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Abstract: Evolution equations with fractional-time derivatives and singular memory ker-
nels are used for modeling phenomena exhibiting hereditary properties, as they effec-
tively incorporate memory effects into their formulation. Time-fractional partial integro-
differential equations (FPIDEs) represent a significant class of such evolution equations
and are widely used in diverse scientific and engineering fields. In this study, we use the
sinc-collocation and iterative Laplace transform methods to solve a specific FPIDE with a
weakly singular kernel. Specifically, the sinc-collocation method is applied to discretize
the spatial domain, while a combination of numerical techniques is utilized for temporal
discretization. Then, we prove the convergence analytically. To compare the two methods,
we provide two examples. We notice that both the sinc-collocation and iterative Laplace
transform methods provide good approximations. Moreover, we find that the accuracy of
the methods is influenced by fractional order α ∈ (0, 1) and the memory-kernel parameter
β ∈ (0, 1). We observe that the error decreases as β increases, where the kernel becomes
milder, which extends the single-value study of β = 1/2 in the literature.

Keywords: fractional partial integro-differential equation; sinc-collocation method;
iterative Laplace transform method; weakly singular kernel

1. Introduction
While classical integer-order derivatives remain highly effective for modeling many

phenomena, their locality operators may not fully capture certain complex phenomena
in applied mathematics that depend on a system’s past states, particularly those with
non-local characteristics. Fractional (non-local) derivatives can offer an alternative to the
classical framework by offering additional flexibility for describing processes with memory
and hereditary effects, including those in epidemiology [1,2], viscoelastic materials [3],
and gas-film dynamics [4]. Nevertheless, it is challenging to solve most fractional dif-
ferential equations analytically. This situation has led to the development of numerous
numerical techniques for solving fractional differential equations. Numerous studies have
been conducted on integro-differential equations. The topic of applying various methods
to solve integral equations with fractional derivatives has been the subject of multiple
prior studies. For instance, fractional integro-differential equations of weakly singular
kernels have been solved using the sinc-collocation method [5], Galerkin spectral and finite
difference methods [6], the mesh-free methods [7,8], the Haar wavelet method [9], double
Laplace transform [10], parallel-in-time (PinT) algorithm [11,12], and high-order finite

Fractal Fract. 2025, 9, 392 https://doi.org/10.3390/fractalfract9060392

https://doi.org/10.3390/fractalfract9060392
https://doi.org/10.3390/fractalfract9060392
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-9686-6834
https://orcid.org/0000-0002-8412-2624
https://orcid.org/0000-0003-1990-1928
https://doi.org/10.3390/fractalfract9060392
https://www.mdpi.com/article/10.3390/fractalfract9060392?type=check_update&version=1


Fractal Fract. 2025, 9, 392 2 of 25

difference [13]. Moreover, a sinc-Galerkin approach to solving the fourth-order partial
integro-differential equation with a weakly singular kernel is proposed in [14].

In this work, we examine the sinc-collocation and the iterative Laplace methods to
solve a time-fractional partial integro-differential equation (FPIDE) with a weakly singular
kernel. Let u(x, t) be a differentiable function. Then, the Caputo-fractional derivative of
order α ∈ (0, 1) is defined as follows [15]:

Dα
t u(x, t) = J1−α

t
∂u(x, t)

∂t
=

1
Γ(1 − α)

∫ t

0

1
(t − η)α

∂u(r, η)

∂η
dη. (1)

where Jα
t is the Riemann–Liouville fractional integral operator is given by the following:

Jα
t u(x, t) =

1
Γ(α)

∫ t

0

1
(t − η)1−α

u(x, η) dη, α > 0.

We adopt the Caputo definition of the fractional derivative here because it is well-
suited to modeling physical processes with classical initial conditions.

Consider FPIDE with a weakly singular kernel:

Dα
t u(x, t) = uxx(x, t) +

∫ t

0
(t − s)β−1uxx(x, s)ds + H(x, t), (x, t) ∈ Ω

Boundary conditions: u(a, t) = u(b, t) = 0, (2)

Initial condition: u(x, 0) = g(x),

where α, β ∈ (0, 1), Dα is the Caputo-fractional derivative, Ω = [a, b]× [0, T], and H(x, t) is
a given function.

To guarantee the existence of a unique solution of Equation (2) in C([0, T], L2(a, b)),
we assume that g(x) ∈ L2(a, b), the source term H(x, t) ∈ L2(Ω), and the kernel (t − s)β−1

is completely monotone. A comprehensive review of the relevant frameworks and detailed
proofs can be found in [16]. In the rest of the manuscript, we assume that the solution
u(x, t) of (2) is unique and sufficiently smooth in both time and space, to consider the
second-order weighted and shifted Grünwald difference formula to discretize the Caputo
derivative in Equation (2), see, e.g., [17].

The parameter β ∈ (0, 1) is called the order of the memory kernel, and it represents
the order of singularity in the kernel (t − s)β−1 when s = t. This kind of singularity leads
to a convergent integral; hence, Equation (2) is said to have a weakly singular kernel. In
this work, we aim to solve Equation (2) and discuss the influence of the orders of the
fractional derivative α and memory kernel β on the robustness of the proposed methods.
This kernel models a secondary relaxation mechanism that decays, allowing Equation (2) to
capture both instantaneous and retarded diffusion. Applications include anomalous tracer
transport in fractured media [18], thermal waves in polymers [19], and charge migration
in amorphous semiconductors [20]. Recent analytical and numerical works study related
initial–boundary value problems [21,22], underscoring the current interest in mixed Ca-
puto–Volterra models. In [5], the authors studied the solution of Equation (2) when β = 0.5.
However, varying β in (0, 1) will allow testing the accuracy of our proposed methods across
a range of kernel singularities as the kernel becomes sharper when β → 0 or milder when
β → 1 [23].

The paper is organized as follows: Section 2 presents the spatial discretization of uxx in
Equation (2) using the sinc-collocation method, along with related convergence results. In
Section 3, the time-fractional derivative and integral term in Equation (2) are approximated
using the weighted and shifted Grünwald operator and a quadrature formula based on the
product trapezoidal integration rule, respectively. Section 4 establishes the convergence
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results of the proposed method. An overview of the iterative Laplace transform method
is provided in Section 5. Section 6 presents two numerical examples that illustrate the
implementation of the proposed method and its comparison with the iterative Laplace
transform method. Finally, Section 7 discusses the obtained results.

2. The sinc-Collocation Method for Spatial Discretization
In this section, we provide notations and definitions and review the main results for

the sinc-collocation method [24,25]. Throughout this manuscript, we denote the set of all
integers, the real line, and the complex plane by Z, R, and C, respectively.

