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Abstract: In the present paper, using the g-difference operator, we introduce two classes
of g-starlike functions and g-convex functions subordinate to secant hyperbolic functions.
As functions in these classes have unique characteristic of missing coefficients on the
second term in their analytic expansions, we define a new functional to unify the Hankel
determinants with entries of the original coefficients, inverse coefficients, logarithmic
coefficients, and inverse logarithmic coefficients for these functions. We obtain the sharp
bounds on the new functional for functions in the two classes, and as a consequence,
the best results on Hankel determinant for the starlike and convex functions subordinate
to secant hyperbolic functions are given. The outcomes include some existing findings
as corollaries and may help to deepen the understanding the properties of g-analogue
analytic functions.

Keywords: Hankel determinant; g-starlike functions; g-convex functions; secant hyperbolic
functions
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1. Introduction and Definitions

LetD = {z € C: |z| < 1} be the unit disc and A be the group of analytic functions f
in D with the normalization f(0) = f'(0) — 1 = 0. For f € A, it can be written as

flz)=z+ i a,z", z € D. 1)
n=2

If a function never takes a value twice, it is called univalent. Traditionally, S is used to
represent the set of such functions in geometric function theory. For an analytic function w
with w(0) = 0 and |w(z)| < 1in D, we call it a Schwarz function. Let P denote the class of
functions f € A with ®(p(z)) > 0(z € D) and normalized by

p(z) =1+ ) puz", zeD.
n=1
For p € P, itis often called a Carathéodory function [1].
For two given analytic functions f and g, f < ¢ means that f is subordinate to g, i.e.,
there exists a Schwarz function w in the manner of

f(z) =g(w(z)), zeD.
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To illustrate our main idea, the notions of g-calculus need to be addressed. Throughout
this paper, g is fixed to be (0,1). The g-number [], is introduced as

g .
g =1 T JeECAN @
1+g+---+qg"1, iff=meN.
The g-factorial [m],! is used to denote
1, ifm=0,
mlt— ‘ 3)
e { ml, - — 1), Ry [y ifmeN.
In particular, lim,_,;-[m]g = m.
The g-difference operator of a function ¢ is defined as
z) —¢(z
Dyp(z) = L =0E) - py (g3, @

(q—1)z

see [2]. Clearly, lim,_,;- Dy¢(z) = ¢'(z), and Dyz" = [m]gz™ 1. This operator is widely
used in the theory of hypergeometric series and quantum physics and is also known as the
Jackson g-difference operator; we refer to [3-5] for more details.

Using the g-difference operator, Ismail et al. [6] first proposed the concept of g-starlike
functions. In [7], it is proved that the conditions of g-starlike functions can be equivalently
characterized by f € A and

zDyf(z) 14z

=< , z€D. (5)
fz)  1-gz
For 0 < a <1, Seoudy and Aouf [8] introduced the subclasses S; (a) and Ky(a) defined,
respectively, by
zDqf (2)
S; = eA:éR( ! >>zx,zeD} (6)
Y 72)
and ( )
D, (zD,f(z)
K= eA: R L) S pzeD . (7)
! {f < Dyf(2) > }

When g — 17, §;(a) and Ky (a) reduce to the class of starlike functions of order « and
convex of order « in DD (see Duren [9]). Afterwards, the research on g-starlike functions
and g-convex functions continued to enrich, including the works on g-starlike functions
associated with the Janowski functions [10], the g-exponential function [11], the g-Bernoulli
numbers [12] and some others like [13-15].

In [16], Bano et al. introduced a novel class of starlike functions S*(sech) defined by

!/
S*(sech) := {f eA: 2f (2) <sech(z), ze€ ID)}.
f(z)
We remark that the function sech(z) is not univalent in D. By virtue of sech(z) = #, it
is clear that sech( 3 ) = sech(—%) . As R(sech(z)) > 0in D, functions in the class $*(sech)
are starlike and thus univalent. Recently, the coefficient problems for this class were studied

in [17,18] and an interesting observation is that a; = 0 when f € §*(sech), with a; = f ”2(!0).
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Inspired by the mentioned works, we consider the classes Sj(sech) and Ky (sech)
defined, respectively, by

S, (sech) := {f e A: Zqu(gZ) < sech(qz), ze€ D} (8)
and
ICq(sech) := {f cA: Dq(;’f}q(fzgz)) <sech(qz), z€ ]D}. 9)

For different choices of g, the images domains of sech(gz) are presented in Figure la—d.
Clearly, lim,_,;- S; (sech) = S*(sech). Denote lim,_,;- Kq(sech) = K(sech). We remark
that K(sech) is a subclass of convex functions.

0.6
0.4} 0.2
0.2} 0.1
0t 0 ‘
—0.2} -0.1
—0.4} —0.2
0.5 1 15 2 0.8 1 1.2 1.4

(b) Image of D under sech(qz), with ¢ = 0.75

0.03f
0.1

0.02}
0.05 \ 0.01l

\
0 0f

/
~0.05 —0.01}
~0.02}

—0.1 |

- —0.03 1

0.9 095 1 1.05 1.1 115 098 1 102 104

(c) Image of D under sech(gz) with ¢ = 0.5 (d) Image of D under sech(gz) with g = 0.25
Figure 1. Images of D under sech(gz) with various values of 4.

