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Abstract: The complementary dual of entropy has received significant attention in the liter-
ature. Due to the emergence of many generalizations and extensions of entropy, the need to
generalize the complementary dual of uncertainty arose. This article develops the residual
cumulative generalized fractional extropy as a generalization of the residual cumulative
complementary dual of entropy. Many properties, including convergence, transforma-
tion, bounds, recurrence relations, and connections with other measures, are discussed.
Moreover, the proposed measure’s order statistics and stochastic order are examined. Fur-
thermore, the dynamic design of the measure, its properties, and its characterization are
considered. Finally, nonparametric estimation via empirical residual cumulative general-
ized fractional extropy with an application to blood transfusion is performed.

Keywords: distorted stop-loss transform; mean residual life function; nonparametric
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1. Introduction
In contemporary probability theory, assessing distributional uncertainty has emerged

as a prominent research area. Consider an absolutely continuous non-negative random
variable Y governed by probability density function (pdf) g. To quantify informational
uncertainty, Shannon’s foundational entropy measure [1] is formulated as

Φ(Y) = −
∫ ∞

0
g(y) ln g(y)dy, (1)

where ln denotes a natural logarithm with 0 ln 0 ≡ 0. Subsequent developments introduced
alternative uncertainty quantifiers through survival function transformations. Rao et al. [2]
pioneered the residual cumulative entropy defined for a random variable Y with cumulative
distribution function (cdf) G(y) and survival function Ḡ(y) = 1 − G(y) as follows:

RΦ(Y) = −
∫ ∞

0
Ḡ(y) ln Ḡ(y)dy. (2)

The uncertainty measure based on the survival function has been widely generalized
and extended in the literature. One of these measures is the residual cumulative Tsallis
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entropy, which has been presented through two models. The first was presented by Sati
and Gupta [3] as follows

RTnη(Y) =
1

η − 1

(
1 −

∫ ∞

0
Ḡη(y) dy

)
. (3)

The second was introduced by Rajesh and Sunoj [4] as follows:

RTn∗
η(Y) =

1
η − 1

(∫ ∞

0
Ḡ(y) dy −

∫ ∞

0
Ḡη(y) dy

)
=

1
η − 1

(
µ −

∫ ∞

0
Ḡη(y) dy

)
,

(4)

where in both measures we have 1 ̸= η > 0, µ = E(Y) =
∫ ∞

0 Ḡ(y) dy.
The evolution of fractional calculus has inspired generalized entropy formulations,

which have found diverse applications across various scientific fields. The discrete
form of the fractional version of Shannon entropy, or fractional entropy, was described
by Ubriaco [5] as follows:

FΦν∗(Y∗) =
M

∑
l=1

p∗l [− ln p∗l ]
ν∗ , 0 ≤ ν∗ ≤ 1,

where Y∗ is regarded as a discrete random variable with a probability vector (p∗1 , . . . , p∗M)

and a support S∗ with cardinality M. The stability qualities for the Lesche and ther-
modynamic stability criterion situations were examined in this measure. Xiong et al. [6]
systematically investigated fractional residual cumulative entropy characteristics, including
the following:

• Boundary constraints.
• Stochastic dominance relationships.
• Empirical estimation techniques.
• Transformation invariance properties.
• Functional interdependencies.

Their model specification appears as follows:

RFΦν∗(Y) =
∫ ∞

0
Ḡ(y)[− ln Ḡ(y)]ν

∗
dy, 0 ≤ ν∗ ≤ 1. (5)

The fractional residual cumulative entropy was used for financial data of the Dow Jones
Industrial Average price returns by Xiong et al. [6]. In contrast to the fractional residual
cumulative entropy, they discovered that the traditional residual cumulative entropy
(i.e., when ν∗ = 1) is unable to disclose as much information about the financial system.
According to this viewpoint, the fractional residual cumulative entropy is better than the
traditional residual cumulative entropy. The fractional residual cumulative entropy can
better identify dynamics by retrieving more intrinsic information held by the underlying
system when the parameter ν∗ is taken.

Di Crescenzo et al. [7] subsequently generalized this framework through scaling
normalization:

RFGΦν(Y) = κ(ν)
∫ ∞

0
Ḡ(y)[− ln Ḡ(y)]νdy, ν ≥ 0, (6)

where κ(ν) = 1
Γ(ν+1) , ν ≥ 0. Notably, Psarrakos and Navarro [8] established connections

to integer-order cases where ν = n ∈ N, with extensions discussed in [9]. Concurrently,
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Mohamed and Almuqrin [10] developed density-based fractional entropy known as the
fractional generalized entropy:

FGΦν(Y) = κ(ν)
∫ ∞

0
g(y)[− ln g(y)]νdy. (7)

Addressing axiomatic completeness in information theory, Lad et al. [11] identified
extropy as Shannon entropy’s dual counterpart. For non-negative Y, this complementary
measure is defined by

xΦ(Y)(Y) = −1
2

∫ ∞

0
g2(y)dy. (8)

The authors demonstrated extropy’s operational characteristics, including extremal distribu-
tions and statistical applications. This formulation arises as a second-order approximation
of the complete dual functional:

xΦ(Y) = −
∫ ∞

0
[1 − g(y)] ln[1 − g(y)]dy. (9)

Recent extensions by Jahanshahi et al. [12] introduced survival-based residual extropy:

RxΦ(Y) = −
∫ ∞

0
Ḡ2(y) dy. (10)

The notion of dynamic residual extropy was introduced by Abdul Sathar and Nair [13].
The extropy of the random variable [Y − v|Y ≥ v] is really the dynamic residual extropy of
a random lifespan Y, and it is defined as

RxΦ(Y; v) = −1
2

∫ ∞
v Ḡ2(y) dy

Ḡ2(v)
. (11)

They explored a nonparametric approach to estimate the dynamic residual extropy using
real data on metabolite levels within the metabolic network of Escherichia coli.

Another possibility is to examine the discrete form of Tsallis entropy, or discrete
Tsallis extropy, which was thoroughly examined by Balakrishnan et al. [14] and used for
pattern recognition. Moreover, in the continuous case, the continuous Tsallis extropy is
presented by Mohamed et al. [15] with application to financial data of the pharmaceutical
market. Actually, in the fields of statistical thermodynamics and quantum theory, the
Shannon entropy and extropy measures are uncertain and complementary amounts used
to examine the intricate structure of a physical or chemical system. In physics, chemistry,
and materials research, these information measurements are employed to examine the
atomic organization of a particular system. For additional investigations on extropy and its
extensions, one can additionally consult Raqab and Qiu [16], Yang et al. [17], Noughabi
and Jarrahiferiz [18], Mohammadi et al. [19], Hashempour et al. [20], and Chakraborty and
Pradhan [21].

Work Motivation

The extropy measure has been widely studied and applied in various fields due to
its fundamental role in information theory as the complementary dual of entropy. Given
the continuous development of entropy-based measures and their numerous extensions
and generalizations, it is natural to explore a corresponding generalization of extropy that
aligns with these advancements. In this work, we aim to introduce a generalized extropy
measure that serves as the complementary dual of an extended entropy function. Our
motivation stems from the need to examine whether this generalization preserves the key
characteristics of the traditional extropy measure while offering broader applicability in di-
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verse contexts. Specifically, we seek to assess its theoretical properties, interpretability, and
potential applications in reliability analysis, uncertainty quantification, and probabilistic
modeling. Furthermore, an important aspect of this study is to investigate whether the pro-
posed measure provides deeper insights into information asymmetry and characterization,
thereby enriching the existing literature on information measures. Through this research,
we aim to answer the fundamental question: To what extent does the generalized extropy
measure retain the desirable properties of its classical counterpart, and in what ways does
it enhance our understanding of uncertainty and information representation?