First, we begin by defining the sinc function, which is a function defined on the entire
set of real numbers R by

sinc(x) =


sin(πx)

πx , x ̸= 0,

1, x = 0.

For the sinc-collocation method, we derive its basis from the Whittaker cardinal functions

S(j, hx)(x) = sinc
(

x − jhx

hx

)
for j ∈ Z and any step size hx > 0. Note that the function S(j, hx)(x) is a shifted and scaled
version of the function sinc(x), that is, it is symmetric about x = jhx. More precisely, the
parameter j introduces a horizontal shift, moving the center of symmetry of sinc(x) from
x = 0 to x = jhx, while hx scales the function accordingly, see Figure 1.

Consequently, for any function f : R → R, we define the series

C( f , hx)(x) =
∞

∑
j=−∞

f (jh)S(j, hx)(x)

as the Whittaker cardinal expansion of f , provided it converges [26]. Fix 0 < d ≤ π
2 . For

this fixed d , we choose the infinite strip-shaped region Dd in the complex plane

Dd = {w ∈ C : |Im(w)| < dand 0 < d ≤ π

2
}

to provide a domain for the Whittaker cardinal expansion that guarantees convergence.
The choice of d, such that 2d < π, is related to the growth constraints of f of exponential
type less than π, i.e., | f (z)| ≤ q1eπ|q2| with 0 < q1 and 0 < q2 < π.

Let Nx ∈ Z+, the set of all positive integers, and choose a step size hx appropri-
ately depending on Nx such that the Whittaker cardinal expansion f (x) = C( f , hx)(x) is
convergent, then the function f is approximated by (see Figure 2)

f (x) ≈ fNx
(x) =

Nx

∑
j=−Nx

f (jh)S(j, hx)(x). (3)

Note that Equation (2) is focused on the interval [a, b] ⊂ R. To transform the basis
functions on the interval (a, b), we consider a conformal map, which is a complex function
that preserves angles locally, that is, it is analytic and its derivative never vanishes [27]. We
take the conformal map [24,25]

w = ϕ(z) = ln
(

z − a
b − z

)
,

which transforms the simple connected region (see Figure 3)
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Figure 1. The symmetry of the function S(j, hx)(x) around x = jhx with Row 1: j = 0,±1,±2 when
hx = 2.5, Row 2: hx = 0.5, 1.5, 2.5 when j = ±2. The parameter j determines the horizontal shift, and
hx controls the scaling.

Figure 2. The effect of the choice of Nx on the approximation f (x) ≈ fNx
(x) in (3).

DE =

{
z ∈ C :

∣∣∣∣arg
(

z − a
b − z

)∣∣∣∣ < dand 0 < d ≤ π

2

}
,

to the strip-shaped region Dd. In this case, the branch of the logarithm is chosen such that
the argument of (z − a)/(b − z) is restricted to (−d, d), mapping the boundaries of the
z-domain to the lines Im(w) = ±d (see Figure 3). It is easy to check that
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z = ϕ−1(w) =
a + bew

1 + ew .

Note that a, b ∈ ∂DE, i.e., on the boundary of DE, with a = ϕ−1(−∞) and b = ϕ−1(∞).
Consequently, we set (see Figure 3)

Θ = {ϕ−1(η) : η ∈ R} ⊂ DE.

Figure 3. Illustration of the eye-shaped region DE the strip-shaped region Dd with the corresponding
conformal map ϕ and its inverse ϕ−1.

Let hx > 0 and consider the uniformly distributed points {jhx}j∈Z ⊂ Dd on the real
line. Then, the corresponding points xj ∈ Θ are (see Figure 3)

xj = ϕ−1(jhx) =
a + bejhx

1 + ejhx
, j ∈ Z.

Hence, the basis functions on (a, b) are

Sj(z) = S(j, hx)(x) ◦ ϕ(z) = sinc
(

ϕ(z)− jhx

hx

)
, j ∈ Z. (4)

Note that these sinc functions satisfy

δ
(p)
jk = hp

x
dpSj(x)

dxp

∣∣∣∣
x=xk

, p = 0, 1, 2, . . . .

In particular, we have

δ
(0)
jk = Sj(xk) =

{
1, if j = k,
0, if j ̸= k,

δ
(1)
jk = hx

dSj(x)
dx

∣∣∣∣
x=xk

=

{
0, if j = k,

(−1)k−j

k−j , if j ̸= k,
(5)

δ
(2)
jk = h2

x
d2Sj(x)

dx2

∣∣∣∣∣
x=xk

=


−π2

3 , if j = k,
−2(−1)k−j

(k−j)2 , if j ̸= k.

To approximate the function f by a finite series on (a, b) using sinc functions in (4)
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f (x) ≈ fNx
(x) =

Nx

∑
j=−Nx

f (xj)Sj(x), (6)

we provide the following conditions on f to guarantee convergence.

Definition 1 ([24]). Let κ > 0, Σ =
{

iy : |y| < dand 0 < d ≤ π
2
}

and for f : DE → C set

Pt( f ) =
∫

ϕ−1(t+Σ)
| f (z)|dz and Q( f ) =

∫
∂DE

| f (z)dz|.

Here, t + Σ = {z ∈ C : Re(z) = tand iIm(z) ∈ Σ}. Then, we define the following families of
functions B1(DE) and B2(DE) on DE:

B1(DE) =

{
f : DE → C : f is analytic, lim

t→∞
Pt( f ) = 0, and Q( f ) < ∞

}
,

B2(DE) =
{

f : DE → C : f is analytic, | f (z)| ≤ C0e−κ|ϕ(x)|for some C0 ∈ R+

}
.

The following theorem provides an approximation of the p-derivative of f (x) [25].

Theorem 1. If the conformal map ϕ is one-to-one and f (x), ϕ′(x) ∈ B1(DE). Then, for all x ∈ Θ,
we have ∣∣∣∣∣ f (x)−

Nx

∑
j=−Nx

f
(
xj
)
Sj(x)

∣∣∣∣∣ ≤ 2Q( f ϕ′)

πd
e−πd/hx .

Moreover, when f (x) ∈ B2(DE) and hx =
√

πd
κNx

, then there exists C1 ∈ R+ such that

sup
x∈Θ

∣∣∣∣∣dp f (x)
dxp −

Nx

∑
j=−Nx

f
(

xj
)dpSj(x)

dxp

∣∣∣∣∣ ≤ C1N(p+1)/2
x e−

√
πκdNx ,

for p = 0, 1, 2, . . .. The constant C1 depends on p, ϕ, d, κ, and f .

