1+a3VS(ι)+a4HI(ι)

)
− (kv + µv)VE(ι),

PMAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι).

(16)
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4.3.1. Positivity and Boundedness

Theorem 8. The solutions of the model (16) with non-negative initial conditions remain non-
negative for all ι ≥ 0. Solutions are also bounded and eventually enter the positively invariant region

G =

{
(HS,HE,HI ,HR,VS,VE,VI) ∈ R7

+ : HS,HE,HI ,HR ≤ K,VS,VE,VI ≤
Am

µv
+ ϵ

}
,

for some K related to Nh(0) (often K = Nh(0)) and any ϵ > 0, provided the solution starts within
G. This region G is positively invariant.

Proof. Positivity follows from examining the vector field on the boundary of R7
+. Since

all terms entering a compartment are non-negative when others are non-negative, and
the denominators 1 + a1HS(ι) + a2VI(ι) and 1 + a3VS(ι) + a4HI(ι) are strictly positive,
the flow is directed inwards or is tangent. Boundedness is shown by analyzing the total
populations Nh = HS +HE +HI +HR and Nm = VS + VE + VI . Summing equations
yields PMAB

0 Dς
ι Nh = µhNh − µhNh and PMAB

0 Dς
ι Nm = Am − µvNm. These imply Nh and

Nm are bounded, SO individual compartments are bounded.

4.3.2. Equilibrium Points and Basic Reproduction Number ℜ0

The unique Disease-Free Equilibrium (DFE), found by setting derivatives and infected
states to zero, is E0 =

(
Nh, 0, 0, 0, Am

µv
, 0, 0

)
. Using the next-generation matrix (NGM)

method for U = (HE,HI ,VE,VI)
T , the new infection vector F and transition vector V are

F =


b
(

βhHS(ι)VI(ι)
1+a1HS(ι)+a2VI(ι)

)
0

b
(

βvVS(ι)HI(ι)
1+a3VS(ι)+a4HI(ι)

)
0

, V =


(µh + ηh)HE(ι)

(δh + µh)HI(ι)− ηhHE(ι)

(kv + µv)VE(ι)

µvVI(ι)− kvVE(ι)

.

The Jacobians F = ∂F/∂U and V = ∂V/∂U evaluated at the DFE E0 are

F =


0 0 0 bβh Nh

1+a1 Nh

0 0 0 0

0
bβv(

Am
µv )

1+a3(
Am
µv )

0 0

0 0 0 0

,

V =


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

The basic reproduction number ℜ0 = ρ(FV−1) is

ℜ0 = b

√√√√√( βhNh
(1 + a1Nh)

ηh
(µh + ηh)(δh + µh)

) βv(
Am
µv

)

(1 + a3
Am
µv

)

kv

µv(kv + µv)

.

4.3.3. Stability of DFE Point

Theorem 9. The DFE point E0 of the model (16) with fractional order 0 < ς ≤ 1 is locally
asymptotically stable if ℜ0 < 1 and unstable if ℜ0 > 1.
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Proof. We analyze the stability at the DFE, E0, using the next-generation matrix method.
The Beddington–DeAngelis incidence functions are given by

f1(HS,VI) =
bβhHSVI

1 + a1HS + a2VI
and f2(VS,HI) =

bβvVSHI
1 + a3VS + a4HI

.

The partial derivatives with respect to the infective populations, evaluated at E0, are
given as

∂ f1

∂VI
|E0 =

bβhNh(1 + a1Nh)

(1 + a1Nh)2 =
bβhNh

1 + a1Nh
, (17)

and
∂ f2

∂HI
|E0 =

bβv
Am
µv

(1 + a3
Am
µv

)

(1 + a3
Am
µv

)2
=

bβv
Am
µv

1 + a3
Am
µv

. (18)

These derivatives form the new infection matrix F. The transition matrix V is identical
to the previous cases.

F =


0 0 0 bβh Nh

1+a1 Nh

0 0 0 0

0
bβv

Am
µv

1+a3
Am
µv

0 0

0 0 0 0

, V =


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

The basic reproduction number is ℜ0 = ρ(FV−1). Local asymptotic stability is guaran-
teed if ℜ0 < 1, as this satisfies the fractional stability condition for all eigenvalues of the
system’s Jacobian at the DFE. The DFE is unstable if ℜ0 > 1.

4.4. Dengue Model with Crowley–Martin Type Incidence Rate

Crowley and Martin proposed the incidence rate of the form

f (HS,VI) =

(
βhHS(ι)VI(ι)

(1 + ϕ1HS(ι))(1 + ϕ2VI(ι))

)
,

where ϕi, i = 1, 2 are positive constants. The model (1) with THE Crowley–Martin-type
incidence rate is presented as follows:

PMAB
0 Dς

ι HS(ι) = µhNh − b
(

βhHS(ι)VI(ι)
(1+ϕ1HS(ι))(1+ϕ2VI(ι))

)
− µhHS(ι),

PMAB
0 Dς

ι HE(ι) = b
(

βhHS(ι)VI(ι)
(1+ϕ1HS(ι))(1+ϕ2VI(ι))

)
− (µh + ηh)HE(ι),

PMAB
0 Dς

ι HI(ι) = ηhHE(ι)− (δh + µh)HI(ι),
PMAB
0 Dς

ι HR(ι) = δhHI(ι)− µhHR(ι),

PMAB
0 Dς

ι VS(ι) = Am − b
(

βvVS(ι)HI(ι)
(1+ϕ3VS(ι))(1+ϕ4HI(ι))

)
− µvVS(ι),

PMAB
0 Dς

ι VE(ι) = b
(

βvVS(ι)HI(ι)
(1+ϕ3VS(ι))(1+ϕ4HI(ι))

)
− (kv + µv)VE(ι),

PMAB
0 Dς

ι VI(ι) = kvVE(ι)− µvVI(ι).