The goal of this paper is to introduce the concept of residual cumulative generalized
fractional extropy as an extension of the residual cumulative complementary dual measure
of uncertainty. The rest of this article is structured as follows: Section 2 introduces the
concept of residual cumulative generalized fractional extropy and examines some of its
distinctive features. Section 3 discusses order statistics and the stochastic ordering of
residual cumulative generalized fractional extropy. Section 4 establishes dynamic residual
cumulative generalized fractional extropy by deriving some bounds for it based on the
mean residual life, hazard function, and characterization results. Finally, in Section 5, we
provide a nonparametric estimator and study its consistency and asymptotic properties.
The proposed method is also illustrated using simulated and real data sets.

2. Approximation of Residual Cumulative Generalized Fractional Extropy
In this section, we will discuss the approximation of the residual cumulative gen-

eralized fractional extropy. Building upon the concept of fractional generalized entropy
introduced in Equation (7), we define the fractional generalized extropy as follows:

FGxΦν(Y) = κ(ν)
∫ ∞

0
(1 − g(y))[− ln(1 − g(y))]ν dy,

where ν ≥ 0 and whenever FGxΦν(Y) is finite. In analogy with Lad et al. [11] in ap-
proximating the extropy measure, under a non-negative continuous random variable Y,
and for small g(y), the Maclaurin serial for − ln(1 − g(y)) may be used for expanding the
logarithmic term with permitting

ξ = − ln(1 − g(y)) = g(y) +
g(y)2

2
+O(g(y)3)

= g(y)
(

1 +
g(y)

2
+O(g(y)2)

)
.

Then, we have

ξν = (− ln(1 − g(y)))ν = g(y)ν

(
1 +

g(y)
2

+O(g(y)2)

)ν

.

The binomial series for (1 + u)ν, where u, is small, is used for small g(y) as

(1 + u)ν = 1 + νu +
ν(ν − 1)

2
u2 +O(u3).

Therefore, we can see the following:(
1 +

g(y)
2

+O(g(y)2)

)ν

= 1 + ν
g(y)

2
+O(g(y)2).

Thus, we have

ξν = g(y)ν

(
1 + ν

g(y)
2

+O(g(y)2)

)
.
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Making objects simpler:

ξν = g(y)ν + ν
g(y)ν+1

2
+O(g(y)ν+2).

Multiply each term in the preceding equation by (1 − g(y)):

(1 − g(y))ξν = (1 − g(y))
(

g(y)ν + ν
g(y)ν+1

2

)
+O(g(y)ν+2).

When we distribute (1 − g(y)), we get

(1 − g(y))ξν = g(y)ν − g(y)ν+1 + ν
g(y)ν+1

2
− ν

g(y)ν+2

2
+O(g(y)ν+2)

= g(y)ν +
(
−1 +

ν

2

)
g(y)ν+1 +O(g(y)ν+2),

The following approximation may be made when g(y) is small as

(1 − g(y))[− ln(1 − g(y))]ν ≈ g(y)ν
(

1 +
(ν

2
− 1

)
g(y)

)
.

As a result, the continuous generalized fractional extropy measure for ν ≥ 0 can be
approximately calculated by

FGxΦν(Y) = κ(ν)
∫ ∞

0
(1 − g(y))[− ln(1 − g(y))]ν dy (12)

≈ κ(ν)
∫ ∞

0
g(y)ν

(
1 +

(ν

2
− 1

)
g(y)

)
dy (13)

≈ κ(ν)
∫ ∞

0
g(y)νdy (14)

The next example examines the performance of the original generalized fractional
extropy alongside its two proposed approximations.

Example 1. Consider a random variable Y with an exponential distribution characterized by
the rate parameter γ, expressed as Y ∼ exp(γ). Its probability density function is defined as
g(y) = γe−γy for y > 0 and γ ≥ 1. For the specific case where γ = 1, the differential generalized
fractional extropy can be computed using (12), while its approximations are obtained from (13) and
(14) as follows:

Approx1ν(Y) = κ(ν)

(
2 + ν2

2ν(1 + ν)

)
, (15)

Approx2ν(Y) =
κ(ν)

ν
. (16)

A visual comparison in Figure 1 shows the original generalized fractional extropy alongside its
approximations, Approx1ν(Y) and Approx2ν(Y). The graph indicates that all three curves closely
align across the entire range, confirming the reliability of the approximation techniques.
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Figure 1. Plots of FGxΦν(Y), Approx1ν(Y) and Approx2ν(Y) of exp(1) distribution.

The following definition of the residual cumulative generalized fractional extropy can
be obtained by replacing g(y) with Ḡ(y) in (14).

Definition 1. Under a non-negative continuous random variable Y following a cdf G(y). Then,
the residual cumulative generalized fractional extropy can be defined as

RFGxΦν(Y) ≈ κ(ν)
∫ ∞

0
Ḡν(y) dy, (17)

ν ≥ 0.

If ν = 2, then RFGxΦ2(Y) = 1
2

∫ ∞
0 Ḡ2(y) dy, which is actually the positive value of the

residual cumulative extropy given in (10) by Jahanshahi et al. [12].

Remark 1. The extropy function’s sign must be mentioned since the original, unadjusted form,
found in (9), yields a positive result. Let Y be a variable at random that has exp(γ) distribution. As
shown in the following basic example, a continuous extropy measure is therefore provided by

xΦ(Y) = −
∫ +∞

0
(1 − g(y)) ln(1 − g(y)) dy

= −
∫ ∞

0
(1 − γe−γy) ln(1 − γe−γy) dy,

Then xΦ(Y) = 0.644934 at γ = 1. In the meanwhile, xΦ(Y) = −0.25 is the approximation
continuous extropy provided in (8) by Lad et al. [11]. Therefore, the dual entropy or generalized
fractional extropy must have a positive value in the suitable approximation.

Table 1 lists the residual cumulative generalized fractional extropy for a few widely
used distributions.

In the subsequent analysis, we will display the residual cumulative generalized frac-
tional extropy in a few selected distributions to have a better understanding of its properties.

For finite range, the graphs of RFGxΦν(Y) with β = 0.5 and power distributions are
shown in Figure 2. For finite range distribution, RFGxΦν(Y) is decreasing, but for power
distribution, it is increasing.
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The graphs for the Rayleigh and Pareto distributions of RFGxΦν(Y) are shown in
Figure 3. For the Rayleigh distribution, RFGxΦν(Y) is growing, but for the Pareto distribu-
tion, it is dropping.

Table 1. Residual cumulative generalized fractional extropy for a few widely used distributions.

Distribution Ḡ(y) RFGxΦν(Y) = κ(ν)
∫ ∞

0 Ḡν(y) dy

Weibull e−(
y
β )

α

, y ≥ 0, α, β > 0 κ(ν)
((

1
β

)α
ν
)−1/α

Γ
(

1 + 1
α

)
Rayleigh e

−(
y2

2β2 ), y ≥ 0, β > 0
κ(ν)β

√
π
2√

ν

Exponential e−γy, y ≥ 0, γ > 0 κ(ν)
γ ν

Pareto y−α, y ≥ 1, α > 0 κ(ν)
(αν−1) , αν > 1

Uniform 1 − y
β , 0 ≤ y ≤ β, β > 0 βκ(ν)

(ν+1)

Power 1 − yα, 0 ≤ y ≤ 1, α > 0
Γ(1+ 1

α )
Γ(1+ 1

α +ν)

Finite range (1 − αy)β, 0 ≤ y ≤ 1
α , α, β > 0 κ(ν)

(βν+1)

Figure 2. Plot of RFGxΦν(Y), with different values of ν, for finite range distribution with β = 0.5
(Left) and power distribution (Right).

Figure 3. Plot of RFGxΦν(Y), with different values of ν, for Rayleigh (Left) and Pareto (Right)
distributions.

The following theorem gives the sufficient condition for the residual cumulative
generalized fractional extropy to be finite.