Note that Theorem 1 provides an approximation of the p-derivative of f (x) with an
exponential convergent, that is,

dp f (x)
dxp =

Nx

∑
j=−Nx

f
(
xj
)dpSj(x)

dxp +O
(

N(p+1)/2
x e−

√
πκdNx

)
.

Recall that Sj(z) = S(j, hx)(x) ◦ ϕ(z). Hence, at x = xk, we have

d2 f (xk)

dx2 ≈
Nx

∑
j=−Nx

(
1
hx

δ
(1)
jk ϕ′′(xk) +

1
h2

x
δ
(2)
jk
(
ϕ′(xk)

)2
)

f
(
xj
)
. (7)

Let mx = 2Nx + 1. To help represent discrete systems, we define the column vectors

F(X) =
[

f
(
x−Nx

)
, . . . , f

(
xNx

)]T ,

d2F(X)

dx2 =

[
d2 f (x−Nx

)

dx2 , . . . ,
d2 f (xNx

)

dx2

]T

,

where X = [x−Nx
, . . . , xNx

]T , and the following mx × mx matrices, the diagonal matrix

D(g) = diag
[
g
(
x−Nx

)
, . . . , g

(
xNx

)]
,
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and using (5), we have

I(p) =
[
δ
(p)
jk

]Nx

j,k=−Nx
, p = 0, 1, 2.

The matrix I(0) is the identity matrix, I(1) is the skew symmetric Toeplitz matrix

I(1) =



0 −1 1
2 − 1

3 · · · (−1)mx−1

mx−1

1 0 −1 1
2 · · · − (−1)mx−2

mx−2

− 1
2 1 0 −1 · · · (−1)mx−3

mx−3
1
3 − 1

2 1 0 · · · − (−1)mx−4

mx−4
...

...
...

...
. . .

...

− (−1)mx−1

mx−1
(−1)mx−2

mx−2 − (−1)mx−3

mx−3
(−1)mx−4

mx−4 · · · 0


and I(2) is and the symmetric Toeplitz matrix

I(2) =



−π2

3 2 − 1
2

2
9 · · · −2(−1)mx−1

(mx−1)2

2 −π2

3 2 − 1
2 · · · −2(−1)mx−2

(mx−2)2

− 1
2 2 −π2

3 2 · · · −2(−1)mx−3

(mx−1)3

2
9 − 1

2 2 −π2

3 · · · −2(−1)mx−4

(mx−1)4

...
...

...
...

. . .
...

−2(−1)mx−1

(mx−1)2
−2(−1)mx−2

(mx−2)2
−2(−1)mx−3

(mx−1)3
−2(−1)mx−4

(mx−1)4 · · · −π2

3


.

Hence, we can write Equation (7) as

d2F(X)
dx2 ≈

[
1
hx

D
(
ϕ′′)I(1) + 1

h2
x

D
((

ϕ′)2
)

I(1)
]

F(X). (8)

Consequently, we approximate uxx(x, t) in (2) by (7) or (8)

uxx(xk, t) ≈
Nx

∑
j=−Nx

(
1
hx

δ
(1)
jk ϕ′′(xk) +

1
h2

x
δ
(2)
jk
(
ϕ′(xk)

)2
)

u(xj, t), (9)

or

Uxx(X, t) ≈
[

1
hx

D
(
ϕ′′)I(1) + 1

h2
x

D
((

ϕ′)2
)

I(1)
]

U(X, t), (10)

respectively, where

U(X, t) =
[
u(x−Nx

, t), . . . , u(xNx
, t)
]T ,

Uxx(X, t) =
[
uxx(x−Nx

, t), . . . , uxx(xNx
, t)
]T .

3. The Temporal Discretization
In this section, we approximate the time-fractional derivative and integral term in (2).

Let Nt ∈ Z+ and set ∆t = T/Nt. Denote tn = n∆t, un = u(x, tn), and Hn = H(x, tn) for
n = 0, . . . , Nt.

To approximate the time-fractional derivative in (2), we use the weighted and shifted
Grünwald difference (WSGD) operator. Suppose that ψ(t) ∈ L1(R) and ψ(t) ∈ Cα+1(R).
Then, the shifted Grünwald difference operator is defined by [28]

Gα
∆t,mψ(t) =

1
∆tα

∞

∑
i=0

ξ
(α)
i ψ(t − (i − m)∆t),
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where m ∈ Z and the coefficients ξ
(α)
i can be evaluated recursively as

ξ
(α)
0 = 1, ξ

(α)
i =

(
1 − α + 1

i

)
ξα

i−1, i = 1, 2, · · · .

Moreover, we have
Gα

∆t,mψ(t) = Dα
t ψ(t) + O(∆t)

uniformly for t ∈ R as ∆t → 0.

Theorem 2 ([29]). Assume ψ(t), Dα+2
t ψ(t), and F

{
Dα+2

t ψ
}

belong to the Lebesgue space L1(R),
where F denotes the Fourier transform. Then, the weighted and shifted Grünwald difference operator
is defined by

Dα
∆t,m,rψ(t) =

2r − α

2(r − m)
Gα

∆t,mψ(t) +
2m − α

2(m − r)
Gα

∆t,rψ(t),

where m and r are integers such that m ̸= r. Then,

Dα
∆t,m,rψ(t) = Dα

t ψ(t) + O
(

∆t2
)

,

uniformly for t ∈ R as ∆t → 0. Furthermore, the m and r are symmetric, that is, Dα
∆t,m,r = Dα

∆t,r,m.

Theorem 2 implies that the discrete approximations for Riemann–Liouville fractional
derivatives when 0 < α < 1 is simplified as [30]:

Dα
t u(x, tn) =

1
∆tα

((
1 +

α

2

) n

∑
i=0

ξ
(α)
i u(x, tn−i)−

α

2

n−1

∑
i=0

ξ
(α)
i u(x, tn−i−1)

)
+ O

(
∆t2
)

=
1

∆tα

n

∑
i=0

w(α)
i u(x, tn−i) + Ẽn+1, (11)

where Ẽn+1 = O
(
∆t2) and

w(α)
0 =

(
1 +

α

2

)
ξ
(α)
0 = 1 +

α

2
, w(α)

k =
(

1 +
α

2

)
ξ
(α)
i − α

2
ξ
(α)
i−1, i ≥ 1.