(19)

4.4.1. Positivity and Boundedness

Theorem 10. Solutions of model (19) starting in R7
+ remain non-negative for all ι ≥ 0. Solutions

are also bounded and eventually enter the positively invariant region

G =

{
(HS,HE,HI ,HR,VS,VE,VI) ∈ R7

+ : HS,HE,HI ,HR ≤ K,VS,VE,VI ≤
Am

µv
+ ϵ

}
,
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for some K related to Nh(0) (often K = Nh(0)) and any ϵ > 0, provided the solution starts within
G. This region G is positively invariant.

Proof. Positivity follows from the standard boundary analysis, noting that the incidence terms
are non-negative for non-negative states and the denominators (1 + ϕ1HS(ι))(1 + ϕ2VI(ι))

and (1 + ϕ3VS(ι))(1 + ϕ4HI(ι)) are always strictly positive. Boundedness follows from
analyzing the total populations Nh = HS +HE +HI +HR and Nm = VS +VE +VI , which
satisfy PMAB

0 Dς
ι Nh = µhNh − µhNh and PMAB

0 Dς
ι Nm = Am − µvNm, confirming THAT Nh

and Nm are bounded.

4.4.2. Stability of Disease-Free Equilibrium Point and Basic Reproduction Number ℜ0

The unique Disease-Free Equilibrium (DFE) is E0 =
(

Nh, 0, 0, 0, Am
µv

, 0, 0
)

. We use

the next-generation matrix (NGM) method for U = (HE,HI ,VE,VI)
T . The new infection

vector F and transition vector V are

F =


b
(

βhHS(ι)VI(ι)
(1+ϕ1HS(ι))(1+ϕ2VI(ι))

)
0

b
(

βvVS(ι)HI(ι)
(1+ϕ3VS(ι))(1+ϕ4HI(ι))

)
0

, V =


(µh + ηh)HE(ι)

(δh + µh)HI(ι)− ηhHE(ι)

(kv + µv)VE(ι)

µvVI(ι)− kvVE(ι)

.

The Jacobians F = ∂F/∂U and V = ∂V/∂U evaluated at the DFE E0 are

F =


0 0 0 bβh Nh

1+ϕ1 Nh

0 0 0 0

0
bβv(

Am
µv )

1+ϕ3(
Am
µv )

0 0

0 0 0 0

,

V =


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

Note that the Jacobian F evaluated at the DFE for this model is identical to the one obtained
for the Beddington–DeAngelis model in the previous example. This is because the terms
(1 + ϕ2VI) and (1 + ϕ4HI) become (1 + 0) = 1 in the denominator when taking the
derivative and evaluating at the DFE, effectively matching the derivatives of the B–D
functional response at zero infection levels.

Therefore, the basic reproduction number ℜ0 = ρ(FV−1) is the same as for the
Beddington–DeAngelis model:

ℜ0 = b

√√√√√( βhNh
(1 + ϕ1Nh)

ηh
(µh + ηh)(δh + µh)

) βv(
Am
µv

)

(1 + ϕ3
Am
µv

)

kv

µv(kv + µv)

.

Local stability is determined by the eigenvalues λ of the Jacobian J = F − V at E0. The con-
dition | arg(λ)| > ςπ/2 for all λ (required for stability) is equivalent to ℜ0 = ρ(FV−1) < 1.

Theorem 11. The DFE point E0 of the model (19) with fractional order 0 < ς ≤ 1 is locally
asymptotically stable if ℜ0 < 1 and unstable if ℜ0 > 1.
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Proof. We assess the stability at the DFE, E0, using the next-generation matrix method. The
Crowley–Martin incidence functions have a different denominator structure:

f1(HS,VI) = b
(

βhHS(ι)VI(ι)

(1 + ϕ1HS(ι))(1 + ϕ2VI(ι))

)
,

f2(VS,HI) = b
(

βvVS(ι)HI(ι)

(1 + ϕ3VS(ι))(1 + ϕ4HI(ι))

)
.

We compute the partial derivatives with respect to the infective populations. Let Us
analyze the first function (the second follows by analogy); we have

∂ f1

∂VI
=

bβhHS
(1 + ϕ1HS)

· ∂

∂VI

(
VI

1 + ϕ2VI

)
=

bβhHS
(1 + ϕ1HS)

· 1(1 + ϕ2VI)−VI(ϕ2)

(1 + ϕ2VI)2 . (20)

At the DFE, E0 (where VI = 0), this derivative simplifies as follows:

∂ f1

∂VI
|E0 =

bβhNh
1 + ϕ1Nh

· 1
(1 + 0)2 =

bβhNh
1 + ϕ1Nh

. (21)

By the same process, the derivative for the second function at E0, we have

∂ f2

∂HI
|E0 =

bβv
Am
µv

1 + ϕ3
Am
µv

. (22)

It is a non-trivial result that after linearization at the DFE, the Crowley–Martin in-
cidence function yields the exact same partial derivatives as the Beddington–DeAngelis
function. Therefore, the resulting new infection matrix F is identical:

F =


0 0 0 bβh Nh

1+ϕ1 Nh

0 0 0 0

0
bβv

Am
µv

1+ϕ3
Am
µv

0 0

0 0 0 0

, V =


µh + ηh 0 0 0
−ηh δh + µh 0 0

0 0 kv + µv 0
0 0 −kv µv

.