Theorem 1. Let Y be a non-negative random variable. If for some ς > 1
ν , ν ≥ 0, it holds that

E(Yς) < +∞, then RFGxΦν(Y) < +∞.
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Proof. (17) allows us to write

∫ ∞

0
Ḡν(y) dy =

∫ 1

0
Ḡν(y) dx +

∫ ∞

1
Ḡν(y) dy,

and note that
∫ 1

0 Ḡν(y) dy ≤ 1, ν ≥ 0, so that

∫ ∞

0
Ḡν(y) dy ≤ 1 +

∫ ∞

1
Ḡν(y) dy.

From Markov’s inequality, for y ≥ 1 we have Ḡ(y) ≤ E(Yς)
yς , thus

∫ ∞

1
Ḡν(y) dy ≤ Eν(Yς)

∫ ∞

1

dy
yνς

.

The integral
∫ +∞

1
dx
x2p is finite if ς > 1

ς . Therefore, the result follows.

We address the impact of affine transforming on the residual cumulative generalized
fractional extropy in the assertion that follows.

Proposition 1. Let Z be a random variable that is not negative. Then, we have

1. If Z = θ1Y + θ2, θ1 > 0, and θ2 ≥ 0, then RFGxΦν(Z) = θ1 RFGxΦν(Y).
2. For all θ ≥ 1(0 < θ ≤ 1), we can say that

RFGxΦν(θ Y) = θ RFGxΦν(Y) ≥ (≤)RFGxΦν(Y).

Proof. This is the outcome of (17), and by seeing that Ḡθ1Y+θ2(y) = ḠY

(
y−θ2

θ1

)
, y ≥ 0.

Theorem 2 (Limit operator convergence). Assume that {Ym} is a series of random vectors of M
dimensions that converge in distributed to a vector Y which is considered random. If each of the Ym’s
are bounded in Lς

∗ for some ς > M
ν , ν > 0, then, we get limm→+∞ RFGxΦν(Ym) = RFGxΦν(Y).

Proof. Convergence in distribution of Ym to Y implies that, for all y ∈ RM
+ ,

lim
m→+∞

Ḡν
|Ym |(y) = Ḡν

|Y|(y).

Next, observe that the Hölder inequality and Equation (19) of Rao et al. [2] yield

Ḡν
|Ym |(y) ≤

M

∏
j=1

Ḡν/M
|Yj |

(yj) ≤
M

∏
j=1

[
1[0,1](yj) +

1
yς

j
1[1,∞)(yj)E

(
|Ymj |

ς
)ν/M

]
.

Consequently, Ḡ|Ym |ν(y) is considered to be bounded by an integrable function for ν ς
M > 1.

The proof is thus completed by the dominated convergence theorem.

We will now concentrate on upper and lower bounds for the generalized fractional
extropy of residual cumulative. In contrast to the extropy (see Qiu et al. [22]), we demon-
strate in the following theorem that the RFGxΦν, ν ≥ 1 of the sum of two independent
random variables is not greater than that of either one.

Theorem 3. Suppose that the two random variables Y1 and Y2 are considered independent and not
negative and follow the survival functions Ḡ1 and Ḡ2, respectively. Then, we have

RFGxΦν(Y1 + Y2) ≤ min(RFGxΦν(Y1) + κ(ν)E(Y2), RFGxΦν(Y2) + κ(ν)E(Y1)),
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ν ≥ 1.

Proof. Given that Y1 and Y2 are independent random variables,
∫ ∞

0 Ḡ1(y − t) dG2(t) repre-
sents the survival function of Y1 + Y2. Because ν ≥ 1 the function ϕ(v) = vν is convex for
v ≥ 0 (its second derivative is ν(ν − 1)vν−2 ≥ 0). Therefore, for every fixed y and treating

A(y) =
∫ ∞

0
Ḡ1(y − t) dG2(t),

as an expectation (since dG2(t) is a probability measure), Jensen’s inequality gives
the following: (

A(y)
)ν

≤
∫ ∞

0
Ḡν

1(y − t) dG2(t).

Thus, when integrated with respect to y we obtain the following:

RFGxΦν(Y1 + Y2) =
1

Γ(ν + 1)

∫ ∞

0

(∫ ∞

0
Ḡ1(y − t) dG2(t)

)ν

dy

≤ 1
Γ(ν + 1)

∫ ∞

0

(∫ ∞

0
Ḡν

1(y − t) dG2(t)
)

dy
(18)

Next, we write the following:

1
Γ(ν + 1)

∫ ∞

0

(∫ ∞

0
Ḡν

1(y − t) dG2(t)
)

dy =
1

Γ(ν + 1)

∫ ∞

0
dG2(t)

(∫ ∞

0
Ḡν

1(y − t) dy
)

. (19)

This interchange is justified by Fubini’s theorem since the integrand is non-negative. For
fixed t, consider the inner integral

I(t) =
∫ ∞

0
Ḡν

1(y − t) dy.

Make the substitution u = y − t (so that dy = du). When y goes from 0 to ∞, the new
variable u ranges from −t to ∞:

I(t) =
∫ ∞

−t
Ḡν

1(u) du.

Because Y1 is non-negative, the survival function Ḡ1 is typically defined as

Ḡ1(u) =

1, u < 0,

usual survival probability, u ≥ 0.

Thus, split the integral as follows:

I(t) =
∫ 0

−t
1 du +

∫ ∞

0
Ḡν

1(u) du = t +
∫ ∞

0
Ḡν

1(u) du.

Changing the dummy variable u back to y in the second term (since it is a dummy integra-
tion variable) yields the following:

I(t) = t +
∫ ∞

0
Ḡν

1(y) dy. (20)

Substitute from (20) into (19), then, (18) will return

RFGxΦν(Y1 + Y2) ≤
E(Y2)

Γ(ν + 1)
+

1
Γ(ν + 1)

∫ ∞

0
Ḡν

1(y) dy.
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Then, for ν ≥ 1, we obtain

RFGxΦν(Y1 + Y2) ≤
E(Y2)

Γ(ν + 1)
+

1
Γ(ν + 1)

∫ ∞

0
Ḡν

1(y) dy.

In the same manner, we obtain RFGxΦν(Y1 + Y2) ≤ E(Y1)
Γ(ν+1) +

1
Γ(ν+1)

∫ ∞
0 Ḡν

2(y) dy, ν ≥ 1,
which proves the theorem.

Remark 2. By noting that Ḡν(y) ≤ (≥)Ḡ(y), for ν ≥ 1 (0 ≤ ν ≤ 1). Then, we can say that

RFGxΦν(Y) ≤ (≥)κ(ν)E(Y).

The following theorem establishes a recurrence relation for the residual cumulative
generalized fractional extropy, which relies on the distorted mean residual life.

Theorem 4. Let Y be a non-negative absolutely continuous random variable with residual cumula-
tive generalized fractional extropy, RFGxΦν(Y). Then, the following relation holds:

RFGxΦν(Y) = RFGxΦν−1(Y)− κ(ν)E(Ḡν−1(y)mG,ν−1(v)), (21)

where ν ≥ 0, and the distorted mean residual life is defined as

mG,ν(v) =

∫ ∞
v Ḡν(y) dy

Ḡν(v)
. (22)

Proof. Starting from (17) and applying Fubini’s theorem, we derive

RFGxΦν(Y) = κ(ν)
∫ ∞

0
Ḡν(y) dy = κ(ν)

∫ ∞

0
Ḡν−1(y)

(∫ ∞

y
g(v) dv

)
dy

= κ(ν)
∫ ∞

0
g(v)

(∫ v

0
Ḡν−1(y) dy

)
dv.

(23)

Additionally, we observe that∫ v

0
Ḡν−1(y) dy =

∫ ∞

0
Ḡν−1(y) dy −

∫ ∞

v
Ḡν−1(y) dy. (24)

By substituting (24) into (23), we arrive at (21).

