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Abstract: Fractional differential equations model processes with memory effects, providing
a realistic perspective on complex systems. We examine time-delayed differential equations,
discussing first-order and fractional Caputo time-delayed differential equations. We derive
their characteristic equations and solve them using the Laplace transform. We derive
a modified evolution equation for the Hubble parameter incorporating a viscosity term
modeled as a function of the delayed Hubble parameter within Eckart’s theory. We extend
this equation using the last-step method of fractional calculus, resulting in Caputo’s time-
delayed fractional differential equation. This equation accounts for the finite response times
of cosmic fluids, resulting in a comprehensive model of the Universe’s behavior. We then
solve this equation analytically. Due to the complexity of the analytical solution, we also
provide a numerical representation. Our solution reaches the de Sitter equilibrium point.
Additionally, we present some generalizations.

Keywords: fractional calculus; dynamical systems; Caputo time-delayed differential equations;
modified gravity

1. Introduction

Differential equations play a crucial role in modeling cosmic evolution, particularly
expansion and large-scale structure [1,2]. They are essential for understanding galaxy
formation, black holes, and other astrophysical phenomena [3-5]. Additionally, dynamical
systems facilitate the study of chaos and stability in an expanding universe, revealing how
small perturbations affect large-scale dynamics [3].

The standard cosmological paradigm assumes large-scale homogeneity and isotropy,
simplifying perturbation studies within Friedmann-Lemaitre-Robertson-Walker (FLRW)
metrics. While useful, this assumption does not necessarily account for early-universe
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anisotropies or local inhomogeneities. Researchers have explored whether inflation can gen-
erate homogeneity and isotropy from more general metrics, including inhomogeneous and
anisotropic ones [6]. Due to the complexity of such approaches, studies increasingly focus
on homogeneous but anisotropic cosmologies, which offer valuable analytical insights.

Beyond the FLRW model, alternative models incorporate anisotropies and inhomo-
geneities. Bianchi universes permit anisotropic expansion, where different spatial directions
evolve at varying rates. These models enhance our understanding of early-universe dy-
namics, gravitational waves, and Cosmic Microwave Background (CMB) anomalies.

The family of spatially homogeneous Bianchi cosmologies includes key gravitational
models, such as the Mixmaster Universe and isotropic FLRW spacetimes [7-10]. The
nine anisotropic Bianchi models, classified by three-dimensional real Lie algebra, define
homogeneous hypersurfaces through isometry group actions. Their physical variables
depend only on time, reducing Einstein’s field equations to a system of ordinary differential
equations [11,12].

FLRW spacetimes emerge as limiting cases of Bianchi models when anisotropy van-
ishes. The flat, open, and closed FLRW geometries correspond to Bianchi I, III, and IX
spacetimes, respectively [3]. While general Bianchi spacetimes feature three scale factors [7],
locally rotationally symmetric (LRS) spacetimes introduce an additional isometry, reducing
the number of independent scale factors to two. The LRS Bianchi IX spacetime is closely
related to the Kantowski-Sachs geometry [13].

On the other hand, Lemaitre-Tolman-Bondi (LTB) universes relax the assumption of
homogeneity by introducing variations in density and curvature across cosmic regions.
This framework explains cosmic voids and non-uniform matter distributions, refining our
approach to cosmological evolution. LTB models [14-16] represent spherically symmetric
dust solutions to Einstein’s equations, generalizing FLRW cosmology. LTB metrics with
a dust source and a comoving, geodesic four-velocity form a well-known class of exact
solutions [16,17]. Structure formation in LTB models has been explored in [16,18,19]. Recent
studies analyze inhomogeneous dust solutions numerically and as three-dimensional
dynamical systems, using an averaged density parameter (()), a shear parameter, and a
density contrast function to quantify the effects of inhomogeneity [20,21]. The evolution
equations for these averaged variables formally mirror those of FLRW cosmology.