Hankel determinant is an important tool in the study of analytic functions. In [19,20],
Pommerenke introduced the Hankel determinant H,,(f) with 2y = 1 and g,n € N for
f € A. Itis defined by the coefficients a, of f arranged in the form

an An+1 An+q—1

Ap+1 apy2 ... ﬂn+q
Hy,n (f):=1|. . .

Apn+g-1  Antq An+2q-2

Utilizing the initial coefficients a5, a3, a4, and as of f, we may write

Has(f) = azas — aj, (10)
Ha1(f) = 2a2a3a4 — a3as — a; + azas — a3. (11)
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In recent years, the upper bounds of Hankel determinants for f belonging to various
subfamilies of analytic functions were obtained. For example, the study on bounded
turning functions [21,22], close-to-convex functions [23], bi-univalent functions [24], convex
functions [25] and starlike functions [26,27]. The results are abundant enough, and those
interested can also refer to [28-30].

If f € S defined in D, the inverse of f exists and is univalent at least in a disk of radius
1/4. Denote

F(w) := f Y w) = w+ Ayw?* + Asw® + - - - .

As f(F(w)) = w, the coefficients of F are closely related with f. Researchers endeavor to
study the inverse functions from different perspectives; in particular, the Hankel determi-
nant using the inverse coefficients is smoothly introduced [31-34]. We note that Hp3(f ')
and H31(f!) are given by

Hos(f 1) = AsAs — A}, (12)
Hai(f1) = 242A3A, — A3As — A2 + A3 As — A3 (13)

The logarithmic coefficients <y, of f € S are well discussed for the reason of their
connection with the Bieberbach conjecture. They are presented by

Ff:= log<f(zz)) =2 i’ynz", log1l =0. (14)

The idea of taking 7, as the entries of the Hankel determinant was first proposed in [35]
and later widely accepted by researchers [36-39]. Based on existing representation methods,
the second Hankel determinant of logarithmic coefficients is denoted by

Hoa (Fp/2) = v1m3 =3, (15)

Hap (Ff/2> =124 — 75 (16)

In [40], Ponnusamy et al. first introduced the concept of logarithmic coefficients of
inverse functions. It is defined by

log(F(ww)> =2 Z @ w",  |w| < % 17)
n=1

To broaden the fields on coefficient problems for univalent functions, it is bound to consider
the Hankel determinant, with a, replaced by @;; see [41-43]. Using this idea, we have

Hoa (Fp1/2) = @105 — @}, (18)
7‘[2,2 (qu /2) = (W4 — (D% (19)

Taking a, to express the Hankel determinant Hp3(f ') and Hs(f 1), it is calcu-
lated that

Hos(f 1) = 3a§ — 6a3as + 2a3ay — 2a3a5 + 2a3a% + 4azazay
+ azas — ai - 311%, (20)

Ha (f_l) = ag - 3a%a3 + Sa%ag — a%a5 + 2arazay + azas — aﬁ — Zag. (21)
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Differentiating (14) and using (1), we may obtain the correspondence between a, and -y, of
f. Substituting v, with a, leads to

1 1 4 1 1 222 1,
Hoo (Ff/2) 288 @azag 24a2a4 + — e asas §a2a5 + 1a2a3a4
1 1 1
+ Za3a5 — Zaé — gag. (22)

In [44], it is shown that

145 . 55, 5 11 5 3
%ZZ(Ff 1/ 2) 28872 ~ 4525 T g% + g5 — gads + Ja20s0s
1 1, 5
+ Zla3a5 — Za% — gug. (23)

When a, = 0, it is noted that

Ho(f) = azas — a3, (24)
Hs1(f) = azas — aﬁ - ag (25)
Has (f_l) azas — a4 3a3, (26)
Hz1 (f_l) = a3as — 114 2a3, (27)

1 1
,Hz,z (Ff/Z) = Z <u3a5 — aﬁ — 2&%), (28)

1 5
7‘[2[2 (Pf—l /2) = 1 (a3a5 - aﬁ - 2&%) . (29)

It is interesting that they are all connected with azas — a2 4 yag, where y is a real number,
and p > 0. Thus, we may expect this expression as a new functional of analytic functions.
Let 4 € [0,+0c0) and f € Abe of the form (1). Define

Hu(f) = azas — a4 W3, (30)

f()

be used as a unlfled tool to give the upper bound of a certain Hankel determinant.

where a;, := for n > 2. For different choices of the parameter y, this functional may

In this article, we aim to study the sharp bounds on the new functional #,,(f) for the
functions in the classes S; (sech) and Kg(sech). As a consequence, some useful results on
the bounds of the second and third Hankel determinants with different entries are obtained.

2. Lemmas

In this section, we list two crucial lemmas that will be applied to investigate the main
results of this work. As we know, an efficient way to solve coefficient problems for various
classes of analytic functions is to associate them with the coefficients of Carathéodory
functions. The first lemma is frequently used, as it provides a parametric representation of
some initial coefficients for Carathéodory functions.

Lemma 1 (see [45]). Let p € P be of the form (1), and let ¢y > 0. Then, for some x,x € D :=
{zeC:|z| <1},

2c) = 3 + (4 - c%)x, (31)

ses=c+2(4-F)ax—a(4-d)2+2(4- ) (1- 1P )x. (32)
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Lemma 2 (see [46]). Let 71, To, T3 € R, and be defined as
U(t, 1, ) :mg{’T1+T22+T3zz‘ +1-— |z|2}. (33)
zeD
Ifn <0and 13 <O, then
-1+ 0| -1, if || >2(1+ 1),
U(Tl/TZI T3) =
1—1+ 4(1+T3) lf |T2| <2(1—|—T3).
Ifn > 0and 13 <0, then
2
=Tty B2 -G, [l <20+w),
_ 2 ) . 4773
i) = 1, i <mindan -2,
V(t, T, 13), otherwise,
where
T+ || + 1, if —w(dn+|n|) < ulnl,
- - if — (-4 >
V(t, 1) = T+ || - 1, if —w(—4n+|n|) = alwl, (34)
T2 .
(m—w)\/1- =45 otherwise.