Remark 3. The distorted stop-loss transform DTG,ν(v) for a random variable Y is given by

DTG,ν(v) =
∫ ∞

v
Ḡν(y) dy. (25)

Then, the residual cumulative generalized fractional extropy can be expressed as

RFGxΦν(Y) = RFGxΦν−1(Y)− κ(ν)E(DTG,ν−1(v)), (26)

Next, we will discuss the connection between the residual cumulative generalized
fractional extropy and the two models of the residual cumulative Tsallis entropy presented
in (3) and (4).

Remark 4. From (3) and (4), with 1 ̸= η > 0, we can present the residual cumulative generalized
fractional extropy as the following

RFGxΦη(Y) = κ(ν)
(
1 − (η − 1)RTnη(Y)

)
, (27)
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RFGxΦη(Y) = κ(ν)
(

µ − (η − 1)RTn∗
η(Y)

)
= κ(ν)

(
µ − (η − 1)E

(
mG(Y)Ḡη−1(Y)

))
,

(28)

where

mG(v) = E(Y − v|Y > v) =

∫ ∞
v Ḡ(y) dy

Ḡ(v)
, (29)

is the function of mean residual life.

3. Features on Order Statistics and Stochastic Order
Provided that Y1, Y2, . . . , Ys are s identically distributed and independently random

variables which are considered non-negative with survival function Ḡ. If Y(j) stands for the
jth-order statistics in this size sample s, then, using the survival functions Ḡ(1) and Ḡ(s),
respectively, Y(1) determines the longevity of a series system and Y(s) determines the lifetime
of a parallel system, where Y(1) = min{Y1, Y2, . . . , Ys} and Y(s) = max{Y1, Y2, . . . , Ys}.
The following proposition provides upper and lower bounds for residual cumulative
generalized fractional extropy of series and parallel systems, utilizing the mean lifetime of
their components.

Proposition 2.
RFGxΦν(Y(s)) ≤ sν RFGxΦν(Y) ≤ sν κ(ν)E(Y).

Proof. From (17) and Remark 2, with ν ≥ 1, we can utilize the inequality of Bernoulli to
show that

RFGxΦν(Y(s)) = κ(ν)
∫ ∞

0
(1 − (1 − Ḡ(y))s)

ν dy

≤ κ(ν)
∫ ∞

0
(1 − (1 − s Ḡ(y)))ν dy = sν RFGxΦν(Y)

≤ sν κ(ν)E(Y).

Example 2. Following the distribution of standard uniform over the interval [0, 1], and with
E(Y) = 1

2 . Then, we obtain

1. RFGxΦν(Y) =
κ(ν)
1+ν .

2. RFGxΦν(Y(s)) =
Γ( s+1

s )
Γ( s+1

s +ν)
.

3. Ds(ν) = sν κ(ν)E(Y) = 1
2 sν κ(ν),

where ν, s ≥ 1. With noting that 1 ≤ s+1
s ≤ 2, Γ

(
s+1

s

)
≤ 1, the outcomes confirm the last

proposition (see also Figure 4).

We now present findings related to residual cumulative generalized fractional extropy
ordering for random variables. The subsequent definitions are essential, where Y1 and Y2

represent random variables with cdfs G1 and G2, pdfs g1 and g2, and survival functions Ḡ1

and Ḡ2, respectively.
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Figure 4. Plot of Ds(ν), sν RFGxΦν(Y), and RFGxΦν(Y(s)) for distribution of standard uniform over
the interval [0, 1], ν = 1.1.

Definition 2 (Shaked and Shanthikumar [23]). The random variable Y1 is considered less than
Y2 under the following criteria:

1. Likelihood ratio order (Y1 ≤lro Y2): Occurs when g1(y)
g2(y)

monotonically decreases in y.

2. Hazard rate order (Y1 ≤hro Y2): Holds if HλG1(y) ≥ HλG2(y) for all y, where

HλG(y) =
g(y)
Ḡ(y)

defines the function of the hazard rate.
3. Usual stochastic order (Y1 ≤sto Y2): Valid when Ḡ1(y) ≤ Ḡ2(y) for all y.
4. Dispersive order (Y1 ≤dispo Y2): Established if G−1

2 (G1(y))− y increases in y ≥ 0.
5. Increasing concave/convex order (Y1 ≤icvo Y2 or ≤icxo): Satisfied when E[D∗(Y1)] ≤

E[D∗(Y2)] for all increasing concave (convex) functions D∗ with finite expectations.

The hierarchical relationships among these stochastic orders are summarized below
(see [23]):

Y1 ≤lro Y2 =⇒ Y1 ≤hro Y2 =⇒ Y1 ≤sto Y2 =⇒ Y1 ≤icxo Y2,

Y1 ≤dispo Y2 =⇒ Y1 ≤sto Y2 (≥sto) if l∗Y1
= l∗Y2

> −∞ (u∗
Y1

= u∗
Y2

< ∞),

where l∗Y1
, u∗

Y1
, l∗Y2

, u∗
Y2

denote the support limits of Y1 and Y2. The subsequent theorem links
residual cumulative generalized fractional extropy to increasing concave order.

Theorem 5. For non-negative absolutely continuous random variables Y1 and Y2 with sfs Ḡ1 and
Ḡ2, respectively, if Y1 ≤icvo Y2, then RFGxΦν(Y1) ≥ RFGxΦν(Y2), ν ≥ 1.

Proof. Since
∫ v

0 Ḡ(y)dy is an increasing concave function, the result follows directly from
(24) and the definition of increasing concave order.

Remark 5. The increasing concave order corresponds to second-order stochastic dominance in
economics, which is relevant for evaluating returns rather than losses. When Y1 ≤icv Y2, risk-averse
agents prefer Y1 over Y2 (Rothschild and Stiglitz [24]). Notably, Y1 ≤icv Y2 is equivalent to
−Y1 ≥icx −Y2. The increasing convex order, termed stop-loss order in actuarial contexts, holds if
and only if DTG,1(v) ≤ DTG,1(v), when ν = 1.

The next theorem establishes a connection between residual cumulative generalized
fractional extropy and the usual stochastic order.
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Theorem 6. For non-negative absolutely continuous Y1 and Y2 with survival functions Ḡ1 and
Ḡ2, respectively, Y1 ≤sto Y2 implies RFGxΦν(Y1) ≤ RFGxΦν(Y2), ν ≥ 1.

Example 3. Consider Y1 and Y2 with cdfs G1(y) =
y
β1

(0 ≤ y ≤ β1) and G2(y) =
y
β2

(0 ≤ y ≤
β2), respectively. For β2 ≥ β1, Y1 ≤sto Y2 holds. Applying Table 1, we compute

RFGxΦν(Y1) =
β1 κ(ν)

(ν + 1)
≤ β2 κ(ν)

(ν + 1)
= RFGxΦν(Y2).

Remark 6. RFGxΦν(Y), ν ≥ 1, may be readily calculated in closed form for certain distribution
families, such as Pareto and exponential, allowing for the direct determination of the ordering.
However, dispersion, likelihood ratio, and standard stochastic ordering may be used to determine
the ordering for additional distributions by using Theorem 6 (families of ordering parametric). For
instance, if Y has a gamma distribution with form parameter α∗, it is simple to demonstrate that for
α∗1 < α∗2 , Yα∗1

≤lro Yα∗2
. Consequently, Yα∗1

≤sto Yα∗2
. RFGxΦν(Yα∗1

) ≤ RFGxΦν(Yα∗2
) is what

we have. For α1 < α2, Yα1 ≥dispo Yα2 , and therefore Yα1 ≥sto Yα2 , if Y has a Weibull distribution
with a shape parameter α. RFGxΦν(Yα1) ≥ RFGxΦν(Yα2), as a result.

The following corollary of Theorem 6 can be applied to record values and order
statistics. David and Nagaraja [25] and Arnold et al. [26] provide a thorough explanation
of certain record values and order statistics.

Corollary 1.