For the integral term in (2) involving the weakly singular kernel, we use a quadra-
ture approximation based on a product trapezoidal integration rule [31,32]. For n = 0,
. . . , Nt − 1, we have

∫ tn+1

0
(tn+1 − s)β−1uxx(x, s)ds =

n

∑
i=0

∫ ti+1

ti

(tn+1 − s)β−1uxx(x, s)ds

=
n

∑
i=0

∫ ti+1

ti

(tn+1 − s)β−1
(

ti+1 − s
∆t

uxx(x, ti) +
s − ti

∆t
uxx(x, ti+1)

)
ds + Ên+1

=
1

∆t

n

∑
i=0

(Pn,iuxx(x, ti)(x) + Qn,iuxx(x, ti+1)) + Ên+1,

where

Pn,i =
∫ ti+1

ti

(tn+1 − s)β−1(ti+1 − s)ds, Qn,i =
∫ ti+1

ti

(tn+1 − s)β−1(s − ti)ds,

and Ên+1 = O
(
∆t1+β

)
is the order of the product trapezoidal integration rule [32]. Conse-

quently, we have
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∫ tn+1

0
(tn+1 − s)β−1uxx(x, s)ds =

1
∆t

(
Qn,nuxx(x, tn+1) +

n

∑
i=0

Λn,iuxx(x, ti)

)
+ Ên+1, (12)

where

Λn,0 = Pn,0, Λn,i = Pn,i + Qn,i−1, i = 1, 2, . . . , n.

Substituting Equations (11) and (12) into Equation (2) leads to a temporal semi-discrete
form of Equation (2) as follows:

w(α)
0 u(x, tn+1)−

(
∆tα + ∆tα−1Qn,n

)
uxx(x, tn+1)

=∆tα−1
n

∑
i=0

Λn,iuxx(x, ti)−
n+1

∑
i=1

w(α)
i u(x, tn+1−i) + ∆tαH(x, tn+1) + En+1,

where En+1 ≤ min{Ẽn+1, Ên+1}. Dropping the error term En+1, we obtain

w(α)
0 u(x, tn+1)−

(
∆tα + ∆tα−1Qn,n

)
uxx(x, tn+1)

=∆tα−1
n

∑
i=0

Λn,iuxx(x, ti)−
n+1

∑
i=1

w(α)
i u(x, tn+1−i) + ∆tα H(x, tn+1), (13)

with u(a, tn+1) = 0, u(b, tn+1) = 0, and u(x, 0) = g(x). Suppose that the approximate
solution to Equation (13) using Equation (9) is given by

vapp(x, tn) =
Nx

∑
j=−Nx

vn
j Sj(x). (14)

At x = xk, denote Hn
k = H(xk, tn) for n = 0, . . . , Nt. Now, substituting vapp(x, tn) in

Equation (13) leads to

w(α)
0

Nx

∑
j=−Nx

vn+1
k δ

(0)
jk −

(
∆tα + ∆tα−1Qn,n

) Nx

∑
j=−Nx

vn+1
k

ϕ′′(xk)
δ
(1)
jk

hx
+
(
ϕ′(xk)

)2 δ
(2)
jk

h2
x

 (15)

=∆tα−1
n

∑
i=0

Nx

∑
j=−Nx

Λn,ivi
k

ϕ′′(xk)
δ
(1)
jk

hx
+
(
ϕ′(xk)

)2 δ
(2)
jk

h2
x

−
n+1

∑
i=1

Nx

∑
j=−Nx

w(α)
i vn+1−i

k δ
(0)
jk + ∆tα Hn+1

i ,

with initial condition v0
j = g(xj). Multiplying Equation (15) by 1

(ϕ′(xk))
2 gives

w(α)
0

(ϕ′(xk))
2 vn+1

k −
(

∆tα + ∆tα−1Qn,n

) Nx

∑
j=−Nx

vn+1
k

 ϕ′′(xk)

(ϕ′(xk))
2

δ
(1)
jk

hx
+

δ
(2)
jk

h2
x


=∆tα−1

n+1

∑
i=1

Nx

∑
j=−Nx

Λn,ivi
k

 ϕ′′(xk)

(ϕ′(xk))
2

δ
(1)
jk

hx
+

δ
(2)
jk

h2
x

 (16)

− 1

(ϕ′(xk))
2

n+1

∑
i=1

Nx

∑
j=−Nx

w(α)
i vn+1−i

k δ
(0)
jk +

∆tα

(ϕ′(xk))
2 Hn+1

i .
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Let

Vn =
[
vn
−Nx

, vn
−Nx+1, . . . , vn

Nx

]T,

Hn =
[
Hn
−Nx

, Hn
−Nx+1, . . . , Hn

Nx

]T.

Then, the matrix form of Equation (16) is

w(α)
0 D

[
1

(ϕ′)2

]
Vn+1 −

(
∆tα + ∆tα−1Qn,n

)[ 1
hx

D
(

1
ϕ′

)′
I(1) +

1
h2

x
I(2)
]

Vn+1

= ∆tα−1
n

∑
i=0

Λn,i

[
1
hx

D
(

1
ϕ′

)′
I(1) +

1
h2

x
I(2)
]

Vi + ∆tαD

[
1

(ϕ′)2

]
Hn+1

+D

[
1

(ϕ′)2

](
w(α)

1 Vn + w(α)
2 Vn−1 + . . . + w(α)

n V1 + w(α)
n+1V0

)
.

Consequently, we write it as

M3Vn+1 = M1

(
∆tα

w(α)
0

Hn+1 +
1

w(α)
0

n

∑
i=0

w(α)
n+1−iV

i

)
+

∆tα−1

w(α)
0

n

∑
i=0

Λn,iM2Vi, (17)

where

M1 = D

[
1

(ϕ′)2

]
, M2 =

1
hx

D
(

1
ϕ′

)′
I(1) +

1
h2

x
I(2), M3 = M1 − Qn,nM2. (18)

Denote

Ψn+1 = M1

(
∆tα

w(α)
0

Hn+1 +
1

w(α)
0

n

∑
i=0

w(α)
n+1−iV

i

)
+

∆tα−1

w(α)
0

n

∑
i=0

Λn,iM2Vi.

Then, Equation (17) can be written as the iteration form

M3Vn+1 = Ψn+1, (19)

with the initial condition

V0 = [g(x−Nx ), g(x−Nx+1), . . . , g(xNx )]
T.

For each n ∈ {0, . . . , Nt − 1}, the iteration Equation (19) forms a system of 2Nx + 1
linear equations and 2Nx + 1 variables. The coefficients of the approximate solution in
Equation (14) can be obtained by solving this system.

Note that due to its diagonal shape and strictly positive entries, the matrix M1 is
invertible and positive definite. A discretized second derivative gives rise to the symmetric
positive semi-definite matrix M2. Since the coefficient Qn,n is small for sufficiently small
time steps ∆t, the matrix M3 is a minor perturbation of a positive definite matrix. Thus, M3

is, therefore, invertible, and hence, Equation (19) has a unique solution Vn+1 = M−1
3 Ψn+1.