3. Main Results

At first, we will discuss the upper bound of H, (f) for functions in the class Sj (sech).

Theorem 1. If f € 5] (sech), then

2

’,Hy(f)’ g 73072[2]%[3]%[4}17 max;e (o] {A0t6 + Aot* + A3t2},
- 2
3072[2]%[3] i, maX;eo] {A1f6 + A2t4 + A3t2},

where

Ao = 48[21314]; — 36[217 (37 + 6q[2]4[3]7 + 547 2] [3]7

A1 = 48[2]3[4]; — 36[23[3]5 — 64(2],[3]3

Ay = 192[2]3[3]7 — 384[2]3[4],,

As = 768[2]3[4], — 19227 [3]7.

6[4]

I+oo>/

if ue [O,
6[2]4+5q(2]7

ifi‘e(%wﬂ

6[2]q+57[2]%:|

— 6pq[317 (44,

Proof. Let f € Sj(sech). According to the subordination principle, there is a Schwarz

function w such that
zDyf(2)
f(z)

Taking . .
+w(z

pz) = 1—w(z)

= sech(qw(z)),

=14ciz+ 02+ +ezt+--,

z e D.

zeD,
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itis seen that p € P, and

c1 20y — C% 5 4cz —4cyc + c% ;3

w(z)zzz 4 z 8
8cs — Beger — 4e3 + bcter — cf
C4 — 0C3C1 122"‘ 102 Clz4_|_..., z € D.

Then,
1 1
sech(qw(z)) =1— ngc%zz + §q2<—2c162 +c?)z3
T 5 2 4o (g =2\ A4l4 L
+ 27 [144ck; — 96c1c3 — 4863 — (36— 507 )e] 2t +---, zeD. (39)

Using the form of (1), we obtain

ZDf’i(J;;Z) =1+ qarz + q([z]qa3 — a%)zZ + q[[S]qm — (14 [2];)aza3 + ai} 23

+q|[lgas — (1+ [3ly) a2y — [21gad + 2+ [2)g)adas —af] 2+, z €D, (36)

By comparing the coefficients on the right side of (35) and (36), we have

ap) = O, (37)
9 =2
e 12 (38)
1y = — (2010 - &), 39
8[3] '
a5 = 1|~ (36— 52 — 20 )t 4 144c3c, — 96cycs — 48c3 . (40)
384[4], 2l

Let f € S;(sech) and fp(z) = e~ f(e!z), with 6 € R. Noting that

COHER O o RS
zDy fo(2) _ z ( (17)—1)2 — _ L U VR = EZGZqu(elez) € S§; (sech)
ff) (Z) e*i@f (eioz) f(eif?z) f(eiGZ) q

and

Hy (fo) = 34i9HV (f)

the functional |H,(fg)| = [H,(f)| forall & € Rand f € S;(sech). Hence, we are able
to assume ¢; = ¢ € [0,2] in estimating the upper bound of |H,(f)| for f € S7(sech).
Using (38)—(40) and (30), we obtain

2.2

_ qc 4 2 2
Hy (f) = —3072[2]3[3]%[4]q (lec + apctcy + wzees + 04462), (41)

where

a1 = 6pq[3]5[4] — 48[2]3[4]; + 36[2]3 1317 — 6q(214[3]7 — 54%[2]7[3]7,

a3 = 96[2]3(3]7,

ay = 48[213([315 - 4[2}q[4]q).
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Using Lemma 1 and substituting c; and c3 into (41) gives
2.2

q-c
Hu(f) = Srpr B, [B1+ Box + Box? + 48[22(3J2c(4 — ) (1~ | )],

where x,x € D, and

When ¢ = 0, it is clear that 7, (f) = 0. When ¢ = 2,

7 (6p[4lg — 6[2]; — 59[2]3
i =" S, ), el )

Now we assume that ¢ € (0,2). By taking || < 1, it is achieved that

g2 (4 —
|Hﬂ(f)| [(Z?LI[LL]C)(’(H +¢sz+¢73x2‘ +1- |x|2)
= IMU(ULO’L(@), (43)

where U is defined in (33), and

(6m(4); — 6[2], — 5q[22) e
o] = ’

o =0,

Since
—42),[4],= ¢ -2+ —29-1<0 (44)

forall g € (0,1), we have
16[2], (4], — 4[312 + (3[3)2 — 4[2), (4], )@ > 16[2][4); — 4[3]3 + 4(3[3)2 — 4[2][4];) = 8[3]2 > 0
for ¢ € (0,2). Thus, 03 < 0. From (44), it is obvious that [3]7 — 4[2]4[4], < 0. Hence,

(2 ) [2([3]2 — 4[24 (4], ) + (3[3)2 — 4[24 (4] )]

4[3]z¢

1403 = <0,

which means that o3 < —1.
2
When p < M, oy < 0. Itis observed that oy <0, 03 < 0, and |0| > 2(1 + 03);