While many alternative models provide insights into cosmic evolution, FLRW cosmol-
ogy remains the dominant framework due to its simplicity and effectiveness in describing
large-scale phenomena.

The Standard Model of Cosmology, known as ACDM, consists of A (Dark Energy),
which drives accelerated expansion, and CDM (Cold Dark Matter), an unseen component
interacting only through gravity. This model successfully explains the observed late-time ac-
celeration of the Universe, initially indicated by Type la supernova (SNla) observations [22]
and later confirmed by CMB measurements [23]. It also accounts for the formation of
large-scale cosmic structures.

Despite its success, ACDM faces several theoretical challenges, such as the cosmo-
logical constant problem [24,25], the nature of dark matter and dark energy, the origin of
accelerated expansion [26], and the Hubble tension [27,28].

While the flatness and horizon problems can be theoretically resolved through in-
flation, the fundamental cause of inflation remains uncertain [29,30]. Various alternative
theories attempt to address these issues, including noncommutative theories, quantum
cosmology, quantum-deformed phase space models, and noncommutative minisuperspace
approaches [31-35], as well as modified Brans-Dicke theory [36,37].

Traditional mathematical models are often inadequate for describing power-law phe-
nomena, which exhibit frequency-dependent, non-local, and history-dependent characteris-
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tics. Fractional calculus provides a mathematical framework to address these challenges by
extending differentiation and integration to non-integer orders. Unlike classical derivatives,
fractional derivatives consider the complete historical behavior of a system, making them
particularly suited for applications where past states influence present dynamics. This
approach has proven effective in modeling systems with frequency-dependent properties,
such as viscoelastic materials and electrical circuits. Its broad applicability spans disci-
plines like quantum physics, engineering, biology, and finance. Researchers have used
fractional calculus to investigate complex topics such as quantum fields [38,39], quantum
gravity [40,41], black holes [42,43], and cosmology [44—46]. Using dynamical system meth-
ods combined with observational data testing provides a robust framework for analyzing
the physical behavior of cosmological models. This approach has led to the development
of cosmological models that exhibit late-time acceleration without requiring dark energy.
Key studies include joint analysis using cosmic chronometers (CCs) and Sne Ia data to
determine best-fit values for fractional-order derivatives [47], leading to improved obser-
vational tests in subsequent studies [48,49] and the deduction of equations of state for a
matter component based on compatibility conditions [50].

Researchers have developed fractional versions of traditional Newtonian mechanics
and Friedmann-Robertson-Walker cosmology by incorporating fractional derivatives into
the equations. Examples include a non-local-in-time fractional higher-order version of
Newton'’s second law of motion [51] and fractional dynamics exhibiting disordered motion.
Two primary methods for developing fractional derivative methods have emerged: the
last-step modification method, which substitutes original cosmological field equations with
fractional field equations tailored for a specific model, as seen in [52], and a more fundamen-
tal approach where fractional derivative geometry is established initially, followed by the
application of the Fractional Action-Like Variational Approach (FALVA) [53-55]. Recently,
fractional cosmology has emerged as a novel explanation for the Universe’s accelerated
expansion [49,50,52,56], utilizing both the first-step and last-step methods to achieve results
consistent with cosmological observations.

On the other hand, viscous cosmology models cosmic fluids by accounting for
dissipative effects, incorporating dissipation terms through Eckart’s or Israel-Stewart’s
theories [57-60]. These terms can be introduced as effective pressure in the energy-
momentum tensor, modifying the Friedmann and continuity equations. Viscous cosmology
has applications in the early Universe, where it can drive inflation without requiring a
scalar field, as well as in late-time cosmology to model the Universe’s accelerated expan-
sion [61,62]. In cosmology, time delay has also been integrated into the field equations to
model the finite response time of the gravitational system to perturbations. Cosmic fluids
do not adapt instantaneously; they respond to past cumulative processes, offering a more
realistic depiction of these systems. These delay effects stem from non-local interactions
in fundamental theories of quantum gravity, which incorporate memory effects into the
universe’s evolution. A delay term in the Friedmann equation has been proposed to model
the inflationary epoch without using a scalar field, sidestepping the violation of the strong
energy condition and providing a natural conclusion to the inflationary period [63]. Addi-
tionally, applying that delayed Friedmann equation for late-time cosmology was examined,
demonstrating that the delay is statistically consistent with the Hubble expansion rate and
growth data [64].