The Beddington–DeAngelis model, the basic reproduction number, ℜ0 = ρ(FV−1), is
identical. Local asymptotic stability holds if ℜ0 < 1, and the DFE is unstable if ℜ0 > 1.

5. Sensitivity Analysis
Sensitivity analysis helps quantify how changes in input parameters affect the model’s

output, in this case, the basic reproduction number ℜ0. This is crucial for identifying
parameters that have the most significant impact on disease transmission dynamics and for
prioritizing control strategies. We calculate the normalized forward sensitivity index of ℜ0

with respect to each parameter ℓ using the following formula:

Senℜ0
ℓ =

ℓ

ℜ0

∂ℜ0

∂ℓ
,

where ℓ represents one of the parameters listed in Table 1: ℓ ∈ {µh, b, βh, ηh, δh,Am, kv, µv, βv}.
A positive sensitivity index indicates that an increase in the parameter value leads to an
increase in ℜ0, thus promoting disease spread. Conversely, a negative index implies that
increasing the parameter helps reduce disease transmission. An index of +x means a
10% increase in the parameter leads to an approximate 10% increase in ℜ0. We calculate
these indices for the ℜ0 derived for each of the four incidence rate models.
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Table 1. The parameters and their descriptions for the model under consideration.

Parameter Numerical Estimation Unit Ref

δh 3.000 per month Estimated
µh 0.0012 per month [42]
µv 0.8571 per month [43]
A 0.08056 per month [37]
βh 0.1000 Dimensionless Estimated
βv 0.5000 Dimensionless [37]
ηh 2.3405 per month Estimated
kv 2.1428 per month [44]
b 9.000 per month Estimated

5.1. Model 1: Harmonic Mean Incidence Rate

The sensitivity index of ℜ0 with respect to a parameter ℓ is defined as

Senℜ0
ℓ =

ℓ

ℜ0

∂ℜ0

∂ℓ

The sensitivity indices for the parameters ℓ ∈ {µh, b, βh, ηh, δh,Am, kv, µv, βv} are calculated
as follows:

• Senℜ0
µh = µh

ℜ0

∂ℜ0
∂µh

= − µh(2µh+δh+ηh)
2(µh+ηh)(δh+µh)

= −0.00045612

• Senℜ0
b = b

ℜ0

∂ℜ0
∂b = b

ℜ0

(
ℜ0
b

)
= 1

• Senℜ0
ηh = ηh

ℜ0

∂ℜ0
∂ηh

= ηh
ℜ0

(
ℜ0µh

2ηh(µh+ηh)

)
= µh

2(µh+ηh)
= 0.000256

• Senℜ0
δh

= δh
ℜ0

∂ℜ0
∂δh

= δh
ℜ0

(
− ℜ0

2(δh+µh)

)
= − δh

2(δh+µh)
= −0.4998

• Senℜ0
kv

= kv
ℜ0

∂ℜ0
∂kv

= kv
ℜ0

(
ℜ0µv

2kv(kv+µv)

)
= µv

2(kv+µv)
= 0.14285For ℓ = kv:

• Senℜ0
µv = µv

ℜ0

∂ℜ0
∂µv

= µv
ℜ0

(
−ℜ0(kv+2µv)

2µv(kv+µv)

)
= − kv+2µv

2(kv+µv)
= −0.64285

• Senℜ0
βv

= βv
ℜ0

∂ℜ0
∂βv

= βv
ℜ0

(
ℜ0
2βv

)
= 0.5

5.2. Model 2: Holling Type II Incidence Rate

The sensitivity indices for the parameters ℓ appearing in ℜ0 are calculated as follows.

• Senℜ0
b = b

ℜ0

∂ℜ0
∂b = b

(
1
b

)
= 1

• Senℜ0
βh

= βh
ℜ0

∂ℜ0
∂βh

= βh

(
1

2βh

)
= 0.5

• Senℜ0
ηh = ηh

ℜ0

∂ℜ0
∂ηh

= ηh

(
µh

2ηh(µh+ηh)

)
= µh

2(µh+ηh)
= 0.000256

• Senℜ0
µh = µh

ℜ0

∂ℜ0
∂µh

= µh

(
− 1

2

[
1

µh+ηh
+ 1

δh+µh

])
= −0.000456

• Senℜ0
δh

= δh
ℜ0

∂ℜ0
∂δh

= δh

(
− 1

2(δh+µh)

)
= −0.4998

• Senℜ0
βv

= βv
ℜ0

∂ℜ0
∂βv

= βv

(
1

2βv

)
= 0.5

• Senℜ0
Am

= Am
ℜ0

∂ℜ0
∂Am

= Am

(
1

2Am

)
= 0.5

• Senℜ0
kv

= kv
ℜ0

∂ℜ0
∂kv

= kv

(
µv

2kv(kv+µv)

)
= 0.14285

• Senℜ0
µv = µv

ℜ0

∂ℜ0
∂µv

= µv

(
− 2kv+3µv

2µv(kv+µv)

)
= −1.14285

5.3. Model 3: Beddington–DeAngelis Incidence Rate

The sensitivity indices for the parameters ℓ appearing in ℜ0 are

• Senℜ0
b = b

(
1
b

)
= 1
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• Senℜ0
βh

= βh

(
1

2βh

)
= 0.5

• Senℜ0
ηh = ηh

(
µh

2ηh(µh+ηh)