6[4];
thus, an application of Lemma 2 yields

_ it g’ + s
- 48[212[3]2¢(4 — 2)’

U(oy,09,03) < —01 + 02| — 03 (45)
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where
1 = 48[2]3[4], — 36[213[3]7 + 64[2]4[3]7 + 547217 [3]7 — 61q[3]:[4],, (46)
2 = 192[2]7[3]7 — 384[213[4],, (47)
s = 768[2]3(4]; — 192[2]7(37. (48)
Combining (43) and (45), we conclude that
7 6 4 2
Hu(f)] < 3072[2]3[3}?[4]q<¢1c +act+¢s?), c€(0,2). (49)
Let
= 7 1 + ot +yst?), te0,2] (50
q)(t)_3072[2];;'[3]§[4]q<¢1 +P2t” + 3 ) ,2], )
where 1, ¢, and 3 are given, respectively, by (46)—(48). Based on (42), (49), and
7 (6ul4; — 6[2], — 59[2)2)
PO = e, oY
we obtain 2 2
6[2] -+ 5q[2]>
Hu(f)| < e {®(1)}, ne [0/%11 (52)
where @ is defined in (50).
6[2]4+5q(2]3

In the following, we consider y > 1. In this case, 07 > 0, and 03 < 0.

6[4g

Furthermore, as 03 < —1, it is known that — 401‘73 < 0. Then, we have |03| > 2(1 + 03) and
2 40103 . .y
o5 > — 1_1033 . Applying Lemma 2, it is seen that

U(U],U'z, 0-3) = V(O-lr 0'2/0-3)/ (53)

where V is defined in (34). Noting that —o3 (407 + |02|) = —40703 > 0and —o3(—401 + |2|) =
40903 < 0, we have

02 Ot &+
Vi, o,05) < (01 = o3)y 1= g = 48[223]2c(4 — c2)’ ©4)
where
¢1 = 482][4l; — 36[2]7[3]7 — 64[2]4[3]7 — 547213317 + 614[3]; (4], (55)
& = 192[2]7[3]7 — 384[2]3[4],, (56)
G5 = 768[2]3[4]q — 192[2]7[3]7. (57)
From (43), (53), and (54), we obtain
7 6 4 2
Hu(f)] < 3072[2]2%(516 + & + G3c ) c€(0,2). (58)
Define
- 7 6 L gttt tz) te[0,2] (59)
Y(t) = 307212 B2 4], ((flt + Got™ + G3t” ), ,2],
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where (1, 2, and (3 are given by (55)—(57). As

o (6ul4ly — 6[2]; — 5q1213)
48(2]3[4], ’
using (42) and (58), we have
6[2]; + 5q[2]7

< Y(t)}, €|l ————, , 60
‘Hﬂ(f)‘ = tlagl)z(]{ ( )} " ( 6[4]11 +0oo ( )

where Y is defined in (59). Combining (52) and (60), we obtain the inequalities in Theorem 1.
The proof is completed. O

Taking ¢ — 1~ in Theorem 1, we obtain the upper bound of #H,(f) for f € S*(sech).

Theorem 2. If f € S*(sech), then

s maxiepz {10}, ifpe [0.4],
()] <
s maxieo {T2(0), if e (4 +e0),

where T'y and T are defined, respectively, by

T1(t) = (22 — 9u)t® — 224t* +- 73612, t € [0,2],
To(t) = (9u —2)t° —224¢* +- 73612, t < [0,2].

Proof. Setting ¢4 — 1~ in Theorem 1, it is seen that A9 — 528 — 216y, A1 — 216y —
7 1 6[2]4+5q(2]5 4
48, Ap — —5376, and Az — 17664. Also, 3072 B2, — gga3e, and T“]q” — 3.

Substituting these results, the assertion in Theorem 2 follows. [

By Hos(f) = azas — a3, taking 1 = 0 in Theorem 2 yields the upper bound of the
second Hankel determinant for f € S*(sech).

Corollary 1. Let f € S*(sech). Then,

10051
[Ha3(f)] < % =0.021364. ... 61)

The bound is sharp, with the extremal functions g given by

2 sech(8=1)
21(z) = zexp (/ (pl(:)H) ds |, zeD, (62)
0
where )
14+01z+z
p1(z) = 71‘{ 2 Z€D (63)

and 01 = 2952 ~ 1.669694.

Proof. From the definition, we know that H,3(f) = Ho(f). Applying Theorem 2 yields

|H23(f)| < max

1
2210 — 224¢* + 736¢%).
1el0] 36864 ( +736¢%)
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Let ro(t) = 5egg (221° — 2244 4 73612), with t € [0,2]. Since rg has a maximum value

4170(?45418 attained at ¢; = 2 V3§59, the inequality (61) in Corollary 1 is thus obtained. Now, we

consider the sharpness. Taking the logarithmic derivative on both sides in (62), we obtain

Zgi(z)—sec pi(z) —1
0@ h(P1(2)+1)'

where p; is defined by (63). As ¢1 € [0,2], it is known that p; € P, and g1 € S*(sech).

In view of
_23_10 759 4 . 1069 5

§1(2) =z 1357~ % F 30es% T
we conclude that

zeD,

10051
[Hoz(81)| = 170448

The proof of Corollary 1 is completed. [

Remark 1 (In [18], Theorem 2.7). It is asserted that the sharp bound of Ha 3(f) for f € S*(sech)
is 41—8. Indeed, a minor mistake occurs in their proof.