Numerous works on time-delayed differential equations (TDDEs) have been pub-
lished in the literature. Applying summable dichotomies to functional difference equations
focuses on bounded and periodic solutions, offering insights into Volterra systems rele-
vant to biological modeling [65]. Summable dichotomies ensure that solutions to these
equations remain bounded and periodic [66]. Studies on delayed difference equations
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focus on bounded and periodic solutions, which are significant for systems with delays
in engineering and biological models. Nearly periodic solutions are crucial for under-
standing systems that exhibit regular but not necessarily periodic behavior [67]. Research
on weighted exponential trichotomy and the asymptotic behavior of nonlinear systems
helps analyze the long-term behavior of solutions [68]. The asymptotic expansion for
difference equations with infinite delay provides a framework for approximating solutions
to complex systems [69]. The exploration of weighted exponential trichotomy continues in
the comprehensive analysis of linear difference equations [70].

TDDEs are crucial for modeling systems where the current rate of change depends
on past states, representing processes like incubation periods in infectious diseases and
population responses to environmental changes. One study highlights the role of TDDEs
in modeling biological processes, including population dynamics and disease spread [71].
Another study explores chaotic behavior in diabetes mellitus through numerical modeling
of the metabolic system [72]. Research on oscillation criteria for delay and advanced differ-
ential equations expands the theoretical understanding of these systems [73]. Exploring the
bifurcations and dynamics of the Rb-E2F pathway, incorporating miR449, sheds light on
cell cycle regulation [74].

A method for maximum likelihood inference in univariate TDDE models with multi-
ple delays offers a robust approach to parameter estimation [75]. Research on time delay in
perceptual decision-making provides insights into brain decision-making processes [76].
Further studies on coupled p-Laplacian fractional differential equations with nonlinear
boundary conditions contribute to the understanding of fractional calculus [77]. The frac-
tional Fredholm integrodifferential equation is solved analytically using the fractional
residual power series method [78]. A hybrid adaptive pinning control method for syn-
chronizing delayed neural networks with mixed uncertain couplings enhances control
strategies [79]. A numerical study on a time delay multistrain tuberculosis model of frac-
tional order offers insights into disease dynamics and control [80]. Exploring extinction
and persistence in a novel delay impulsive stochastic infected predator-prey system with
jumps provides a comprehensive analysis of stochastic dynamics in ecological systems [81].

Fractional Time-Delayed Differential Equations (FTDDEs) combine fractional calculus
and time delays to model systems, accurately capturing historical effects and delayed
reactions. They have diverse applications in scientific and engineering fields. For instance,
FTDDEs enhance control systems by designing and analyzing controllers that take response
delays into account, leading to more stable and efficient strategies. They also describe
the behavior of viscoelastic materials, which exhibit viscous and elastic characteristics
with memory effects. Furthermore, FTDDEs model populations that respond with delays
to environmental changes, which is crucial for understanding population dynamics and
predicting trends. Advanced mathematical tools solve FTDDEs. Laplace transforms convert
differential equations into algebraic ones, making solutions more straightforward. Mittag—
Leffler Functions generalize the exponential function, providing solutions to fractional
differential equations. First-order FTDDEs involve first-order derivatives for modeling
straightforward dynamics, while Fractional Caputo Derivative FTDDEs use the Caputo
derivative to account for memory effects. Higher-order FTDDEs involve higher-order
derivatives to model complex systems with multiple interacting components.