)
= 0.000256

• Senℜ0
µh = − µh

2

(
1

µh+ηh
+ 1

δh+µh

)
= −0.000456

• Senℜ0
δh

= δh

(
− 1

2(δh+µh)

)
= −0.4998

• Senℜ0
βv

= βv

(
1

2βv

)
= 0.5

• Senℜ0
Am

= Am

(
µv

2Am(µv+a3 Am)

)
= 0.4954

• Senℜ0
kv

= kv

(
µv

2kv(kv+µv)

)
= 0.14285

• Senℜ0
µv = − 1

2

(
µv

µv+a3 Am
+ 1 + µv

kv+µv

)
= −1.1382

5.4. Model 4: Crowley–Martin Incidence Rate

The sensitivity indices for the parameters ℓ appearing in ℜ0 are

• Senℜ0
b = b

(
1
b

)
= 1

• Senℜ0
βh

= βh

(
1

2βh

)
= 0.5

• Senℜ0
ηh = ηh

(
µh

2ηh(µh+ηh)

)
= 0.000256

• Senℜ0
µh = − µh

2

(
1

µh+ηh
+ 1

δh+µh

)
= −0.000456

• Senℜ0
δh

= δh

(
− 1

2(δh+µh)

)
= −0.4998

• Senℜ0
βv

= βv

(
1

2βv

)
= 0.5

• Senℜ0
Am

= Am

(
µv

2Am(µv+φ3 Am)

)
= 0.4954

• Senℜ0
kv

= kv

(
µv

2kv(kv+µv)

)
= 0.14285

• Senℜ0
µv = − 1

2

(
µv

µv+φ3 Am
+ 1 + µv

kv+µv

)
= −1.1382

A comparative summary of the sensitivity indices of ℜ0 for different model formulations
is presented in Table 2, while the comparative analysis of dengue models with different
incidence rates under the PMABC fractional framework is presented in Table 3.

Table 2. Comparative sensitivity indices of ℜ0 for different model formulations. Values calculated
using parameters from Table 1.

Parameter Model 1 Model 2 Model 3 Model 4
(ℓ) (Harmonic Mean) (Holling II) (Beddington–D.) (Crowley–Martin)

b 1.0000 1.0000 1.0000 1.0000
βh 0.5000 0.5000 0.5000 0.5000
βv 0.5000 0.5000 0.5000 0.5000
kv 0.14285 0.1429 0.1429 0.1429
µv −0.6429 −1.1429 −1.1382 −1.1382
δh −0.4998 −0.4998 −0.4998 −0.4998
ηh 0.000256 0.0003 0.0003 0.0003
µh −0.00046 −0.000456 −0.0005 −0.0005
Am 0 0.5000 0.4954 0.4954

The choice of incidence rate fundamentally alters the strategic insights for practical
disease control, as revealed by the structural differences in the basic reproduction number
ℜ0 and the resulting parameter sensitivities. For instance, the Beddington–DeAngelis
and Crowley–Martin models explicitly incorporate behavioral and interference effects
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directly into the ℜ0 formula through denominator terms. This structural difference is
profound for public policy. It provides a direct, quantifiable link between public awareness
campaigns that promote protective behaviors and a reduction in the epidemic’s potential.
This offers a robust justification for pursuing integrated strategies that combine direct vector
control with public health messaging, a nuance entirely missed by the simpler models.
Similarly, the Crowley–Martin model’s inclusion of mutual interference suggests that at
high infection densities, transmission efficiency may decrease, a second-order effect that
could explain the faster-than-expected “burnout” observed in some intense outbreaks. The
practical importance of model choice is further underscored by the sensitivity analysis.
A key finding is the consistently high negative sensitivity index for vector mortality µv

in the three more complex models (Holling II, B-D, C-M), which is nearly double that of
the Harmonic Mean model (approximately −1.14 vs. −0.64). This implies that a vector
control measure, such as insecticide spraying, is predicted to be almost twice as effective at
reducing ℜ0 when modeled with more realistic saturation or interference assumptions. For
a public health official allocating a limited budget, this provides much stronger evidence to
prioritize and invest in vector control. Conversely, the sensitivity to mosquito recruitment
Am in the three models show a significant positive sensitivity (around +0.5), highlighting
that controlling mosquito breeding sites is a critical and effective control lever. A policy
decision based on the simpler model could lead to the dangerous misallocation of resources
away from this vital intervention. Ultimately, these differences demonstrate that while
simpler models offer a baseline, more sophisticated models like Beddington–DeAngelis
and Crowley–Martin provide a more nuanced and actionable picture. They validate a
multi-pronged control strategy by showing that public awareness, direct vector control,
and larval reduction are not just complementary but are all critical, quantifiable levers for
mitigating the spread of dengue.

Table 3. Comparative analysis of dengue models with different incidence rates under the PMABC
fractional framework.

Feature Model 1: Harmonic
Mean

Model 2: Holling Type
II

Model 3: Beddington–
DeAngelis

Model 4:
Crowley–Martin

Incidence Rate Form
f ∝ HSVI

HS+VI

f ∝ VS HI
VS+HI

f ∝ HSVI
1+θ1VI

f ∝ VS HI
1+θ2 HI

f ∝ HSVI
1+a1 HS+a2VI

f ∝ VS HI
1+a3VS+a4 HI

f ∝ HSVI
(1+ϕ1 HS)(1+ϕ2VI )

f ∝ VS HI
(1+ϕ3VS)(1+ϕ4 HI )

Conceptual Meaning

Assumes transmission
rate is limited by the
less abundant
population (human or
vector). Simple
interaction form.