Since a, = 0 for f € S*(sech), we have Hz1(f) = azas — a3 — a3. Choosing y = 1in
Theorem 2 gives the known result on the third Hankel determinant for f € S*(sech).

Corollary 2 ([18], Theorem 2.6). Let f € S*(sech). Then,

6711/1342 — 12460
< - . .. e
|H31(f)] < 5707 0.018446

The inequality is sharp, with the extremal function gp presented by

sech(222-1) _q
gz(Z)=ZeXp(/OZ <”2(z)“) ds|, zeD,

S

where )
14+ 0z+z
p2(z) = 71% 2 z€D

and 0y = %\/ 2184 — 39/1342 ~ 1.409371.

Regarding the Hankel determinant with entry of the inverse coefficients, it is noted
that Ho3(f 1) = Hs(f), and Ha 1 (f 1) = Ha(f) for f € S*(sech). Hence, we may obtain
the two existing outcomes by assigning u = 3 and u = 2 in Theorem 2, respectively.

Corollary 3 ([18], Theorem 3.4). Suppose that f € S*(sech). Then,

(s )] < 155

The extremal function is given by

23(z) = zexp (/OZ SeCh(S)_lds), zeD. (64)

S

Corollary 4 ([18], Theorem 3.3). Suppose that f € S*(sech). Then,

‘7—[3,1 (ffl)] < %ﬁ%@ — 0.019152.. .
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Remark 2 (In [18], Theorem 3.3). The authors gave the upper bound of Has(f~1) for
f € S*(sech) while the extremal function is missing. In fact, the bound is sharp, with the function

Qa defined by

2 sech -1y
8a(z) = zexp (/0 ( ’”3(:)“) ds|, zeD, (65)
where )
1—2z
== D
p3(z) 1+%Z+#,Z€

and 03 = 14’37\/578 ~ 1.458793.

Regarding the Hankel determinant with elements of logarithmic coefficients for

f € S*(sech), we have Hj» (Ff / 2) =1y 1 (f). Thus, an application of Theorem 2 leads
to the new finding on the upper bound of the second Hankel determinant for logarith-
mic functions.

Corollary 5. Suppose that f € S*(sech). Then,

[ (F/2) | < % = 0.0048924 ...

The result is sharp, with the extremal function gs presented by

z sech pa(z)=1Y) 4
g5(z) = zexp (/ <p4(z)+1) ds|, zeD, (66)
0
where )
14+ 04z+z
pa(z) = 71% 7 Z€D
and
01 = % V721 1 490049, (67)

Proof. Let f € S*(sech). Taking =  in Theorem 2, we obtain

[Ha2(Fr/2) | = ’3{”

(f)‘Sm

35 6 4 2
2246 _ 204t 4 73612 ).
relo2] 147456 ( + )

2 2
Let 71 (t) = 1pgmg (310 — 224t* 4+ 73612), with t € [0,2]. The only critical point of r1 in (0, 2)
is g4 given in (67) at which r; attains its maximum value % 6721.

For the sharpness, it is seen that g5 defined in (66) has the form

_ G os(4—0) 4 ooy +48 5

% D
85(2) =z — {2 24 384 » 2€

and

1 35 3892 + 103+/721
|Hoo (Fes/2)| = ‘ ( § — 22401 + 736g§> ’ it Mt Mol

147456\ 2 ¢ 1360800

The proof of Corollary 5 is completed. [
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[Hu(F)] <

3072023 B 417 Bly

30720231313 (4135,

In view of Hj» (Ff71/2) = l’H%(f) for f € S*(sech), we are able to obtain the
exact bound of the Hankel determinant with inverse logarithmic coefficients as input for
functions in this group.

Corollary 6. Suppose that f € S*(sech). Then,

62020 + 307+/307
_ < =0. e
oo (F1/2) | < e 0.005156

The equality is attained by the function g¢ given by

z sech Pl g
96(z) = zexp (/ ( p(?H) ds|, zeD, (68)
0
where )
1—z
PE) =gz vz €0
and
05 = % V307 1581984, 69)

Proof. Let f € S*(sech). Using Theorem 2, we obtain

H

(4211%6 —224¢* + 736t2) .

<
3 )‘ = (007 147456

1
#aa(Fy1/2)| = ‘4
Let 2(t) = 1sg (42—1t6 —224¢% + 736t2) , with t € [0,2]. The unique critical point of r; in

(0,2) is 05 given in (69) at which r; achieves its maximum value % V6307.

For the sharpness, we note that g defined in (68) has the expansion of

L B, os(4-dd) 4 Tlos—4803+48

D
86(2) 16 24 384 » Z€
and
B 1 /41 ] 2\ 62020 +307v/307
a2 (Fi/2)| = ‘ 147456 <2Q5 22405+ 73695) ‘ = T 13071456

The proof of Corollary 6 is then completed. [

Now, we aim to determine the bound of H,,(f) for f € KC;(sech).

Theorem 3. Let f € KCy(sech). Then,

7 q[313+5q (213313 ]

, 62
maxte[o,z]{l_[ot6 + Ipt* + T15¢%}, ifpe [0, 2 641,51,

qZ

2 27312
maXte[O,Z]{H1t6+H2t4—|—H3t2}, ifue (W/ +oo>/



Fractal Fract. 2025, 9, 346

14 of 23

where
o (t) = 48[2]3(3]4[5]5 — 36213 [3]7[4]4 + 6q(214[3]7[4]4 + 572151317 4] — 61441354,
I () = 48(2]3[3],15], — 36[217 (317141, — 64[2]4[3]7 (4], — 547 [2]7[3]7 (4], + 619 [41515],,
(1) = 192[22(312[4], — 384121331, 5,
I5(t) = 768[2]313]4[5]4 — 192[2]313]7 4],

Proof. Suppose that f € K;(sech) and
f(z) =24+ byz2? + b32® 4 byt + b5+, zED.