The existence and stability of solutions for time-delayed nonlinear fractional differ-
ential equations are essential for ensuring that a differential equation’s solution behaves
predictably over time, particularly in engineering and natural sciences [82]. A class of
Langevin time-delay differential equations with general fractional orders can model com-
plex dynamical systems in engineering, where memory effects and time delays significantly
influence the system’s behavior [83]. Numerical methods for solving fractional-delay dif-
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ferential equations are crucial, especially when analytical solutions are difficult to obtain.
These include a finite difference approach [84,85] and a computational algorithm [86].
Optimal control of nonlinear time-delay fractional differential equations using Dickson
polynomials aims to find a control policy that optimizes a specific performance criterion,
which is crucial in economics, engineering, and management [87]. Stability and stabi-
lization of fractional-order time-delay systems ensure that the system does not exhibit
unbounded behavior over time, which is crucial for the safety and reliability of engineering
systems [88,89]. Numerical solutions for multi-order fractional differential equations with
multiple delays using spectral collocation methods are known for their high accuracy and
efficiency in solving differential equations, making them suitable for complex systems in
science and engineering [90].

The global Mittag—Leffler synchronization of discrete-time fractional-order neural net-
works with time delays ensures that different parts of the network function harmoniously,
which is critical for the network’s overall performance [91]. The stability of oscillators
with time-delayed and fractional derivatives is crucial for understanding the behavior of
oscillatory systems in electronics, mechanics, and biology [92,93]. Stability and control of
fractional-order time-delay systems are also covered extensively [88,89,92,94-96].

In this work, we derive an equation based on the Friedmann and continuity equations,
incorporating a viscosity term modeled as a function of the delayed Hubble parameter
within Eckart’s theory. We then apply the last-step method of fractional calculus to extend
this equation, resulting in a fractional delay differential equation. This framework builds
upon the analysis conducted by Paliathanasis in [97]. We solve this equation analytically for
the Hubble parameter. Due to the complexity of the analytical solution, we also provide a
numerical representation. Additionally, we present the analytical solution of the fractional
delay differential equation that includes m delayed terms, with the delays being multiples
of a fundamental delay T. Our solution reaches the de Sitter equilibrium point, generalizing
the results in the nonfractional case analyzed in [97].

The paper is organized as follows. Section 2 presents foundational preliminaries, in-
cluding an investigation of First-Order Time-Delayed Differential equations and Fractional
Caputo Derivative Time-Delayed Differential equations of orders less than one or higher. In
Section 3, we explore a cosmological application—time-delayed bulk viscosity—modeled as
a first-order retarded differential equation. Section 4 extends this formulation by promoting
it to a fractional version, which is solved analytically. We introduce master and fractional
differential equations and outline the problem set in Section 4.1. The resulting model repre-
sents a time-delayed bulk viscosity within the framework of fractional cosmology, with
further generalizations incorporating multiple delay scenarios. Finally, Section 5 provides
concluding remarks. Several appendices based on [98-101] are included to ensure the
study’s self-contained nature: Appendix A covers the Lambert (W) Function, Appendix B
addresses Mittag—Leffler functions, Appendix C outlines the Laplace transform of the
time-delayed function, and Appendix D discusses the Laplace transform of the Caputo
derivative. Numerical Considerations and Forward Difference Formulation are mentioned
in Appendix E. In Appendix F, we present optimized algorithms to reproduce our results.

Exploring Caputo fractional differential equations with time delay is essential for vis-
cous cosmology. It helps us understand the Universe better by using more accurate models
of cosmic evolution. These equations describe processes with memory effects, showing how
complex systems behave. Combined with time delay, they account for the delayed response
of cosmic fluids to changes, giving a complete model of the Universe’s behavior. These
tools can help us understand how viscosity affects cosmic evolution in viscous cosmology.
By including memory effects and time-delayed responses, researchers can develop models
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that show the fundamental physics of the Universe, possibly uncovering new insights into
its origins, structure, and future.