Transmission saturates
as the number of
infectious individuals
increases (vectors VI or
humans HI).
Represents limited
biting capacity or
contact rate.

Transmission affected
by density of both
susceptibles (e.g.,
prevention a1, a3) and
infectives (e.g.,
interference a2, a4).

Transmission reduced
by handling
time/interference
effects from both
susceptible and
infectious populations
independently.

BRN (ℜ0)

Formula involves
βh, βv, kv, ηh and
death/incubation rates.
Simpler structure.
Section 5.1)

Similar parameters but
structurally simpler
than B-D/C-M. No
saturation terms (θi)
appear at DFE
evaluation. )

Includes terms
(1 + a1Nh) and
(1 + a3 Am/µv) in
denominator, reflecting
inhibition/prevention
effects at DFE state.

Includes terms
(1 + ϕ1Nh) and
(1 + ϕ3 Am/µv) in
denominator,
structurally similar to
B-D at DFE evaluation.

Key Differences in ℜ0
Formula

Simplest ℜ0 form.
Directly proportional to
b, βh, βv, ηh, kv.

Identical ℜ0 formula to
Harmonic Mean in this
derivation
(linearization at DFE
removes saturation
terms).

ℜ0 explicitly reduced
by baseline preven-
tion/interference
coefficients (a1, a3)
related to total
susceptible populations
at DFE.

ℜ0 explicitly reduced
by baseline interference
coefficients (ϕ1, ϕ3)
related to total
susceptible populations
at DFE. Identical form
to B-D’s ℜ0.
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Table 3. Cont.

Feature Model 1: Harmonic
Mean

Model 2: Holling Type
II

Model 3: Beddington–
DeAngelis

Model 4:
Crowley–Martin

Sensitivity Analysis
Not sensitive to Am.
High sensitivity to µv
(−0.64).

Highest sensitivity to
µv (−1.14). Sensitive to
Am (0.5).

Highest sensitivity to
µv (−1.14). Sensitive to
Am (0.5). Includes
sensitivity to a1, a3 (not
shown in Table 2 but
implied by ℜ0).

Highest sensitivity to
µv (−1.14). Sensitive to
Am (0.5). Includes
sensitivity to ϕ1, ϕ3 (not
shown in Table 2 but
implied by ℜ0).

6. Numerical Scheme of PMABC Dengue Fractional Model
In this section, we employ the numerical method introduced in [19] to solve the

model (1). This scheme is based on the fundamental definition of the pmABC fractional
derivative [19], leading to the following discrete formulation:

HS(ι) =


HS(0) +

∫ ι1
0 G1(τ,HS(τ))dτ, 0 < ι ≤ ι1,

HS(ι1) +
1−ς
▽(ς)G1(ι,HS(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G1(τ,HS(τ))dτ

− 1−ς
▽(ς)G1(0,HS(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

HE(ι) =


HE(0) +

∫ ι1
0 G2(τ,HE(τ))dτ, 0 < ι ≤ ι1,

HE(ι1) +
1−ς
▽(ς)G2(ι,HE(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G2(τ,HE(τ))dτ

− 1−ς
▽(ς)G2(0,HE(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

HI(ι) =


HI(0) +

∫ ι1
0 G3(τ,HI(τ))dτ, 0 < ι ≤ ι1,

HI(ι1) +
1−ς
▽(ς)G3(ι,HI(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G3(τ,HI(τ))dτ

− 1−ς
▽(ς)G3(0,HI(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

HR(ι) =


HR(0) +

∫ ι1
0 G4(τ,HR(τ))dτ, 0 < ι ≤ ι1,

HR(ι1) +
1−ς
▽(ς)G4(ι,HR(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G4(τ,HR(τ))dτ

− 1−ς
▽(ς)G4(0,HR(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

VS(ι) =


VS(0) +

∫ ι1
0 G5(τ,VS(τ))dτ, 0 < ι ≤ ι1,

VS(ι1) +
1−ς
▽(ς)G5(ι,VS(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G5(τ,VS(τ))dτ

− 1−ς
▽(ς)G5(0,VS(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

VE(ι) =


VE(0) +

∫ ι1
0 G6(τ,VE(τ))dτ, 0 < ι ≤ ι1,

VE(ι1) +
1−ς
▽(ς)G6(ι,VE(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G6(τ,VE(τ))dτ

− 1−ς
▽(ς)G6(0,VE(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,
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and

VI(ι) =


VI(0) +

∫ ι1
0 G7(τ,VI(τ))dτ, 0 < ι ≤ ι1,

VE(ι1) +
1−ς
▽(ς)G7(ι,VI(ι)) +

ς
▽(ς)Γ(ς)

∫ ι
ι1
(ι − τ)ς−1G7(τ,VI(τ))dτ

− 1−ς
▽(ς)G7(0,VI(0))

(
1 + ς

1−ς
ις

Γ(ς+1)

)
, ι1 < ι ≤ T,

where 

G1(ι,HS(ι)) = µhNh − b f (HS,VI)− µhHS(ι),

G2(ι,HE(ι)) = b f (HS,VI)− (µh + ηh)HE(ι),

G3(ι,HI(ι)) = ηhHE(ι)− (δh + µh)HI(ι),

G4(ι,HR(ι)) = δhHI(ι)− µhHR(ι),

G5(ι,VS(ι)) = Am − b f (VS,HI)− µvVS(ι),

G6(ι,VE(ι)) = b f (VS,HI)− (kv + µv)VE(ι),

G7(ι,VI(ι)) = kvVE(ι)− µvVI(ι).