4. Stability and Convergence Analysis
Now, we analyze the convergence of the iteration Equation (19) for the FPIDE

Equation (2). To this end, we rewrite, for simplicity, Equation (13) as an ordinary dif-
ferential equation
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w(α)
0 un+1(x)−

(
∆tα + ∆tα−1Qn,n

)d2un+1(x)
dx2 = Φ(x), (20)

where

Φ(x) = ∆tα−1
n

∑
i=0

Λn,i
d2ui(x)

dx2 −
n+1

∑
i=1

w(α)
i un+1−i(x) + ∆tαH(x, tn+1)

taking into account the boundary conditions un+1(0) = un+1(1) = 0. Suppose that un+1(x)
is the exact solution of Equation (20), which satisfies Equation (2) at the (n + 1)-th time step.
Assume that un+1

app (x) be the approximate solution of Equation (20) using the sinc-collocation
formula in Equation (14). At x = xj, the solution of Equation (2) is computed by

un+1
pt (x) =

Nx

∑
j=−Nx

un+1(xj
)
Sj(x). (21)

In the following, we first determine a suitable upper bound for
∣∣∣un+1

app − un+1
pt (x)

∣∣∣, then

we establish an upper bound for
∣∣∣un+1(x)− un+1

app (x)
∣∣∣.

The following result from [33] provides the necessary upper bound for
∥∥∥M−1

3

∥∥∥
2

.

Theorem 3. Denote M∗
3 by the conjugate transpose of the matrix M3 in Equation (17). Let x ∈ Θ,

then we have
M3 + M∗

3
2

= Π − Qn,n

h2
x

I(2),

where

Π = D

(
Re

((
1
ϕ′

)2
))

− Qn,n

2hx

[
D

((
1
ϕ′

)′
)

I(1) − I(1)D

((
1
ϕ′

)′)]
.

Moreover, if the eigenvalues of the matrix Π are nonnegative, then there exists C0, which is
independent of Nx, such that for a sufficiently large Nx, we have∥∥∥M−1

3

∥∥∥
2
≤ 4dNx

κπQn,n

(
1 +

C0

Nx

)
. (22)

Note that Theorem 3 implies that the matrix
∥∥∥M−1

3

∥∥∥
2

is bounded as long as Qn,n does
not vanish and Nx is sufficiently large. Consistently, we have the following result.

Theorem 4. The numerical scheme in Equation (19) is stable.

Proof. Suppose that Ψn+1, with solution Vn+1 in Equation (19), contains a small error εΨ.
Denote Ψ̃n+1 = Ψn+1 + εΨn+1 and the corresponding solution Ṽn+1. Hence, Equation (19)
gives

M3Ṽn+1 = Ψ̃n+1.

Note that
Ψ̃n+1 = M3Vn+1 + εΨn+1.

Thus,
M3(Ṽn+1 − Vn+1) = εΨn+1.

Define the error εVn+1 := Ṽn+1 − Vn+1. Then,

εVn+1 = M−1
3 · εΨn+1.
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Hence,
∥εVn+1∥2 ≤ ∥M−1

3 ∥2 · ∥εΨn+1∥2.

By Theorem 3, we have

∥εVn+1∥2 ≤ 4dNx

κπQn,n

(
1 +

C0

Nx

)
· ∥εΨn+1∥2.

Thus, the error in the perturbed solution is bounded, and hence, the numerical scheme
in Equation (19) is stable.

Now, we find an upper bound for
∣∣∣un+1

app − un+1
pt (x)

∣∣∣ in the following result.

Theorem 5. Suppose vn+1
app (resp. un+1

app ) is an approximate solution of Equation (13) (resp.
Equation (20)). Then, there exists a constant C1, which is independent of Nx, such that

sup
x∈Θ

∣∣∣un+1
app (x)− un+1

pt (x)
∣∣∣ ≤ C1 m3

x e−
√

πκdNx

where mx = 2Nx + 1.

Proof. Applying the Cauchy–Schwarz inequality to
∣∣∣un+1

app − un+1
pt (x)

∣∣∣ gives

∣∣∣un+1
app − un+1

pt (x)
∣∣∣ = ∣∣∣∣∣ Nx

∑
j=−Nx

vn+1
j Sj(x)−

Nx

∑
j=−Nx

un+1(xj
)
Sj(x)

∣∣∣∣∣
≤
(

Nx

∑
j=−Nx

∣∣∣vn+1
j − un+1(xj

)∣∣∣2) 1
2
(

Nx

∑
j=−Nx

∣∣Sj(x)
∣∣2) 1

2

.

Since (
Nx

∑
j=−Nx

∣∣Sj(x)
∣∣2) 1

2

≤ C2,

where C2 is a constant independent of Nx. Denote

Un+1 =
[
un+1(x−Nx ), un+1(x−N+1), . . . , un+1(xNx )

]T
.

Then, we have ∣∣∣un+1
app − un+1

pt (x)
∣∣∣ ≤ C2

∥∥∥Vn+1 − Un+1
∥∥∥

2
.

Using the iteration Equation (19), we obtain∥∥∥Vn+1 − Un+1
∥∥∥

2
=
∥∥∥M−1

3

(
M3Vn+1 − M3Un+1

)∥∥∥
2
≤
∥∥∥M−1

3

∥∥∥
2

∥∥∥Ψn+1 − M3Un+1
∥∥∥

2
.

To find an bound for
∥∥Ψn+1 − M3Un+1

∥∥
2, we denote

ζ j =
{

Ψn+1 − M3Un+1
}

j
where j = −Nx, . . . , Nx.