1. Assume that Y(k) and Z(K) denote the Kth order statistic from samples Y1, Y2, . . . , Ys and
Z1, Z2, . . . , Zs, respectively, both of size s. If Y ≤sto Z, then Y(k) ≤sto Z(k), which implies
RFGxΦν(Y(k)) ≥ RFGxΦν(Z(k)) for all k = 1, 2, . . . , s, ν ≥ 1.

2. Assume that Us and Vs correspond to the sth record values from the sequences {Ys, s ≥ 1}
and {Zs, s ≥ 1}, respectively. When Y ≤sto Z, it follows that Us ≤sto Vs, and consequently,
RFGxΦν(Us) ≥ RFGxΦν(Vs) holds for k = 1, 2, . . . , s, ν ≥ 1.

We demonstrate that residual cumulative generalized fractional extropy can be a
superadditive functionality in the following theorem.

Theorem 7. Consider two independent, non-negative random variables, Y1 and Y2, with right-end
supporting locations u∗

Y1
= u∗

Y2
< ∞. If the densities of Y1 and Y2 are log-concave, then using

ν ≥ 1, we get

(i) RFGxΦν(Y1 + Y2) ≤ min{RFGxΦν(Y1), RFGxΦν(Y2)}.
(ii) RFGxΦν(Y1 + Y2) ≤ RFGxΦν(Y1) + RFGxΦν(Y2).

Proof. Let the density of Y1 be log-concave. The theory 3.B.7 of Shaked and Shanthiku-
mar [23] states that for every variable that is random Y1 independent of Y2, Y1 ≤dispo Y1 +Y2.
We have Y1 ≥sto Y1 + Y2 considering u∗

Y1
= u∗

Y2
< ∞. Therefore, RFGxΦν(Y1 + Y2) ≤

RFGxΦν(Y1) is implied by Theorem 6. When Y2 has a log-concave density, then the same
thing happens: RFGxΦν(Y1 + Y2) ≤ RFGxΦν(Y2). This completes portion (i) of the ev-
idence. Furthermore, we may demonstrate portion (ii) by pointing out that a random
variable’s residual cumulative generalized fractional extropy is never negative.

4. Dynamic Residual Cumulative Generalized Fractional Extropy
The length of a research period is a key variable of interest in many domains, including

business, economics, survival analysis, and reliability. In many applications, the residual
lifespan information is essential. The information measurements in these circumstances
are dynamic since they depend on time. The dynamic version of the residual cumula-
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tive generalized fractional extropy is defined, and its key characteristics are examined in
the following.

Definition 3. Under a non-negative continuous random variable Y following a cdf G(y). Then, by
the same manner in Definition 1, the dynamic residual cumulative generalized fractional extropy
can be defined as

RFGxΦν(Y; v) ≈ κ(ν)

∫ ∞
v Ḡν(y) dy

Ḡν(v)
, (30)

ν ≥ 0.

If ν = 2, then RFGxΦ2(Y; v) = 1
2

∫ ∞
0 Ḡ2(y) dy

Ḡ2(v) , which is actually the positive value of the
dynamic residual extropy given in (11) by Abdul Sathar and Nair [13]. In actuality, the
residual cumulative generalized fractional extropy of the random variable [Y − v|Y ≥ v] is
the dynamic residual cumulative generalized fractional extropy of a random lifespan Y. It is
simple to demonstrate that for any v ≥ 0, RFGxΦν(Y; v) has every property of RFGxΦν(Y).
RFGxΦν(Y; 0) = RFGxΦν(Y) and RFGxΦν(Y; v) are clearly always positive.

In the following, we will discuss some properties of the dynamic residual cumulative
generalized fractional extropy. The following proposition is an extension of Proposition 1.

Proposition 3. Let Z be a random variable that is not negative. If Z = θ1Y + θ2, θ1 > 0 and
θ2 ≥ 0, then RFGxΦν(Z; v) = θ1 RFGxΦν(Y; v−θ2

θ1
), v ≥ θ2.

Remark 7. By noting that Ḡν(y) ≤ (≥)Ḡ(y), for ν ≥ 1 (0 ≤ ν ≤ 1). Then, we can say that

RFGxΦν(Y; v) ≤ (≥)κ(ν)mG(v),

where mG(v) is defined in (29).

Definition 4. If RFGxΦν(Y; v) is an increasing (decreasing) function of v, then the distri-
bution function G in dynamic residual cumulative generalized fractional extropy is said to be
increasing (decreasing).

Theorem 8. The distribution function G is increasing (decreasing) in dynamic residual cumulative
generalized fractional extropy, if and only if, for every v ≥ 0

RFGxΦν(Y; v) ≥ (≤)
1

ν κ(ν) HG(v)
,

where

HG(v) =
g(y)
Ḡ(y)

, (31)

is the function of hazard rate.

Proof. From (30), we can write

κ(ν) Ḡν(v) RFGxΦν(Y; v) =
∫ ∞

v
Ḡν(y) dy. (32)

With respect to v, we can differentiate (32) and obtain

κ(ν)

[
dRFGxΦν(Y; v)

dv
Ḡν(v)− ν RFGxΦν(Y; v) Ḡν−1(v) g(v)

]
= −Ḡν(v).
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Or equivalent,
dRFGxΦν(Y; v)

dv
=

−1
κ(ν)

+ ν HG(v) RFGxΦν(Y; v), (33)

and the outcome comes next.

In the sense that it defines the underlying distribution in a unique way, the following
theorem describes dynamic residual cumulative generalized fractional extropy.

Theorem 9. With survival functions Ḡ1 and Ḡ1, respectively, and hazard functions HG1(v) and
HG2(v), respectively, consider Y1 and Y2 as two non-negative completely continuously random
variables. Assume that the dynamic residual cumulative generalized fractional extropy match-
ing Y1 and Y2 is RFGxΦν(Y1; v) and RFGxΦν(Y2; v). Ḡ1(v) = Ḡ2(v) if, for every v ≥ 0,
RFGxΦν(Y1; v) = RFGxΦν(Y2; v).

Proof. Using Equation (33) and differentiate each side of RFGxΦν(Y1; v) = RFGxΦν(Y2; v)
with regard to v, we get

−1
κ(ν)

+ ν HG1(v) RFGxΦν(Y1; v) =
−1

κ(ν)
+ ν HG2(v) RFGxΦν(Y2; v).

Instantly, this suggests that HG1(v) = HG2(v), or, in other words, that Ḡ1(v) = Ḡ2(v).

Next, we will discuss the connection between the dynamic residual cumulative
generalized fractional extropy and the two models of the dynamic residual cumulative
Tsallis entropy.

Remark 8. With 1 ̸= η > 0, we can present the residual cumulative generalized fractional extropy
as the following

RFGxΦη(Y; v) = κ(ν)
(
1 − (η − 1)RTnη(Y; v)

)
, (34)

RFGxΦη(Y; v) = κ(ν)
(
(mG(Y)− (η − 1)RTn∗

η(Y; v)
)

, (35)

where

RTnη(Y; v) =
1

η − 1

(
1 −

∫ ∞

v

Ḡη(y)
Ḡη(v)

)
dy,

RTn∗
η(Y; v) =

1
η − 1

∫ ∞

v

(
Ḡ(y)
Ḡ(v)

− Ḡη(y)
Ḡη(v)

)
dy.

The distributions are described by the following theorem, which uses the link between
mean residual life mG(v) and dynamic residual cumulative generalized fractional extropy.

Theorem 10. Consider Y as a non-negative continuous random variable characterized by its
survival function Ḡ(y), mean residual life mG(v), and dynamic residual cumulative generalized
fractional extropy order η, denoted as RFGxΦη(Y; v). If the relationship

RFGxΦη(Y; v) = A∗ κ(η)mG(v), η > 0, η ̸= 1, (36)

holds, then the distribution of X can be determined as follows:

1. X follows a distribution of exponential if and only if A∗ = 1/η,
2. X follows a distribution of Pareto if and only if A∗ < 1/η,
3. X follows a distribution of finite range if and only if A∗ > 1/η.
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Proof.