2. Preliminaries
2.1. First-Order Time-Delayed Differential Equation

Consider the first-order time-delayed homogeneous differential equation given by

y'(t) +ay(t—T) =0, y(0)=0, 1)

where y/(t) is the dependent variable, T > 0 is the time delay, and a is a constant.
The characteristic equation for this FTDDE can be written as

s+aeT =0. ()

Equation (2) is a powerful tool for analyzing systems with delays. Stability, oscillations,
and parameter-driven dynamics can be explored through the roots and their interactions
with the delay term e 5. The solutions of the characteristic equation are represented by

s =W(—aT)/T, (3)

where W(z) is the Lambert function (see Appendix A). The Lambert W function is used in
various fields, such as solving transcendental equations involving exponentials and logarithms,
analyzing the behavior of specific dynamical systems, calculating the number of spanning trees
in a complete graph, and modeling growth processes and delay differential equations.

The characteristic Equation (2) helps analyze the dynamics and stability of delay systems.

1.  Roots of the Equation: Solving for s yields the roots. Complex roots typically signify
oscillatory dynamics, while the real part of each root, R(s), plays a critical role in
stability analysis. A system is stable if #(s) < 0 and unstable if R(s) > 0.

2. Delay Effects: The delay term ¢~ significantly influences root locations and can lead
to changes in system stability and behavior, such as bifurcations.

3.  Parameter Influence: The parameter a affects the feedback within the system, influ-
encing the roots and dynamics. Larger values of 4 may amplify feedback effects.

Consider now the inhomogeneous equation

y'(t) +ay(t—=T)=b, y(0)#0, y(t)=0,t<0 (4)

where b is a constant.
To solve (4), we take the Laplace transform of both sides:

Y(5) ~y(0) +av(s)e ™ =, ©)

where Y(s) is the Laplace transform of y(t). Solving for Y(s), we obtain

__ y0) b
YS)_S(1+‘7ESST)+52(1+‘MSST>' ©

Remark 1. Let ¢ > 0 be an arbitrary constant. Then, the condition 0 <

@‘ < 1is satisfied, if
any ¢ > |a| > 0. Indeed, in this case, we have |a/c| < 1and

aefsT
Cc

<L

a _
-[e
c

< ‘e*ST
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Using Remark 1, from Equation (6), we have
00 'ajefsz 00 ~aje’SjT ae*ST
— —1)/ —1)/
Y(s)—y(O)Jg( V= +b]§( V=fm 0< <1 @)

where s € (]a|, 00). The solution y(t) is recovered by applying the inverse Laplace transform

_ 0 D g*SjT o D eiSjT
M—ngmw{wﬁngwﬁhm
) ) (8)
- (= TVe(t—jT) | o (= jT)H1e(t —jT)
=1y(0 1) - +b —1)d - ,
4 )Jg( ) I(j+1) ];)( ) I(j+2)
where 0 is the Heaviside Theta
1, t
o) — { , E>0
0, t<0
and o
I(z) = /0 Fletdl, R(z) >0 9)

is the Gamma function.

Remark 2. For each t > 0, the series in the expression (8) is a finite sum. To see this, note that
6(t —kT) =0 forall k > t/T. Then,

U/TJ s o . :
vy = L (s0)+ i) (cvjal = e -,

j=0

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Ny, such thatt € [nT,(n+1)T) and |t/T]| = n.

Proposition 1. For each t > 0, the solution of (4) is

_ b= T) Y 1y E 5T gy
ym—ﬁ@@+ﬁ4y”wmﬂﬂ“m'

with
y(t) =y(0)+bt, fortel0,T).