Then, Equation (20) gives
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∣∣ζ j
∣∣ = ∣∣∣∣Φ(xj

)∣∣
un+1

app
− Φ

(
xj
)∣∣

un+1
pt

∣∣∣∣
=

∣∣∣∣∣w(α)
0 un+1

app (xj)−
(

∆tα + ∆tα−1Qn,n

)d2un+1
app (xj)

dx2

−w(α)
0 un+1

pt (xj) +
(

∆tα + ∆tα−1Qn,n

) d2

dx2

d2un+1
pt (xj)

dx2

∣∣∣∣∣
≤ w(α)

0

∣∣∣un+1
app (xj)− un+1

pt (xj)
∣∣∣+ (∆tα + ∆tα−1Qn,n

)∣∣∣∣∣d
2un+1

app (xj)

dx2 −
d2un+1

pt (xj)

dx2

∣∣∣∣∣.
Then, Theorem 1 implies that there exist two constants C2 and C3, which are indepen-

dent of Nx, such that∣∣ζ j
∣∣ ≤ C3w(α)

0 N1/2
x e−

√
πκdNx +

(
∆tα + ∆tα−1Qn,n

)
C4N3/2

x e−
√

πκdNx

≤
(

C3w(α)
0 N3/2

x +
(

∆tα + ∆tα−1Qn,n

)
C4N3/2

x

)
e−

√
πκdNx

= C5N3/2
x e−

√
πκdNx , (23)

where C5 = C3w(α)
0 +

(
∆tα + ∆tα−1Qn,n

)
C4. Since,∥∥∥Ψn+1 − M3Un+1

∥∥∥
2
≤
√

2Nx + 1
∥∥∥Ψn+1 − M3Un+1

∥∥∥
∞

,

it follows from Equation (23) that∥∥∥Ψn+1 − M3Un+1
∥∥∥

2
≤ C5

√
2Nx + 1N3/2

x e−
√

πκdNx ≤ C5(2Nx + 1)2 e−
√

πκdNx .

Now, using the upper bound of
∥∥∥M−1

3

∥∥∥
2

in Theorem 3, we obtain

∥∥∥Vn+1 − Un+1
∥∥∥

2
≤ 4dNx

κπQn,n

(
1 +

C0

Nx

)(
C5(2Nx + 1)2 e−

√
πκdNx

)
≤ 4dC5

κπQn,n
(1 + C0) (2Nx + 1)3 e−

√
πκdNx .

=
4dC5

κπQn,n
(1 + C0)m3

x e−
√

πκdNx .

Hence,
sup
x∈Θ

∣∣∣un+1
app (x)− un+1

pt (x)
∣∣∣ ≤ C1 m3

x e−
√

πκdNx ,

where C1 = 4dC5
κπQn,n

(1 + C0)

In the following theorem, we establish an upper bound for
∣∣∣un+1(x)− un+1

app (x)
∣∣∣.

Theorem 6. Suppose that un+1(x) be the exact solution of (20), which satisfies the Equation (2) at
the (n + 1)-th time step. Assume that vn+1

app (x) be the approximate solution of Equation (2) using
the sinc-collocation method in Equation (14). Then, there exists a constant C6, which is independent
of Nx, such that

sup
x∈Θ

∣∣∣un+1(x)− un+1
app (x)

∣∣∣ ≤ C6 m3
x e−

√
πκdNx ,

where mx = 2Nx + 1.
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Proof. Note that the triangular inequality implies that∣∣∣un+1(x)− un+1
app (x)

∣∣∣ ≤ ∣∣∣un+1(x)− un+1
pt (x)

∣∣∣+ ∣∣∣un+1
pt (x)− un+1

app (x)
∣∣∣.

Then, we have from Theorems 1 and 5 that there are constants C7 and C8, which are
independent of Nx, such that∣∣∣un+1(x)− un+1

pt (x)
∣∣∣ ≤ C7N1/2

x e−
√

πκdNx ≤ C7m1/2
x e−

√
πκdNx

and ∣∣∣un+1
pt (x)− un+1

app (x)
∣∣∣ ≤ C8 m3

x e−
√

πκdNx ,

respectively.
Consequently, we have

sup
x∈Θ

∣∣∣un+1(x)− un+1
app (x)

∣∣∣ ≤ C5 m3
x e−

√
πκdNx ,

where C6 = max{C7, C8}.

5. Iterative Laplace Transform Method
For comparison purposes, and since the kernel of the integral equation under study

is of the convolution type, we will take advantage of this property and find another
approximate solution using an iterative method linked with the Laplace transform, called
the Iterative Laplace Transform Method (ILTM). Because of its computational efficiency
and ability to treat weakly singular kernels and convolution terms, ILTM has become a
widely used technique for solving fractional integro-differential equations. The accuracy
and convergence of the method have been examined in depth (see e.g., [34,35]). These
studies report that ILTM typically attains a super-linear convergence rate and converges
rapidly for linear problems with smooth initial and boundary conditions. In the following,
we illustrate and describe the properties of this iterative method.

Definition 2 ([36]). The Laplace transform of the Caputo-fractional derivative of order α of the
function u(x, t) is given by

L[Dα
t u(x, t)] = sαL[u(x, t)]− sα−1u(x, 0), 0 < α ≤ 1.

where uk(x, 0) is the k−order derivative of u(x, t) at t = 0.

First, we introduce the method when there is a nonlinear term N(u(x, t)) in
Equation (2). Consider the nonlinear time-fractional integro-differential equation

Dα
t u(x, t) = uxx(x, t) +

∫ t

0
(t − s)β−1uxx(x, s) ds + N(u(x, t)) + H(x, t), (24)

subject to the same initial and boundary conditions in Equation (2). We apply the
Laplace–Adomian Decomposition Method (LADM) [34] and solve Equation (24). Tak-
ing the Laplace transform of both sides in Equation (24) and using the convolution property
of the Laplace transform gives

L[Dα
t u(x, t)] = L[uxx(x, t)] + L[tβ−1]L[uxx(x, t)] + L[N(u(x, t))] + L[H(x, t)]. (25)
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Consequently, we obtain from Equations (25) that

sαL[u(x, t)]− sα−1u(x, 0) = L[uxx(x, t)] +
Γ(β)

sβ
L[uxx(x, t)] + L[N(u(x, t))] + L[H(x, t)].

Dividing by sα and using the boundary conditions in Equations (24) imply

L[u(x, t)] =
1
s

u(x, 0) +
1
sα
L[uxx(x, t)] +

Γ[β]
sα+β

L[uxx(x, t)] +
1
sα
(L[H(x, t)] + L[N(x, t)]),

=
1
s

g(x) +
(

1
sα

+
Γ[β]
sα+β

)
L[uxx(x, t)] +

1
sα
(L[H(x, t)] + L[N(x, t)]).

Hence, we have

u(x, t) = g(x) + L−1
[(

1
sα

+
Γ[β]
sα+β

)
L[uxx(x, t)]

]]
+ L−1

[
1
sα
(L[H(x, t)] + L[N(x, t)])

]
.

Assume the nonlinear term can be written as

N(u(x, t)) =
∞

∑
n=0

An,

where An are the Adomian polynomials and given by

An =
1
n!

dn

dλn N

(
∞

∑
k=0

λkuk

)∣∣∣∣∣
λ=0

.

Then, using the iterative solution

u(x, t) =
∞

∑
i=0

ui(x, t)

implies

∞

∑
i=0

ui(x, t) = g(x) + L−1

[(
1
sα

+
Γ[β]
sα+β

)
L
[ ∞

∑
i=0

∂2ui(x, t)
∂x2

]]
+ L−1

[
1
sα
(L[H(x, t)] + L[An])

]
.