1. When the random variable Y follows an exp(γ) distribution, then its pdf, survival
function and mean residual life are, respectively,

g(v) = γe−γv, γ > 0, v > 0,

Ḡ(v) = e−γv,

mG(v) =
1
γ

. (37)

Substituting these into (30), we obtain the following:

RFGxΦη(Y; v) = A∗ κ(η)mG(v), (38)

where A∗ = 1/η and mG(v) = 1/γ.
2. When the random variable Y follows a Pareto distribution, then its pdf, survival

function, and mean residual life are, respectively,

g(v) =
(

1 +
v
α

)−α−1
, α > 1, v > 0,

Ḡ(v) =
(

1 +
v
α

)−α
,

mG(v) =
α + v
α − 1

. (39)

Using (30), we derive the following:

RFGxΦη(Y; v) = A∗ κ(η)mG(v), (40)

where A∗ = α−1
η α−1 < 1

η if η > 1, and mG(v) = α+v
α−1 .

3. When the random variable Y follows a finite range distribution, then its pdf, survival
function, and mean residual life are, respectively,

g(v) = β(1 − v)β−1, β > 0, 0 < v < 1,

Ḡ(v) = (1 − v)β,

mG(v) =
1 − v
β + 1

. (41)

Applying (30), we find the following:

RFGxΦη(Y; v) = A∗ κ(η)mG(v), (42)

where A∗ = β+1
ηβ+1 > 1

η if η > 1, and mG(v) = 1−v
β+1 .

For the opposite direction. Assuming (36) is valid, we use (30) to derive the following:

A∗ mG(v) =

∫ ∞

v

(
Ḡ(y)

)η dy(
Ḡ(v)

)η ; (43)

Differentiating (43) with respect to v, we obtain the following:

A∗ m′
G(v) = −1 + η HG(v)

∫ ∞

v

(
Ḡ(y)

)η dy(
Ḡ(v)

)η = −1 + η HG(v) A∗ mG(v), (44)
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where HG(v) represents the hazard rate of Y. Utilizing the relationship between the hazard
rate and the mean residual life,

HG(v)mG(v) = 1 + m′
G(v).

We arrive at the following:

m′
G(v) =

A∗η − 1
A∗(1 − η)

. (45)

Integrating (44) with respect to v over the interval (0, y), we find the following:

mG(v) =
A∗η − 1

A∗(1 − η)
y + mG(0). (46)

Equation (45) indicates that the mean residual life function mG(y) of the continuous random
variable Y is linear if and only if the underlying distribution is exponential (A∗ = 1/η), Pareto
(A∗ < 1/η), or finite range (A∗ > 1/η); see Hall and Wellner [27]. This concludes the proof.

5. Nonparametric Estimation via Empirical Residual Cumulative
Generalized Fractional Extropy

In this part, we will estimate the residual cumulative generalized fractional extropy
nonparametrically using the empirical cdf. Assuming that Y1, Y2, . . . , Ys are independent,
non-negativity, absolutely continuous, and identically distributed random variables that
obey cdf G(y). The empirical residual cumulative generalized fractional extropy is defined
as follows, per (17):

RFGxΦν(Ĝs) = κ(ν)
∫ ∞

0
(1 − Ĝs(y))ν dy, (47)

where ν ≥ 0, Ĝs(y), is the empirical cdf of the sample. With the indicator function A, and
the order statistics Y(1) ≤ Y(2) ≤ . . . , Y(s), the empirical cdf form can be presented as

Ĝs(y) =
s−1

∑
l=1

l
s
A[Y(l),Y(l+1))

(y) +A[Y(s),∞)(y), y ∈ R.

Then, Equation (47) may be constructed as

RFGxΦν(Ĝs) = κ(ν)
s−1

∑
l=1

∫ Yl+1

Yl

(1 − Ĝs(y))ν dy

= κ(ν)
s−1

∑
l=1

(
Y(l+1) − Y(l)

)(
1 − l

s

)ν

= κ(ν)
s−1

∑
l=1

Λl

(
1 − l

s

)ν

,

(48)

where Λl =
(

Y(l+1) −Y(l)

)
, l = 1, 2, . . . , s− 1. Instead of directly summing over order statistics,

it integrates over the empirical cdf, reducing variability compared to discrete estimators. This
smoothing helps mitigate the discontinuity problem seen in traditional empirical estimators.

Theorem 11. The consistency of the test based on the sample estimate RFGxΦν(Ĝs) remains valid.

Proof. By applying the Glivenko–Cantelli theorem, as referenced in Howard [28], it
follows that

sup
y

|Ĝs(y)− G(y)| a.s.−→ 0 as n → ∞.
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Meaning the convergence is almost sure. Consequently, it can be directly concluded that

RFGxΦν(Ĝs)
a.s.−→ RFGxΦν(G).

This establishes the proof.

Based on the computation of empirical residual cumulative generalized fractional extropy
shown in Equation (48), Figure 5 estimates the residual cumulative generalized fractional
extropy for random variables derived from the traditional uniform distribution in [0, 1] and the
exp(γ) distribution with parameter γ = 1

2 . Table 1 is used to calculate the theoretical values.
The empirical residual cumulative generalized fractional extropy for variable ν is shown to be
almost the same as the real value for the uniform distribution. As ν becomes smaller, the actual
estimation deviates from the theoretic value for the exponential distribution. Subsequently, the
sample size s rises, the deviation decreases, as seen in Table 2 by the root mean squared error
(RM∗) compared to the estimated and theoretical values, meaning,

RM∗ =

√√√√1
k

k

∑
i=1

∣∣RFGxΦν(Ĝs)− RFGxΦν(G)
∣∣2.

As s increases, the RM∗ declines, suggesting that as s grows infinite, the empirical residual
cumulative generalized fractional extropy’s departure from the real entropy value reduces
to zero. In other words, the sample data’s residual cumulative generalized fractional
extropy asymptotically approaches the theoretical value.

Table 2. The RM∗ of the residual cumulative generalized fractional extropy of random variables from
a uniform distribution over [0,1] and exp(0.5) distribution with 10,000 reparations.

Uniform distribution

s ν = 0.5 0.9 1 1.5 2 2.5 3

10 0.161776 0.132931 0.125248 0.0864609 0.0534129 0.0300807 0.0156762
20 0.0944264 0.0835524 0.0797054 0.0573684 0.0363235 0.0208116 0.0109902
30 0.0698461 0.064405 0.0618245 0.0454066 0.0290754 0.0167828 0.00891063
50 0.0487952 0.0472531 0.0456565 0.0342064 0.022138 0.0128691 0.00686888
70 0.0384165 0.038214 0.0370454 0.0280366 0.0182468 0.010648 0.00569992
100 0.0305881 0.0314006 0.0305596 0.0233949 0.0153097 0.00896257 0.00480783

Exponential distribution

10 3.88754 1.86078 1.59086 0.763005 0.370764 0.175984 0.0806626
20 3.823 1.81117 1.54469 0.732381 0.352205 0.165627 0.0752857
30 3.80383 1.79729 1.53188 0.724078 0.34717 0.162779 0.0737777
50 3.7891 1.7862 1.52157 0.71717 0.34287 0.160293 0.0724369
70 3.78101 1.77959 1.51535 0.712906 0.340223 0.158782 0.071634
100 3.77488 1.77461 1.51066 0.709616 0.338122 0.157549 0.0709622

Figure 5. The empirical residual cumulative generalized fractional extropy of random variables
following uniform distribution on supporting [0,1] (left), and exp(0.5) distribution (right).
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5.1. An Empirical Residual Cumulative Generalized Fractional Extropy Central Limit Theorem

We examine the empirical residual cumulative generalized fractional extropy for both
uniformly and exponentially distributed random variables in the examples that follow.