Proof. Proposition 1 is proven directly by applying Remark 2. [

2.2. Fractional Caputo Time-Delayed Differential Equation

Next, consider the fractional Caputo’s time-delayed homogeneous differential equa-
tion of order o, 0 < & < 1 given by

“Diy(t) +ay(t—T) =0, y(0) =0, (10)
where “D¥ denotes the Caputo fractional derivative and  is a constant. The characteristic

equation is
s*+ae—T =0, (11)
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with solutions given by the W function

s = aW(T(_a);>/T.
n

Now, for the inhomogeneous equation

Dfy(t)+ay(t—T)=0b, y(0)#0, a,bconstants, y(t)=0,t<D0. (12)

Using the Laplace transform, we obtain

y0 b s
S(l—i—”es;aﬂ) Stx+1(1_|_aes;;T) (13)

s*Y(s) —s*1y(0) + aY(s)e T = g = Y(s) =

Using Remark 1, from Equation (13), we have

) a]efs]T . a]efs]T aefsT
; suc]+1 +b Z S’X (j+1)+17 0< s% <1 (14)
To find the inverse Laplace transform, we have
B 0 0 —_— e—siT
]/(t) - ]/(0) ];0( )]a]E [ a]+1:| Z {ZJE |:SD¢(]+1)+1:|
=y(0) i(—l)f] (t JT)(f—JT i Vil —jT)(t —jT)*0+) )
= T(ja+1) = ((]+1)zx+1) '

Remark 3. For each t > 0, the series in Expression (15) is a finite sum. To see this, note that
6(t —kT) =0 forall k > t/T. Then,

[t/T] T\
_ y(0) b(t—jT) - . i
y(t) = ];] (F(jvc+1) + r((j+1)“+1)>(—1)]a19(t—]T)(t—]T) i,

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Ny, such that t € [nT,(n+1)T) and |t/T| = n.

Proposition 2. For each t > 0, the solution of (12) is

[t/T] T\
_ y(0) b(t —jT) i , .

)= X (s + g 7)o MG,
with

ﬂﬂ:ﬂm+FJiD,ﬂMEWj)

For a = 1, we recover the case of derivative or order 1.

Proof. Proposition 2 is proven directly by applying Remark 3. O

2.3. Higher-Order Fractional Differential Equation with Time Delays

Finally, let us consider a higher-order fractional differential equation with time delays
of order 8,1 < B < 2 given by

CD’gy( t)+ay(t—T)=0b, a,bconstants, y(0), y'(0)given, y(t)=0,t<0, (16)



Fractal Fract. 2025, 9, 318 9 of 46

where Df denotes the Caputo fractional derivative of order . Using the Laplace transform,

s _ _ b sP=1y(0) + sP=2y/(0) + L
(58 + ae=T) Y(5) = P~y (0) = 52/ (0) = 2 — Y(s) = s SBHﬂyT 5 (17)

Using similar arguments as before (Remark 1), we have

00 ‘afe’sz 00 'ajefsz 00 . ajefsz aefsT
= 1)y — / -1y — -1y = -
Y(s) y<0)];)< 1) GBIt +y(0)]§( 1) P2 +b};( 1) B +17 0< SP <l (18)
To find the inverse Laplace transform, yielding
0y iact S sy Y e [ by Cryac e
y(t) = y( )};}(_ )a [Sﬁjﬂ} +y( )];)(— )a [S/SHZ} + ];)(_ )a [55(1“)“}
(19)

[ v yOE—jT)  b(t—jT)P inte B
_j_o{r(jﬁ+1)+ L(jp+2) F((]’+1)‘3+1)](—1)]a]9(t—]T)(t—]T)ﬁJ.

Remark 4. For each t > 0, the series in Expression (19) is a finite sum. To see this, note that
6(t —kT) =0 forallk > t/T. Then,

/T / ' '
B y(0) ¥ (0)(t — jT) b(t —jT)P
y(t) = Jg T(GB+1) = T(B+2)  T((j+1)B+1)

(~1)lal6(t — JT)(t — jT)P.

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Ny, such that t € [nT,(n+1)T) and |t/T| = n.

Proposition 3. For eacht > 0, the solution of (16) is

[t/T| / . .
_ y(0) vt —jT) = b(t—jT)P i o B
W= X |iGp+n  Tgpra) rGenpen) DO m

B
y(t) = y(0) + ' (0)t + F(,Lf:l)’ fort €[0,T).