We now introduce the following recurrence relation [34]:

u0(x, t) = g(x) + L−1
[

1
sα
L[H(x, t)]

]
,

ui(x, t) = L−1
[(

1
sα

+
Γ[β]
sα+β

)
L
[∂2ui−1(x, t)

∂x2

]]
+ L−1

[
1
sα
L[An]

]
, i = 1, 2, 3, . . . . (26)

Let k ∈ N, we obtain an approximate solution in series form as

u(x, t) ≈ uL
app(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + ... + uk(x, t).

Assume that the initial and boundary conditions in Equation (2) are smooth. Then,
since there is no nonlinear term, the iterative Laplace transform method converges.

Note that when there is no nonlinear term N(u(x, t)) = 0 as in Equation (2),
the method is called Iterative Laplace transform method [35] and the recurrence relation
Equation (26) becomes
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u0(x, t) = g(x) + L−1
[

1
sα
L[H(x, t)]

]
,

ui(x, t) = L−1
[(

1
sα

+
Γ[β]
sα+β

)
L
[∂2ui−1(x, t)

∂x2

]]
, i = 1, 2, 3, . . . . (27)

For instance, when i = 1, we have

u1(x, t) = L−1
[(

1
sα+1 +

Γ[β]
sα+β+1

)
g(x) +

(
1

s2α
+

Γ[β]
s2α+β

)
L[H(x, t)]

]
.

6. Numerical Results
In this section, we present two numerical examples to demonstrate the validity and ac-

curacy of the proposed method. We set d = π/2, ∆t = 0.005, Nx = 20, and hx = π/
√

2Nx.

Example 1. Choose β = 0.5 in Equation (2), and consider the FPIDE with a weakly
singular kernel:

Dα
t u(x, t) = uxx(x, t) +

∫ t

0

uxx(x, s)√
t − s

ds

+
2

Γ(3 − α)
x(x − 1)t2−α − 2t2 − 4Γ(1/2)

Γ(7/2)
t

5
2 , (28)

Boundary conditions: u(0, t) = u(1, t) = 0,

Initial condition: u(x, 0) = 0,

with Ω = [0, 1]× [0, 1]. Then, the exact solution is

u(x, t) = t2(x2 − x).

It is well established in fractional calculus theory that for fractional derivatives with
orders 0 < α ≤ 1, the approximate solution converges continuously to the exact solution
of the corresponding problem when α = 1 [37]. Figures 4 and 5 illustrate that the exact
solution corresponding to α = 1 is quite close to the approximate solution when α = 0.99
and 0.95. We note that the error distribution aligns with the behavior of the exact solution,
with higher errors where the solution has its lowest magnitude when xj = 0.5. Moreover,
the behavior of the approximate solutions across different values of α is consistent with
that of the exact solution when α = 1. These observations underscore the efficiency and
robustness of the approximate solution method. Moreover, Figures 4 and 5 show certain
patterns in the numerical results. The tendency for errors to become more pronounced near
(tn, xj) ≈ (200, 0) and the natural accumulation and propagation of discretization errors,
which may become more evident in regions with significant solution dynamics or evolving
gradients as the simulation progresses.
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Figure 4. Example 1: (A) Exact solution; (B) approximate solution with α = 1, 0.99, 0.95, 0.9, 0.75 and
(C,D) L∞-error over space and time with α = 1, 0.99, 0.95, 0.9, 0.75.

Figure 5. Absolute error heatmap for Example 1 with different values of α.

Applying the recurrence relation for the iterative Laplace transform method in
Equation (26) leads to
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α = 1.00 : u0(x, t) = t2(x2 − x)− 1
105

64t7/2 − 2t3

3
, u1(x, t) =

64t7/2

105
+

2t3

3
,

α = 0.99 : u0(x, t) = t2(x2 − x)− 4t299/100

Γ
(

399
100

) − 4
√

πt349/100

Γ
(

449
100

) , u1(x, t) =
4t299/100

Γ
(

399
100

) +
4
√

πt349/100

Γ
(

449
100

) ,

α = 0.95 : u0(x, t) = t2(x2 − x)− 4t59/20

Γ
(

79
20

) − 4
√

πt69/20

Γ
(

89
20

) , u1(x, t) =
4t59/20

Γ
(

79
20

) +
4
√

πt69/20

Γ
(

89
20

) ,

α = 0.90 : u0(x, t) = t2(x2 − x)− 4t29/10

Γ
(

39
10

) − 4
√

πt17/5

Γ
(

22
5

) , u1(x, t) =
4
√

πt17/5

Γ
(

22
5

) +
4t29/10

Γ
(

39
10

) ,

α = 0.75 : u0(x, t) = t2(x2 − x)− 4t11/4

Γ
(

15
4

) − 4
√

πt13/4

Γ
(

17
4

) , u1(x, t) =
4t11/4

Γ
(

15
4

) +
4
√

πt13/4

Γ
(

17
4

) ,

and, in all cases, ui(x, t) = 0, for all i ≥ 2. Hence, the approximate solution is

uL
app(x, t) = u0(x, t) + u1(x, t) = t2(x2 − x) = u(x, t).

Thus, the approximate solution converges to the exact solution after two iterations.
This is because the structure of the function

H(x, t) =
2

Γ(3 − α)
x(x − 1)t2−α − 2t2 − 4Γ(1/2)

Γ(7/2)
t

5
2 ,

which consists only of integer powers of x. As a result, the term L
[

∂2ui−1(x,t)
∂x2

]
will disappear

after a finite number of derivatives, ensuring the rapid convergence of the approximation.

Example 2. Consider the FPIDE with a weakly singular kernel:

Dα
t u(x, t) = uxx(x, t) +

∫ t

0
(t − s)β−1uxx(x, s)ds

+ sin(πx)
(

24
Γ(5 − α)

t4−α + π2t4 +
24π2

β(β + 1)(β + 2)(β + 3)(β + 4)
tβ+4

)
, (29)

Boundary conditions: u(0, t) = u(1, t) = 0,

Initial condition: u(x, 0) = 0,

with Ω = [0, 1]× [0, 1]. Then, the exact solution is

u(x, t) = t4 sin(πx).