Example 4. Consider a random sample Y1, Y2, . . . , Ys drawn from a uniform distribution on the
interval [0, 1]. The sample spacing Λl follows a beta distribution Beta(1, n), which implies

E(Λl) =
1

s + 1
and Var(Λl) =

s
(s + 1)2(s + 2)

,

as shown in [29]. Using Equation (48), the mean and variance of the empirical residual cumulative
generalized fractional extropy can be derived as follows:

E
[
RFGxΦν(Ĝs)

]
=

κ(ν)

s + 1

s−1

∑
l=1

(
1 − l

s

)ν

, (49)

Var
[
RFGxΦν(Ĝs)

]
=

s κ(ν)

(s + 1)2(s + 2)

s−1

∑
l=1

(
1 − l

s

)2ν

. (50)

From Table 1, it is evident that

lim
s→∞

E
[
RFGxΦν(Ĝs)

]
=

κ(ν)

(ν + 1)
, lim

s→∞
Var

[
RFGxΦν(Ĝs)

]
= 0. (51)

Example 5. Let Y1, Y2, . . . , Ys be a random sample drawn from an exp(γ) distribution with
parameter γ. Here, Λl follows an exp(γ(s − l)) distribution with parameter γ(s − l), as referenced
in [29]. From Equation (48), we obtain the following:

E
[
RFGxΦν(Ĝs)

]
=

κ(ν)

s γ

s−1

∑
l=1

(
1 − l

s

)ν−1
, (52)

Var
[
RFGxΦν(Ĝs)

]
=

κ2(ν)

s2 γ2

s−1

∑
l=1

(
1 − l

s

)2ν−2
. (53)

Table 1 makes it evident that

lim
s→∞

E
[
RFGxΦν(Ĝs)

]
=

κ(ν)

γ ν
, lim

s→∞
Var

[
RFGxΦν(Ĝs)

]
= 0. (54)

The empirical residual cumulative generalized fractional extropy mean and vari-
ance for the examples in Examples 4 and 5 are tabulated in Table 3. The sample
size s is set at 10, 20, 30, 50, 70, and 100, while the order ν is set at 0.5, 0.9, 1.0,
1.5, 2, 2.5, and 3. From (51), the values of estimated mean as s → ∞, with fixed ν,
tends to RFGxΦ0.5(Ĝs) = 0.752253, RFGxΦ0.9(Ĝs) = 0.547239, RFGxΦ1.0(Ĝs) = 0.5,
RFGxΦ1.5(Ĝs) = 0.300901, RFGxΦ2(Ĝs) = 0.166667, RFGxΦ2.5(Ĝs) = 0.0859717,
RFGxΦ3(Ĝs) = 0.0416667. From (54), γ = 0.5, the values of estimated mean as s → ∞, with
fixed ν, tends to RFGxΦ0.5(Ĝs) = 4.51352, RFGxΦ0.9(Ĝs) = 2.31056, RFGxΦ1.0(Ĝs) = 2,
RFGxΦ1.5(Ĝs) = 1.003, RFGxΦ2(Ĝs) = 0.5, RFGxΦ2.5(Ĝs) = 0.240721, RFGxΦ3(Ĝs) =

0.111111. once can be shown, once s grows sufficiently, the variance decreases to zero, and
the mean of empirical residual cumulative generalized fractional extropy approaches the
real value.

For random samples from the exponential distribution, a central limit theorem for
the empirical residual cumulative generalized fractional extropy may be obtained from
Example 5.
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Table 3. The mean and variance of the residual cumulative generalized fractional extropy of random
variables from a uniform distribution over [0,1] and exp(0.5) distribution.

Uniform distribution
s ν = 0.5 0.9 1 1.5 2 2.5 3

10 0.688886 0.494707 0.45 0.264168 0.1425 0.0715543 0.03375
(0.0349704) (0.0221006) (0.0196281) (0.0104911) (0.00527996) (0.00250388) (0.00112305)

20 0.721538 0.521085 0.475 0.282319 0.154375 0.078606 0.0376042
(0.0220977) (0.0142542) (0.0127293) (0.00699761) (0.00362468) (0.0017704) (0.00081843)

30 0.732071 0.529832 0.483333 0.288464 0.158426 0.0810264 0.0389352
(0.0159614) (0.0103657) (0.00927311) (0.00514312) (0.00268817) (0.00132502) (0.000618232)

50 0.740324 0.53681 0.49 0.293415 0.1617 0.0829878 0.0400167
(0.0102199) (0.00667283) (0.00597773) (0.00333851) (0.00175721) (0.000872285) (0.000409905)

70 0.743802 0.539795 0.492857 0.295547 0.163112 0.0838352 0.0404847
(0.00750798) (0.00491342) (0.00440416) (0.00246691) (0.00130228) (0.000648377) (0.000305596)

100 0.746381 0.542031 0.495 0.297149 0.164175 0.0844735 0.0408375
(0.00536806) (0.00351905) (0.00315569) (0.00177146) (0.000937208) (0.000467642) (0.000220898)

Exponential distribution

10 3.35756 2.04854 1.8 0.918515 0.45 0.211335 0.095
(1.44078) (0.46855) (0.36) (0.101859) (0.0285) (0.00733386) (0.00170367)

20 3.71993 2.17393 1.9 0.962051 0.475 0.225855 0.102917
(0.903424) (0.250413) (0.19) (0.053759) (0.0154375) (0.00408568) (0.000976851)

30 3.8741 2.21715 1.93333 0.976095 0.483333 0.230771 0.105617
(0.672551) (0.170814) (0.128889) (0.0364681) (0.0105617) (0.0028202) (0.000680384)

50 4.02483 2.25267 1.96 0.987099 0.49 0.234732 0.1078
(0.456248) (0.104467) (0.0784) (0.0221827) (0.006468) (0.00173912) (0.000422519)

70 4.10347 2.26831 1.97143 0.991736 0.492857 0.236437 0.108741
(0.350581) (0.0752642) (0.0563265) (0.0159371) (0.00466035) (0.00125676) (0.00030623)

100 4.17266 2.28029 1.98 0.995175 0.495 0.237719 0.10945
(0.263682) (0.0530409) (0.0396) (0.0112045) (0.0032835) (0.000887397) (0.000216704)

Theorem 12. Consider a random sample Z1, Z2, . . . , Zs drawn from an exp(γ) distribution with
parameter γ. Then, as s → ∞, the standardized form

RFGxΦν(Ĝs)−E
[
RFGxΦν(Ĝs)

]√
Var

(
RFGxΦν(Ĝs)

) , (55)

approaches a standard normal distribution in the limit.

Proof. Referring to Equation (48), the empirical residual cumulative generalized fractional
extropy can be formulated as the summation of independent exponentially distributed
random variables Zl , where the expected value is given by

E[Zl ] =
κ(ν)

s γ

(
1 − l

s

)ν−1
. (56)

For an exponentially distributed variable Zl , it is known that [30]

E
[
|Zl −E(Zl)|3

]
= 2e−1(6 − e) [E(Zl)]

3.

Thus, we obtain

s

∑
l=1

E
[
|Zl −E(Zl)|2

]
=

κ2(ν)

s2 γ2

s

∑
l=1

(
1 − l

s

)2ν−2
=

κ(ν)

s γ

[
κ(ν)

s γ

s

∑
l=1

(
1 − l

s

)(2ν−1)−1
]

≈ κ(ν)κ(2ν − 1)
s γ2(2ν − 1)

,

(57)



Fractal Fract. 2025, 9, 388 21 of 26

and similarly,

s

∑
l=1

E
[
|Zl −E(Zl)|3

]
=

κ3(ν)

s3 γ3

s

∑
l=1

(
1 − l

s

)3ν−3
=

κ2(ν)

s2 γ2

[
κ(ν)

s γ

s

∑
l=1

(
1 − l

s

)(3ν−2)−1
]

≈ 2(6 − e)κ2(ν)κ(3ν − 2)
e s2 γ3(3ν − 2)

(58)

for ν ≥ 0 and sufficiently large s. Consequently, Lyapunov’s condition for the central limit
theorem holds (see, e.g., [31]), as follows:(

∑s
l=1 E

[
|Zl −E(Zl)|3

])1/3

(
∑s

l=1 E
[
|Zl −E(Zl)|2

])1/2 ≈ (2(6 − e)κ(3ν − 2))
1
3 (2ν − 1)

1
2 κ

1
6 (ν)

e
1
3 (3ν − 2)

1
3 κ

1
2 (2ν − 1)

s−
1
6 → 0 as s → ∞. (59)

This concludes the proof.