Based on the relationship between the class S;(sech) and K4(sech), we know that
8(z) = zDyf(z) € S;(sech). Thus, by = [?1']14 (n > 2), where a, are the corresponding

coefficients of ¢ € S;(sech). From the proof of Theorem 1, we can write

by =0, (70)
by = —maﬁ, (71)
by = —m (2d1d2 - d%), 72)
bs = m {— <36 — 52— éi}) d* + 144d%d, — 964, ds — 4843 (73)

for some p € P, with
p(z) =1+diz+dpz” +dsz +---, zeD.

Let f € Ky(sech) and fo(z) = e " (¢%z), with 6 € R. From the definition,

_ e 0 £(pf0a7) — o= F(pif5 )
Dyfo(z) = fe(?;)_ 13(2(2) _ e f( tzq)_ = f(e"2) — Dyf(e:).

Setting u = €'z, it is noted that D, fy(z) = D, f (u), and thus, D,%fg (z) = eieDéf(u). Using
the basic property of the g-difference operator, we have

2Dy (zDyfo(2)) _ _ aDufo(®)+2D3folaz) _ qDyf () +uDIF(0) _ uDy(uDyf(w)
zDyfo(2) zDqfo(2) zDgf (u) uDgf(u)
Thus, fy € K;(sech). As the class IC;(sech) and the functional #,,(f) are rotation-invariant,

we may assume that d; = d € [0,2]. Substituting (71)-(73) into H,(f) defined in (30),
we obtain

qzdz 4 2 2
() = SRR BEARE, (vad* + v + vadds + 143 ),
q
where

v = 36[2]3[3]7[4]5 — 48[2]3[3]4[5]4 — 6q(2]4[317[4]4 — 54°[2] (313 [4], + 61q[413[5],,
vy = —48[212[3], (3[3],[4]4 — 4[2],[5],),

v3 = 96[2]7(3]7[4],,

[
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Using (58) and (60) in Lemma 1, we obtain

Half) 7

BEZPHEHTHER

[Al + Aox + Azx® + 48[2]3[3]5[4]qd(4 - d2> (1 - |x|2> K}

for some x,x € D, with

M = (4l (6(a)g 51, — 61214 312 — 5q[212[312 ),
Ay =0,
A3 = —1222(3], (4 - dz) [16[z]q[5}q — 4[3],[4], — (42),[5); — 3[3]q[4]q)d2} .

Whend =0, H,(f) =0. Whend = 2,

_ (Guldlal5)y — 612,13 - Sal2fs)

= R HEHENGR Y
Consider d € (0,2). From |x| < 1, we obtain
g (4 — d?)
") < G e (|1 +ox +¢o?| +1 - |xP?)
N Gt
= mu(gligzr c3),
where U is defined in (33), and
g (6ul4ly[5); — 6[2)4[3)% — 5q[2)2[3)3 ) °
o1 = 182232 (4 — ) 5
=0, (76)
_ _ 2
= 4t = 1621+ (401} S ) -
It is easily seen that
42)4[5], - 313144l =1+29—* —* +2¢* +4° >0, g€ (0,1), (78)

which leads to
4(3]4[4]q — 16[214[5]; + (4[214[5]; — 31314 [4]q)d* < 4[3],[4]; — 16[2]4[5]q + 4(4[2]415]; — 3[3]4[4],) <O.
From (77), we have ¢3 < 0. Indeed, using (78), it yields
2(3],[4]7 — 8(2][5]q + (3[3]¢[4]; — 4[2]4[5)q)d < 2[3]4[4]5 — 8[2]4[5] < O,
which implies that

(2 —d)[2[3]q[4]q — 8[2]4[5]

)
_|_
—~

W
<
=
=
=
|
)
DN
=
1)
=
~—
&

I+ =

ie, g3 < —1
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6[2]4[3)7+54[21713]7

When i < ——gir .

we obtain

, clearly, g1 < 0. Since |g2| > 2(1 + ¢3), using Lemma 2,

O d* + Ord? + 05
U(61,62,63) < —¢1+ 62| —¢3 = ,
(ereea) < mertlel =6 = epphpl,da - @)

2
q : (ﬁ1d6 4 Ot + 193,12), de(0,2). (79)

Define

Clearly,

Combining (74) and (79), we conclude that

‘/Hy(f)‘ < max{Y(t)}, pe€

lo’ 6[21q[313+5q[213[31ﬂ 50
t€[0,2]

6[44[5]q

6[2]4[3]2+5q(2]2[3)3
— e, - Then, 61 >0,and ¢3 < 0. As gy < —1, we

_ 3
see that 1 — ¢3 < 0, and thus, 14#?3 < 0. Combining the fact that || > 2(1+¢3) and
K]

Now, we consider y >

_ 3
g% > 145;%3, an application of Lemma 2 leads to U(g1,¢2,63) < V(¢1,62,63), where V
3

is defined in (34). Obviously, —¢3(4¢1 + |62|) > ¢1/¢2|, and —g3(—461 + [62]) < 61l62]
because g1 > 0, g2 = 0, and g3 < 0. Therefore, we may find that