Proof. Proposition 3 is proven directly by applying Remark 4. [

In these examples, we have explored some fractional time-delayed differential equa-
tions. We have also discussed first-order and fractional Caputo derivatives, FTDDEs, and
higher-order fractional differential equations with time delays. We derived their character-
istic equations and solved them using the Laplace transform. These techniques are valuable
tools for analyzing and solving complex differential equations with time delays, enhancing
our understanding of real-world phenomena.

3. Time-Delayed Bulk Viscosity

The FLRW cosmological model is widely used because it assumes the universe is
homogeneous and isotropic on large scales, making perturbation studies more manageable.
Its simplicity and effectiveness in describing large-scale cosmic evolution make it the
standard framework.

Recent extensions, such as the Dipolar Cosmological Principle, incorporate cosmic
flows and axial anisotropies [102,103], broadening FLRW's applicability. This approach
enables modeling complex dynamics using more generalized differential equations, includ-
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ing anisotropic shear and expansion. Further research has explored coupled scalar fields
and oscillatory behaviors in specific metrics, offering insights into dark energy [104,105].
As a first approach, we assume that the flat FLRW metric will serve as the foundation
for this study:
ds* = —dt? + a?(t) (dx2 +dy? + dzz), (20)

along with the energy-momentum tensor incorporating a bulk viscosity term:
Ty = puyuy + (p+ 1)y, (21)

where u/ = (55‘ represents the four-velocity of the comoving observer, while h,, = g,y +
uyuy is the projective tensor. Here, p and p denote the energy density and pressure of the
perfect fluid.

The function 7 = 7(p) represents the bulk viscosity term, as discussed in [106-111].
This term appears in the spatial component of space-time:

Ty = (0 + p)uptiy + pguv + Nhyy- (22)
The introduction of the bulk viscosity term modifies the Friedmann equations:
3H? = p, (23)

2H+3H?+p—n=0. (24)

Meanwhile, the continuity equation for the perfect fluid reads:
p+3H(o+p) =3Hy. (25)

When the perfect fluid behaves as an ideal gas, i.e., p = (7 — 1)p, and substituting
into (23), Equation (24) simplifies to

2H +3yH? — 5 = 0. (26)

The function 7 = 5(p) can take various forms, enabling descriptions of alternative
cosmological models, such as the Chaplygin gas and its modifications [112-115]. The
Chaplygin gas model is recovered when the perfect fluid behaves as an ideal gas and
1 = nop~". Originally proposed as a unified dark matter model, the Chaplygin gas is also
relevant for early-universe scenarios, particularly inflation [116-119]. Several Chaplygin
gas-like cosmologies can be incorporated within this framework [118-121].

Additionally, the right-hand side of the conservation law introduces particle cre-
ation and destruction, which play a crucial role in different phases of cosmic evolu-
tion. Particle production processes have essential applications in both the early and late
universe [122-125], as well as in extended frameworks [126-129].

Eckart’s theory serves as a first approximation of bulk viscosity models and was later
refined by the Israel-Stewart formalism [130-134]. The Israel-Stewart model introduces
additional degrees of freedom in the field equations, offering a more comprehensive
description of physical variables and addressing limitations inherent in Eckart’s formulation
like non-causality.
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According to [97], the simplest bulk viscosity scenario in (26), following Eckart’s
formulation, arises when the viscosity term depends on H, say #(H). Provided that
7(H) — 3yH? # 0, Equation (26) can be solved explicitly via quadratures:

2dH

For specific forms of bulk viscosity, Equation (26) simplifies to well-known differential
equations with closed-form solutions. When 7(H) is linear, it takes the form of a Riccati
first-order ODE, while a third-order polynomial 7 (H) results in an Abel equation [97].