5.2. Analysis of Real Data

In this subsection, we will apply the obtained estimator of the residual cumulative
generalized fractional extropy to a real data sets.

Example 6. The blood transfusion service center in Hsin-Chu City, Taiwan, provided the donor
database for this data. Every three months or so, the facility collects blood donations by sending a
plasma transfusion support bus to a specific university in Hsin-Chu City. Several references have
looked into it. For instance, refer to Yeh et al. [32]. Its foundation was the random selection of
748 donors from a donation database. This data contains the following variables:

1. Recency: months since the last donation.
2. Monetary: total blood donated.
3. Frequency: total number of donations.
4. Time: months since the first donation.
5. A binary variable indicating whether the donor donated blood in March 2007 was included in

these 748 donor data. One means the donor donated blood, while zero means they did not

In our study, we will use the residual cumulative generalized fractional extropy and its estimator for
the variable “Time" to implement the calculation. To fit this data to exp(γ) distribution, we use the
maximum likelihood estimation to estimate the parameter γ, which returns 0.02916975. Moreover,
Figure 6 shows the fitting between the histogram of the data and the exponential curve (in the left
panel) and the theoretical and empirical cdf (in the right panel), which illustrate how the exponential
distribution fits the data.

Under exp(0.02916975) distribution, Figure 7 shows the theoretical and empirical residual
cumulative generalized fractional extropy of the “Time” blood transfusion data for different values of ν.

Figure 6. Plot of histogram (left), and theoretical and empirical cdf (right) of the “Time” blood
transfusion data.
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Figure 7. Plot of the theoretical and empirical residual cumulative generalized fractional extropy of
the “Time” blood transfusion data, with exp(0.02916975) distribution.

Example 7. Originally reported by Chhikara and Folks [33] and later cited by Balakrishnan
et al. [34], this dataset shows the operational repair times (in hours) for an airborne telecommunica-
tions transmitter. The following values were noted:

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 1.5,
1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 8.8, 9.0, 10.3,
22.0, 24.5.

This data was used by Jahanshahi et al. [12] to estimate the traditional extropy given by
Equation (8). They fit this data to an exp(γ) distribution with the parameter estimate γ = 0.2773.
They conclude that by increasing sample size, the empirical estimator become closer to the theoretical
value. In our work, we will use this data to estimate the empirical residual cumulative generalized
fractional extropy of exp(0.2773) distribution. The theoretical and empirical residual cumulative
generalized fractional extropy of this data under different values of ν are displayed in Figure 8.

Figure 8. Plot of the theoretical and empirical residual cumulative generalized fractional extropy
of the operational repair times (in hours) for an airborne telecommunications transmitter, with
exp(0.2773) distribution.

The proposed estimator of the residual cumulative generalized fractional extropy has
demonstrated good performance in approximating the theoretical measure across two
real datasets. As shown in Figures 7 and 8, the estimator remains close to the theoretical
values for all considered values of the fractional parameter ν. Additionally, increasing ν
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generally improves the agreement between the empirical and theoretical extropy, especially
in the “Time” blood transfusion data (Figure 7), where the curves clearly converge. In the
operational repair times data (Figure 8), although the convergence is less pronounced, the
estimator still maintains a close fit to the theoretical values. These findings suggest that
while higher values of ν may improve estimation accuracy, the extent of this effect can
depend on the characteristics of the underlying data.

Example 8. This example illustrates the performance of our proposed estimators in a practi-
cal case, previously described in Example 7. The parametric family considered here is the in-
verse Gaussian (InG) distribution. Chhikara and Folks [35] matched the InG distribution and
determined that the fit is satisfactory (test statistic = 0.07245267) based on the value they ob-
served of the Kolmogorov–Smirnov statistic. Both the independently characterised Mudholkar
test (test statistic = 0.2026783, Mudholkar et al. [36]) and the Anderson and Darling test (test
statistic = 0.2392647) obtained the same result. Lastly, the widely accepted InG distribution was
used by Lee et al. [37].

Assume that the random variable Y follows an inverse gamma distribution with shape parame-
ters r1 and r2, denoted as InG(r1, r2). Define a transformation Z = 1√

Y
. The corresponding pdf of

Z is then given by

g(z) =
2√

2πh2
exp

− (z− h1
z )2

2h2
2 , z ≥ 0,

where the parameters are h1 = 1
r1

and h2
2 = 1

r2
. Based on equation (17), the residual cumulative

generalized fractional extropy for Z can be computed as follows:

RFGxΦν(Z) = κ(ν)
∫ ∞

0
Ḡν(z) dz

= κ(ν)


1√
ν

(
2

h2
√

2π

)ν−1 ∫ ∞

0

2
√

2π h2√
ν

exp

− (z− h1
z )2

2
(

h2√
ν

)2

dz


= κ(ν)

{
1√
ν

(
2

h2
√

2π

)ν−1
}

.

Additionally, according to Mudholkar and Tian [38], the uniformly minimum variance unbi-
ased estimator (UMVUE) of h2

2 is given by the following:

u2
UMVUE =

∑n
i=1 z2

i
n − 1

− n2

(n − 1)(∑n
i=1

1
z2

i
)

.

As an illustration, for ν = 3, the value of the residual cumulative generalized fractional
extropy becomes

RFGxΦν(Z) = κ(ν)

{
1√
ν

(
2

uUMVUE
√

2π

)ν−1
}

= 0.00165021.

Using the transformation Z = 1√
Y

, the sample-based estimators for the residual cumulative

generalized fractional extropy are denoted as RFGxΦν(Ĝs), as defined in Equation (48). The plot
in Figure 9 presents the absolute bias values of these estimators. The trend observed indicates that
increasing ν leads to smaller absolute biases.
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Figure 9. Absolute biases of the residual cumulative generalized fractional extropy estimates accord-
ing to Example 8.

6. Conclusions
Depending on the Maclaurin expansion, we have presented the residual cumulative

generalized fractional extropy as a generalization of the residual cumulative extropy. The
survival function Ḡ serves as the foundation for this measure. Examples of some well-
known distributions have been presented. Many properties have been discussed, such as
the sufficient condition for it to be finite, affine transformation, weak convergence, upper
and lower bounds, a recurrence relation, and its connection with residual cumulative
Tsallis entropy via residual cumulative generalized fractional extropy. Furthermore, order
statistics and stochastic ordering have been considered in the proposed measure. Moreover,
some bounds depending on the mean residual life and hazard rate for the dynamic version
of the residual cumulative generalized fractional extropy have been derived. It has been
shown that the dynamic version of the residual cumulative generalized fractional extropy
uniquely determines the distribution. Additionally, this model has been expressed in
terms of dynamic residual cumulative Tsallis entropy. We have described many well-
known lifespan distributions, including exponential, Pareto, and finite-range distributions,
which are essential to reliability modeling based on the suggested dynamic version. In
the end, empirical residual cumulative generalized fractional extropy has been used for
nonparametric estimation. In addition, the consistency and the central limit theorem
have been discussed with examples of the uniform and exponential distributions for the
proposed estimator. Across both simulated and real datasets, the suggested estimate of
the residual cumulative generalized fractional extropy has shown strong performance in
approaching the theoretical measure. In future work, we can extend this model for more
discussion in different data sets, see for example Zheng et al. [39]. Moreover, we aim to
further explore the stability and robustness of the proposed estimator in more complex and
multimodal real-world datasets.
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