(23)

By discretizing the above equations at ı = ık+1 = (k + 1)h, where h represents the time step
size and by using Lagrange’s interpolation polynomial with two steps [45] in terms of the
PMABC, we can represent them as follows:

HS(ıj+1) =



HS(0) + ∑
j
i=2

[
5

12 G1(ιi−2,HS(ιi−2))− 4
3 G1(ιi−1,HS(ιi−1)) + G1(ιi,HS(ιi))

]
,

0 < ıj+1 ≤ ι1,

HS(ι1) +



+ 1−ς
▽(ς)G1

(
ιj,HS

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G1(ιi,HS(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G1(ιi−1,HS(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G1(0,HS(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(24)

HE(ıj+1) =



HE(0) + ∑
j
i=2

[
5
12 G2(ιi−2,HE(ιi−2))− 4

3 G2(ιi−1,HE(ιi−1)) + G2(ιi,HE(ιi))
]
,

0 < ıj+1 ≤ ι1,

HE(ι1) +



+ 1−ς
▽(ς)G2

(
ιj,HE

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G2(ιi,HE(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G2(ιi−1,HE(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G2(0,HE(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(25)
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HI(ıj+1) =



HI(0) + ∑
j
i=2

[
5

12 G3(ιi−2,HI(ιi−2))− 4
3 G3(ιi−1,HI(ιi−1)) + G3(ιi,HI(ιi))

]
,

0 < ıj+1 ≤ ι1,

HI(ι1) +



+ 1−ς
▽(ς)G3

(
ιj,HI

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G3(ιi,HI(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G3(ιi−1,HI(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G3(0,HI(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(26)

HR(ıj+1) =



HR(0) + ∑
j
i=2

[
5
12 G4(ιi−2,HR(ιi−2))− 4

3 G4(ιi−1,HR(ιi−1)) + G4(ιi,HR(ιi))
]
,

0 < ıj+1 ≤ ι1,

HR(ι1) +



+ 1−ς
▽(ς)G4

(
ιj,HR

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G4(ιi,HR(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G4(ιi−1,HR(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G4(0,HR(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(27)

VS(ıj+1) =



VS(0) + ∑
j
i=2

[
5

12 G5(ιi−2,VS(ιi−2))− 4
3 G5(ιi−1,VS(ιi−1)) + G5(ιi,VS(ιi))

]
,

0 < ıj+1 ≤ ι1,

VS(ι1) +



+ 1−ς
▽(ς)G5

(
ιj,VS

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G5(ιi,VS(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G5(ιi−1,VS(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G5(0,VS(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(28)

VE(ıj+1) =



VE(0) + ∑
j
i=2

[
5
12 G6(ιi−2,VE(ιi−2))− 4

3 G6(ιi−1,VE(ιi−1)) + G6(ιi,VE(ιi))
]
,

0 < ıj+1 ≤ ι1,

VE(ι1) +



+ 1−ς
▽(ς)G6

(
ιj,VE

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G6(ιi,VE(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G6(ιi−1,VE(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G6(0,VE(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(29)
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and

VI(ıj+1) =



VI(0) + ∑
j
i=2

[
5

12 G7(ιi−2,VI(ιi−2))− 4
3 G7(ιi−1,VI(ιi−1)) + G7(ιi,VI(ιi))

]
,

0 < ıj+1 ≤ ι1,

VI(ι1) +



+ 1−ς
▽(ς)G7

(
ιj,VI

(
ιj
))

+ ςhς

▽(ς)Γ(ς+2) ∑
j
i=1

[
G7(ιi,VI(ιi))

(
(j + 1 − i)ς(2 + j + ς − i)
−(j − i)ς(j + 2 + 2ς − i)

)

−G7(ιi−1,VI(ιi−1))

(
(j + 1 − i)ς+1

−(j + 1 + ς − i)(j − i)ς

)]
− 1−ς

▽(ς)G7(0,VI(0))
(

1 + ς
1−ς

(jh)ς

Γ(ς+1)

)
, ι1 < ıj+1 ≤ T

(30)

where 

G1(ι,HS(ι)) = µhNh − b f (HS,VI)− µhHS(ι),
G2(ι,HE(ι)) = b f (HS,VI)− (µh + ηh)HE(ι),

G3(ι,HI(ι)) = ηhHE(ι)− (δh + µh)HI(ι),
G4(ι,HR(ι)) = δhHI(ι)− µhHR(ι),

G5(ι,VS(ι)) = Am − b f (VS,HI)− µvVS(ι),
G6(ι,VE(ι)) = b f (VS,HI)− (jv + µv)VE(ι),

G7(ι,VI(ι)) = kvVE(ι)− µvVI(ι).

7. Numerical Simulations and Discussion
Let ▽(ς) = 1, and ς = 0.6, 0.65, 0.7, 0.75. Consider the approximate solutions (24)–(30);

we simulate the following four types of incidence rates in the piecewise modified fractional
dengue model. The parameter values used for the numerical simulations, presented in
Table 1, are a combination of values established in the existing dengue literature [37,42–44]
and illustrative estimates designed to demonstrate the model’s comparative dynamics. A
full calibration to a specific outbreak dataset is a key direction for future work.