2 4 2
¢5 11d —|-12d + 13
< — — =
V(61,62,63) < (61 —¢3)4/1 icics 48[2}5}[3]%[4]#(4_[12)’

n = 48[2]3[3]5]q — 36[2151317 14, — 64[2]4[3]5[4]; — 547 21331341 + 619(41315],,

where

12 = 192[2]3[3]3[4], — 384[2]313]4[5],,
13 = 768[2]3[3]4[5]; — 192[23(3]7 (4]
It follows that
7 4 2
Hu(f)| < TG (nd® + nd* +15d), d € (0,2). (81)
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Define 5
E(t) = 3q 33 (11d6 + pd* + l3d2), t e 0,2].
307223 B4R By
=y (61[4][5]5—6[2]4[3]7-54[2]7[3]7)4° . .
By E(2) = SEEB0H, Bl , along with (74) and (81), we obtain
6[2]4[37 + 59(2)3 (317
H < max {E(t)}, € ,+oo]. 82
’ H(f)’ tE[O,Z}{ ( )} ]/l < 6[4]41[5]11 ( )

Combining (80) and (82), the assertion in Theorem 3 follows. [J

Let g — 17; then, we obtain the estimation on the functional H,(f) for functions in
the class K (sech), which is a subfamily of convex functions.

Theorem 4. Let f € K(sech). Then,

st maxiez (T30}, ifpe [0.2),
’Hﬂ(f){ <
552050 Maxgeo{Ta()},  ifpe (%+00),

where T'3 and T4 are defined, respectively, by

T3(t) = (18 — 5u)t® — 192t* + 672¢2, t € [0,2],
T4(t) = (5u — 6)t° —192¢* +672¢%, t < [0,2].

Proof. Let g — 17 in Theorem 3. Then, ITy — 1728 — 480y, Iy — —576 + 480y, I, —

_ 7 1 6[2)4[3]7+54[2]7(3)3 12
18432, and I3 — 64512. Also, 0T R, — s3084160, and — e - 2.

Substituting these results, the assertion in Theorem 4 follows. [

Taking u =0, 1, 3, 2, %, % in Theorem 4, we obtain the sharp bounds of the Hankel

determinant with the original coefficients, inverse coefficients, logarithmic coefficients, and
inverse logarithmic coefficients, respectively, for functions in the class K(sech).

Corollary 7. Let f € K(sech). Then,

49
< 57505 = 0.
[M25(F)] < 33095 = 0-001400 (83)

The estimate is sharp with the extremal function hy expressed by

z u sech( 210=1Y) _q
hi(z) = / exp (/ (pl(u)H) dulds, zeD, (84)
0 0

u

where s
N 1+ 27z + 22
pl(Z) = ﬁ, z € D.

Proof. Suppose that f € K(sech). From Theorem 4, we know that

Haa ()l = o)l = max =560

(18t6 —192¢4 4 672t2).
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Let 73(t) = zzpeg (18t° — 192¢* + 67242), with t € [0,2]. It is seen that r3 has a maximum

value % achieved at fo = %ﬁ The inequality (83) in Corollary 7 is thus obtained.

For the sharpness, we observe that the function h; defined in (84), satisfying zh} (z) €
S*(sech), which implies that 1; € K(sech) according to the Alexander relationship. We
note that

7 4 N7, 17

f— — — — — 75 ...
hi(z) =z IOSZ 16ZZ +9722 + , z€D

and |Hp3(h1)| = %. This completes the proof of Corollary 7. [J

Corollary 8. Let f € K(sech). Then,

136 4 37
[Hz1(f)] < ;Tf =0.001244.... (85)

The result is sharp, with the extremal function hy presented by

z o sech (201 g
hy(z) = / exp (/ (p2(u)+l) du|ds, zeD, (86)
Jo Jo u
where )
N 1+xiz+z
—_TAETE D
p2(2) 1-22 ' ze
and
64 —4+/74
X1 = % ~ 1.508710. (87)

Proof. Assume that f € K(sech). Utilizing Theorem 4, we obtain
(Haa ()] = [Hi ()] < max zoc (1360 — 1926 1 62¢%)
' = 4 2002) 552960 '

Define r4(t) = =z35z5 (13t° — 192¢* 4 6212) with t € [0,2]. It is found that r4 has a maximum

value % attained at x1, which is given in (87). The inequality (85) in Corollary 8 is

thus obtained.
For the extremal function, clearly, /i, defined in (86) belongs to the class IC(sech) by
p2€P. As

ija_Xl(‘L*X%) 4_7?(%_48%%_48 5, ..

ho(z) =z — '
2(z) =z 48 9% 1920 : o 2eb
we have
1 136 + 37\/74
Hyi(h2)| = |~ zmaarn (1345 — 192x} 1) = Sem0m0
a1 ()| ‘ =205 (1348 — 1921t + 67213 ) 565010

The proof of Corollary 8 is thus completed. [J

Corollary 9. Let f € K(sech). Then,

< ——— =0.001172... ..

s ()| = s
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The equality is attained by the function hs given by

2 u sech (2 =1Y) _q
ha(z) = / exp ( / (E) du) ds, zeD, (88)
0 0

u
where )
1—z
~ __ 1=z D
Ps(z) Ttz r22 °€
and
2vV/16 — 1
X2 = % ~ 1.429568. (89)

Proof. Let f € IC(sech). It is seen that

‘Hzf’( )’_|H3 ()l = 2102 5521960 (9t6_192t4+672t2)'

Setting 75(t) = szp5es (91° — 192t% + 67212), with t € [0,2], it is calculated that r5 has a
65v/130—536

maximum value >>{75->> achieved at x2, which is given in (89).
For the sharpness, we observe that i3 presented in (88) belongs to the class K(sech).