In Figures 6–11, we plot the exact and approximate solutions along with L∞-error
and absolute error. The same qualitative behavior is observed as in Example 1 when α is
decreased. We note that, for α = 1, the exact solution remains close to the approximate
one for values of α near 1. As α decreases further, the solution curve shifts upward, which
results in larger error values; see Figures 6, 8 and 10. Furthermore, the absolute error
distribution aligns with the shape of the exact solution, reaching its largest values where
the solution itself is largest—particularly at xj = 0.5, as illustrated in Figures 7, 9 and 11.
Additionally, we observe that the error decreases as β increases.

For comparison in this example, we apply the recurrence relation for the iterative
Laplace transform method in Equation (26) when β = 0.5 and α = 0.99. Consequently,
we have
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u0(x, t) =

24π2t499/100

Γ
(

599
100

) +
24π5/2t549/100

Γ
(

649
100

) + t4

 sin(πx),

u1(x, t) = −24π2t499/100

π2t99/100

Γ
(

349
50

) +
2π5/2t149/100

Γ
(

187
25

) +
π3t199/100

Γ
(

399
50

) +

√
π
√

t

Γ
(

649
100

) +
1

Γ
(

599
100

)
 sin(πx),

u2(x, t) = 24π4t299/50

π2t99/100

Γ
(

797
100

) +
3π5/2t149/100

Γ
(

847
100

) +
3π3t199/100

Γ
(

897
100

) +
π7/2t249/100

Γ
(

947
100

) +
πt

Γ
(

399
50

)
+

2
√

π
√

t

Γ
(

187
25

) +
1

Γ
(

349
50

)
 sin(πx).

Hence, the approximate solution is

uL
app(x, t) = u0(x, t) + u1(x, t) + u2(x, t)

= t4

24π6t297/100

Γ
(

797
100

) +
72π13/2t347/100

Γ
(

847
100

) +
72π7t397/100

Γ
(

897
100

) +
24π15/2t447/100

Γ
(

947
100

) + 1

 sin(πx).

Table 1 shows that both the sinc-collocation and iterative Laplace transform methods
provide good approximations to the exact solution of the FPIDE in Example 2 at t = 0.2
when α = 0.99 and β = 0.5. However, the iterative Laplace transform method outperforms
the sinc-collocation method in terms of accuracy across all tested xj points.

Figure 6. Example 2 with β = 0.25: (A) Exact solution; (B) approximate solution with
α = 1, 0.99, 0.95, 0.9, 0.75 and (C,D) L∞-error over space and time with α = 1, 0.99, 0.95, 0.9, 0.75.
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Figure 7. Absolute error heatmap for Example 2 with β = 0.25 and different values of α.

Figure 8. Example 2 with β = 0.5: (A) Exact solution; (B) approximate solution with
α = 1, 0.99, 0.95, 0.9, 0.75 and (C,D) L∞-error over space and time with α = 1, 0.99, 0.95, 0.9, 0.75.



Fractal Fract. 2025, 9, 392 21 of 25

Figure 9. Absolute error heatmap for Example 2 with β = 0.5 and different values of α.

Figure 10. Example 2 with β = 0.75: (A) Exact solution; (B) approximate solution with
α = 1, 0.99, 0.95, 0.9, 0.75 and (C,D) L∞-error over space and time with α = 1, 0.99, 0.95, 0.9, 0.75.
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Figure 11. Absolute error heatmap for Example 2 with β = 0.75 and different values of α.

Table 1. Error comparison between the sinc-collocation and Iterative Laplace transform methods at
different xj when t80 = 0.2 in Example 2. We take α = 0.99 and β = 0.5.

j xj sinc-Collocation Method Error Iterative Laplace Method Error

−18 0.0001234 6.77366 × 10−8 5.35182 × 10−8

−4 0.119203 2.65155 × 10−4 5.05002 × 10−5

−2 0.268941 5.42283 × 10−4 1.03253 × 10−4

0 0.5 7.2509 × 10−4 1.38056 × 10−4

2 0.731059 5.42283 × 10−4 1.03253 × 10−4

4 0.880797 2.65155 × 10−4 5.05002 × 10−5

18 0.999877 6.77366 × 10−8 5.35182 × 10−8

The temporal errors of the suggested method at the spatial point x = 0.97 for different
time step sizes ∆t with fixed parameters α = 0.99, β = 0.5, and spatial resolution Nx = 100
are shown in Table 2. We can calculate the maximum norm of the error ∥u − uapp∥∞ at
different time steps. From Table 2, we observe that when the time step size ∆t is halved,
the corresponding error is reduced by approximately a factor of 40. This behavior indicates
that the spatial error, which is of exponential order, consequently took center stage, hiding
the actual temporal convergence and producing false results.

Table 2. Temporal error in Example 2 at x = 0.97, with fixed Nx = 100, α = 0.99, and β = 0.5.

∆t ∥u − uapp∥∞

1/100 1.21 × 10−3

1/200 3.06 × 10−5

1/400 7.66 × 10−7

1/800 1.91 × 10−8
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7. Conclusions
In this article, we have solved a time-fractional partial integro-differential equation

(FPIDE) with a weakly singular kernel using the sinc-collocation and iterative Laplace
transform methods. The sinc-collocation method has been employed to discretize the
spatial domain, while a combination of numerical techniques has been utilized for temporal
discretization. Consequently, a symmetric discrete system of equations has been developed.
Subsequently, an upper bound on the error was determined, and a convergence analysis
was conducted. Since the considered FPIDE has the convolution property, we have applied
the iterative Laplace transform method to solve it. For comparison, we have considered
two numerical examples. We have observed that the absolute error distribution of the
sinc-collocation method exhibits an almost perfect symmetry about the spatial domain’s
midpoint due to the discrete system’s symmetrical property. Moreover, we have noted
that the approximation solution with various fractional-order α ∈ (0, 1) exhibits the same
behavior as the exact solution for which α = 1. Within the theory of fractional calculus,
it is evident that the approximate solution consistently tends to the exact solution of the
problem when the fractional derivative α tends to 1, Additionally, the parameter β, the
order of singularity inside the kernel in the FPIDE, has shown effects on the maximum error
with different α. Numerical experiments have demonstrated that both the sinc-collocation
method and the iterative Laplace transform approach yield accurate approximations to the
exact solution.

Future research may include fractional integro-differential equations with nonlinear
term N(u(x, t)) and tempered kernels K(t, s) = e−λ(t−s)(t − s)β−1, λ > 0, β ∈ (0, 1), to
model systems with fading memory, where past influences decay exponentially over time.
Due to its exponential damping, this kernel circumvents the infinite-memory problem of
classical fractional models. It is used in applications such as viscoelastic materials, financial
models with finite variance, and anomalous diffusion in heterogeneous media. Moreover,
we may extend the theoretical analysis to two- and three-dimensional problems, as well as
semi-linear formulations.
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