The initial human total population Nh(0) = 1, 91, 82, 856 and the initial mosquito total
population are assumed as Nm(0) = 2 × Nh(0). The initial conditions are

HS(0) > 0, HE(0) > 0, HI(0) > 0, HR(0) > 0,

VS(0) > 0, VE(0) > 0, VI(0) > 0.

Figure 2 presents the classes with the harmonic incidence rate f (HS,VI) =
(

βhHS(ι)VI(ι)
HS(ι)+VI(ι)

)
and f (VS,HI) =

(
βvVS(ι)HI(ι)
VS(ι)+HI(ι)

)
. Figure 3 presents the classes with the Holling inci-

dence rate f (HS,VI) =
(

βhHS(ι)VI(ι)
1+θ1VI(ι)

)
and f (VS,HI) =

(
βhVS(ι)HI(ι)

1+θ2HI(ι)

)
where θ1 and θ2

are saturation constants. Figure 4 presents the classes with the Beddington incidence
rate f (HS,VI) =

(
βhHS(ι)VI(ι)

1+a1HS(ι)+a2VI(ι)

)
and f (VS,HI) =

(
βhVS(ι)HI(ι)

1+a3VS(ι)+a4HI(ι)

)
where a1, a2, a3,

a4 are positive constants. Figure 5 presents the classes with the Crowley incidence
rate f (HS,VI) =

(
βhHS(ι)VI(ι)

(1+ϕ1HS(ι))(1+ϕ2VI(ι))

)
and f (VS,HI) =

(
βhVS(ι)HI(ι)

(1+ϕ1VS(ι))(1+ϕ2HI(ι))

)
where

ϕi, i = 1, 2, 3, 4 are positive constants.
Figures 2–5 present the numerical simulations for each of the four incidence rates.

Qualitatively, the dynamics of the infected compartments in each model exhibit a pattern
consistent with typical single-strain epidemic outbreaks: an initial exponential rise in cases,
followed by a peak and a subsequent decline as the susceptible population is depleted. The
key differences, as we will discuss, lie in the magnitude and timing of these peaks and the
long-term equilibrium behavior, which are directly influenced by the choice of incidence
function and the fractional order.
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Figure 2. Numerical solutions of susceptible individuals, exposed individuals, infected individuals,
recovered individuals, susceptible mosquitoes, exposed mosquitoes, and infected mosquitoes at
various fractional orders with the harmonic incidence rate.
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Figure 3. Numerical solutions of susceptible individuals, exposed individuals, infected individuals,
recovered individuals, susceptible mosquitoes, exposed mosquitoes, and infected mosquitoes at
various fractional orders with The Holling incidence rate.
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Figure 4. Numerical solutions of susceptible individuals, exposed individuals, infected individuals,
recovered individuals, susceptible mosquitoes, exposed mosquitoes, and infected mosquitoes at
various fractional orders with the Beddington incidence rate.
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Figure 5. Numerical solutions of susceptible individuals, exposed individuals, infected individuals,
recovered individuals, susceptible mosquitoes, exposed mosquitoes, and infected mosquitoes at
various fractional orders with the Crowley incidence rate.
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Figures 2–4 collectively serve as the visual output of the numerical simulations per-
formed in this study. Each figure is dedicated to illustrating the dynamics of the dengue
transmission model under one specific non-linear incidence rate formulation, all within
the framework of the piecewise modified Atangana–Baleanu–Caputo (PMABC) fractional
derivative. Figure 2 (Harmonic Mean) simulates the model using the Harmonic Mean
incidence rate. It displays the time evolution of all seven compartments (susceptible hu-
mans HS, exposed humans HE, infectious humans HI , recovered humans HR, susceptible
mosquitoes VS, exposed mosquitoes VE, infectious mosquitoes VI). The curves within each
subplot represent simulations performed with varying fractional orders in the plots. The
plots mark the “Switch Time ι = 20”, indicating the point where the model transitions
from classical to fractional dynamics as defined by the PMABC operator. The dynamics
shown reflect the specific transmission behavior assumed by the Harmonic Mean rate.
Figure 3 (Holling Type II), analogous to Figure 3, presents the simulation results when the
Holling Type II (saturation) incidence rate is employed. Again, the temporal dynamics of
all compartments are shown for various fractional orders under the PMABC framework
with the same switch time. The expected visual difference compared to Figure 2 would
stem from the saturation effect inherent in the Holling II function, potentially leading to
different peak sizes or stabilization levels, especially under high infection pressure. Figure 4
(Beddington–DeAngelis) corresponds to the simulations using the Beddington–DeAngelis
(B-D) incidence rate. This rate incorporates effects related to both susceptible and infectious
populations (e.g., preventive measures by susceptibles and interference among infectious
individuals/vectors). The resulting curves, plotted for different fractional orders within the
PMABC structure, would visually differ from Figures 2 and 3 due to these more complex
interaction assumptions. Finally, Figure 5 (Crowley–Martin) shows the model dynamics
when the Crowley–Martin incidence rate is used, which introduces mutual interference
terms for both interacting populations. As with the previous figures, it illustrates the
compartment evolutions over time for various fractional orders “s” under the piecewise
operator. The specific form of this rate would lead to distinct dynamic patterns compared
to the other three scenarios. The critical value of presenting these four figures side-by-side
lies in their comparative potential. By keeping the underlying model structure (compart-
ments, parameters, PMABC framework, and switch time) constant and only changing
the incidence rate function, these figures are designed to visually highlight how signif-
icantly this single structural choice—representing the assumed mechanism of infection
transmission—can alter the predicted course of the dengue epidemic. A visual comparison
of the simulations reveals critical differences in predicted outbreak dynamics. The Holling
Type II model (Figure 3), for instance, exhibits a saturation effect that results in a lower
but more prolonged epidemic peak compared to the sharp, intense outbreak predicted
by the Harmonic Mean model (Figure 2). Furthermore, the Beddington–DeAngelis and
Crowley–Martin models (Figures 4 and 5), which account for interference, predict a more
rapid decline post-peak, suggesting that behavioral changes can significantly shorten an
outbreak’s duration. Differences in peak infection levels, the timing of peaks, the rate of
decline, and the final equilibrium states across Figures 2–5 would underscore the impor-
tance of selecting an appropriate incidence rate based on biological realism and data fitting.
Furthermore, observing how the fractional order modifies the dynamics within each figure
demonstrates the added layer of complexity and potential realism offered by the fractional
calculus approach.
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8. Conclusions
We have developed and comprehensively analyzed a dengue fever transmission model