In view of
2 1 2
X3 3 x2(4—X3) 4, 115 —48x5+48 5
hs(z) = Z+48 + T 1920 z , z€D
and
1 654/130 — 536
“1)| _ |_ 6 _ g b 2\ | _ 65V
2 ()| = ‘ e (8 — o + 2240 )| =

we complete the proof of Corollary 9. [

Corollary 10. Suppose that f € K(sech). Then,

EIE ;ﬁ — 0.001157 ..

The equality holds for the function hy defined as

pa(u) =17 _
h4(z)—/ozexp(/ouseCh(p4() ) 1du)ds, zeD (90)

u

with
142z + 22

) , ze€D.

pa(z) =

Proof. Applying Theorem 4, we see that

‘Hg,l( )’_|7'[2 (f)] < te[oz]5521960(8t6—192t4+672t2>.

Let 76(t) = =g (8t° — 192¢* + 67242) with t € [0,2]. The only critical point of 76 in (0,2)
2,and rg(t) < ré(ﬁ) = g forallt € [0,2].
For the equality, it is easy to know that hy given in (90) belongs to the class
KC(sech). Since
15 V2,

h4(z)fz—ﬂz T +96 >+..., zeD
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and 1
—1 _ -
’H“ (h4 )’ 864
we obtain the desired result in Corollary 10. O
Corollary 11. Suppose that f € K(sech). Then,
1112 4 39+/39
Fe/2)| < ——————— =0. 26.... 1
‘HZ'Z( i )‘ = 4151520 0000326 oD
The result is sharp, with the extremal function hs presented by
z u sech( 21 _q
hs(z) = / exp ( / (Fr=r) du|ds, zeD, (92)
0 0 u
where )
. 1+ x3z+z
=—r D
145 (Z) 1_ 22 , ZE
and
128 —
X3 = %\/@ ~ 1.586638. (93)

Proof. Utilizing Theorem 4, we have

1 1 (31,
= |- < — [ =
#aa(Fr/2)| ‘47{%(1()‘ = 12162 2211840 ( 2!

%

—192¢* + 672t2> )

Define r;(t) = nfm (32—1:%6 —192t* + 672t2>, with t € [0,2]. We note that x3 given in (93)

_ 1112+439+/39

is the unique critical point of r7 in (0,2), and r7(t) < r7(x3) = ng forallt € [0,2].

This yields the inequality (91) in Corollary 11.

To show the sharpness, we note that /5 defined in (92) belongs to the class K(sech). As

M 0lxE) s TG-o48G 85

hs(z) =25 9% 1920 ’
and
1 (31, ] 2\ 1112+ 39,/39
‘HM (Pf / 2)‘ ~ 2211840 ( 2 43— 19213 +672X3) ~ T 4151520

we complete the proof of Corollary 11. [
Corollary 12. Suppose that f € K(sech). Then,

‘7—[2,2 (Ff,l/z)‘ < 165‘/7?# ~ 0.000284 . . ..

The equality holds by function he taking

where
zeD

=
x
—~
N

== 14 xaz + 2%’

(94)

(95)
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and

128 — 8165

X4 = 5 ~ 1.393340. (96)

Proof. From Theorem 4, we obtain

1 1 (1B . >\ 165v/165 — 1912
= |- < m —t° — Pt S —
‘H”(Ff 1/ 2)’ ‘4 1Y )’ eloz2) 2211840( 19287+ 6721 > 730080

It is easy to check that /g defined in (95) belongs to the class K(sech). Let x4 be given
in (96). As

X4 3+X4(4 X4)Z4 1x; — 48x3 +48 5

48 9% 1920 Z4e, zED

h6( )_Z+

and

a7 -

1 E 6 B 192)(4 +672 165\/ 165 — 1912,
2211840 \ 2 X 730080

we know the equality in (94) of Corollary 12 holds. O

4. Conclusions

In the study of g-starlike and g-convex functions, we recall that the Fekete-Szego
problem has attracted a great deal of attention; see [47-50]. Its analytic representation is
az — ya%, where a; and a3 are the initial coefficients of the considered functions, and y is
a constant. In the present paper, we define a new functional in the form of azas — a3 —
puaj, where y > 0. When a, = 0, it is found that some of the second and third Hankel
determinants with different entries all take this form. Using this functional, we are able
to give a unified expression of the desired coefficient problems. As an application, we
introduce two classes g-starlike and g-convex functions subordinate to secant hyperbolic
functions and calculate the sharp bounds on this functional. By 4 — 17, we are able to
obtain the bounds on this functional for functions in the families of starlike and convex
functions. By taking u = 0, 1, 3, 2, 4 5 2, we obtain some known results and also new
findings on the exact bounds of the Hankel determinant.

Although a significant amount of valuable work on g-analogue analytic functions has
been done and the output is abundant, some important issues need to be addressed. An ex-
ample includes what conditions guarantee functions in the g-analogue classes to be univalent.
As g — 0, the performances of the g-classes of analytic functions can be very complex.
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