utilizing the novel piecewise modified Atangana–Baleanu–Caputo (PMABC) fractional
derivative framework. The primary contribution involved a systematic comparative inves-
tigation of the model’s dynamics under four distinct and sophisticated non-linear incidence
functions: Harmonic Mean, Holling Type II, Beddington–DeAngelis, and Crowley–Martin.
This specific PMABC operator was employed to capture potential temporal heterogeneity
in transmission dynamics, allowing for an initial classical phase followed by a fractional
phase potentially reflecting memory effects or accumulated impacts over the course of an
epidemic. We have established the model’s well-posedness (positivity and boundedness of
solutions), determined the basic reproduction number (ℜ0) for each incidence rate variant
using the next-generation matrix method, and assessed the stability of the disease-free
equilibrium based on ℜ0. Furthermore, a comparative sensitivity analysis quantified how
key epidemiological parameters influence ℜ0 across the four different model structures.
These analytical findings were complemented by numerical simulations, using a tailored
scheme derived from the fundamental definition of the PMABC operator, which visualized
the distinct dynamic behaviors resulting from each incidence rate choice under varying
fractional orders. The central finding of this study underscores that the selection of the
non-linear incidence rate function critically impacts key epidemiological predictions, even
when embedded within the same sophisticated PMABC fractional framework. While the
Beddington–DeAngelis and Crowley–Martin models yielded identical ℜ0 expressions and
similar sensitivity profiles at the DFE within this framework, the underlying non-linear
dynamics, particularly away from the DFE suggested by simulations, can differ. The Har-
monic Mean and Holling Type II models also presented unique characteristics regarding ℜ0

structure and parameter sensitivities (e.g., differing sensitivities to mosquito recruitment
Am and mortality µv). This comparative analysis demonstrates the necessity of carefully
considering the biological assumptions underpinning the choice of incidence rate, as it
significantly alters model outcomes concerning transmission thresholds, parameter impor-
tance, and overall system dynamics. The study also highlights the utility of the PMABC
operator in providing a flexible structure to model potential crossover behavior in epidemic
dynamics, offering a more nuanced approach than traditional integer-order or standard
fractional models alone. The findings provide valuable insights for model selection in
future dengue research and for the assessment of potential intervention strategies, empha-
sizing that predictions and inferred control targets can be highly sensitive to the chosen
mathematical representation of the transmission mechanism. Despite the comprehensive
nature of this comparative analysis, we acknowledge several limitations. First, this study is
primarily theoretical; the parameter values were adopted from existing literature and not
fitted to a specific epidemiological dataset. Real-world applications would require rigorous
parameter estimation and model validation against dengue incidence data. Second, the
model assumes homogeneous mixing, neglecting heterogeneities such as age structure,
spatial distribution, and variations in socioeconomic conditions, which can significantly
impact transmission. Finally, our model does not account for other important biological fac-
tors, such as different dengue serotypes, co-infections, or the influence of climate variables
on mosquito populations.

From a public health perspective, our findings have direct policy implications. The
consistently high sensitivity of ℜ0 to the vector mortality rate (µv) across the more complex
models (Holling II, B-D, Crowley–Martin) provides robust theoretical support for priori-
tizing vector control strategies, such as insecticide spraying and larval source reduction.
Furthermore, the explicit inclusion of behavioral parameters in the Beddington–DeAngelis
and Crowley–Martin models demonstrates that public health campaigns aimed at re-
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ducing human–vector contact can significantly lower the transmission potential. Our
framework provides a tool for quantitatively estimating the potential effectiveness of such
combined interventions.

In conclusion, this work not only provides a robust comparison of common incidence
functions but also demonstrates the power of the PMABC fractional framework to advance
the modeling of complex, evolving disease dynamics, offering a significant improvement
in realism over models that assume static dynamics, whether integer-order or constant-
order fractional.

Future work should aim to address the following points.

• Model Calibration and Validation: Applying the framework to real-world dengue
incidence data from a specific region to estimate parameters and validate predictions.

• Multi-Strain Dynamics: Extending the model to include the co-circulation of multiple
dengue serotypes, which is crucial for understanding antibody-dependent enhancement.

• Spatial Heterogeneity: Incorporating spatial dynamics to model transmission between
different geographical areas (e.g., urban vs. rural).

• Stochastic Formulation: Developing a stochastic version of the model to account for
random fluctuations and generate prediction confidence intervals.

• Sensitivity to ι1: Performing a rigorous sensitivity analysis of the crossover point ι1 to
quantify the impact of intervention timing.
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