Let Hy be a zero of the function f(H), defined as

) = 131 8)

From a physical perspective, when Hy # 0, the critical point describes a de Sitter
universe, whereas for Hy = 0, the resulting spacetime is an empty Minkowski space. Since
1 (H) is a real function, periodic behavior near the critical point is not expected [97].

In [97], the most straightforward extension of the bulk viscosity scenario in (26) is the
introduction of a time delay in the H-function within the field equations.

Scientists argue that vacuum energy density is unlikely to remain static in an ex-
panding universe, prompting the exploration of a smooth time-dependent vacuum
energy [135-138]. One approach models the cosmological constant as a decreasing function,
addressing the Hubble constant tension [139,140] and aligning theoretical predictions with
observed values based on Quantum Field Theory in curved classical spacetime [141].

In [142], a generalized fractional scale factor and a time-dependent Hubble parameter
are introduced, governed by an Ornstein-Uhlenbeck-like fractional differential equation.
This model describes the accelerated expansion of a non-singular universe, both with and
without scalar fields, revealing previously hidden cosmological features [142], inspired by
the stochastic formulation proposed in [143].

An alternative approach to modeling bulk viscosity is provided by the Israel-Stewart
formalism, with its simplest case governed by the following [106,107,111,144]:

T +1 = 3¢H. (29)

where 7 is the relaxation time, given by 7 = Zo~ !, with & as the bulk viscosity coeffi-

cient. When ¢ = 37(pp", the system admits a real critical point corresponding to the de
a

Sitter solution, Hp = ;. The linearized system near the critical point exhibits imag-

inary eigenvalues when ¥ < —1 — # — 392, implying spiral behavior. However, for

x > 0[106,107,109,111], oscillatory behavior is absent, unlike the time-delay model, which

supports oscillations for positive « [97].

In the full Israel-Stewart framework, the bulk viscous pressure 7 obeys a causal evolu-
tion equation with second-order corrections in deviations from equilibrium. Specifically,
the equation governing 7 takes the form

1 t & T
; Z(3g+ - -2 L =CH 30
T17+17+2( +T c 7.)717 ¢H, (30)
where 7 is the relaxation time and 7 is the barotropic temperature of the viscous fluid. See
Ref. [144] for a detailed derivation of the transport equations. For barotropic fluids with a
constant barotropic index, v, = 1 4+ w, the relaxation time can be reduced to
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¢
T= . (31)
(2= 70) 7000
At the same time, the Gibbs integrability condition allows us to calculate the tempera-
ture 7 as

70-1

T ocp,™ . (32)

By adjusting the functions 7 and ¢, various cosmological scenarios can be recov-
ered [106,107,111,144,145].

3.1. Time-Delayed Bulk Viscosity

Despite the strengths of FLRW cosmology, refinements are needed to address devia-
tions from perfect fluid behavior. Viscosity and retardation effects regulate shear dynamics,
impose causality constraints, and influence anisotropic expansion, gravitational wave
propagation, and energy dissipation.

Time delays in cosmic evolution introduce nonlocality, meaning present states depend
on past interactions rather than evolving instantaneously. Fractional calculus provides
a framework for modeling these effects, particularly anomalous transport phenomena
in astrophysical systems. By incorporating nonlocal derivatives, fractional models cap-
ture cumulative influences from previous events, offering insights into irregular matter
distributions and cosmic energy exchanges [146,147].

The framework in [147] unifies damping and shear effects within fractional dynamics,
aiding the modeling of dissipative processes in cosmology. Meanwhile, ref. [146] describes
stochastic jumps and nonlocal transitions from a statistical mechanics perspective. Inte-
grating these approaches enhances models of transport mechanisms and astrophysical
irregularities, improving the understanding of entropy generation and turbulence.

Time delays in cosmological models account for non-instantaneous interactions be-
tween cosmic components, such as the lag in energy exchange between matter and radiation.
This is particularly relevant in the early universe, where viscosity may arise from quantum
or thermal processes. In this context, the viscosity function is given by

n(t) = 20 H(t — T). (33)

Following [97], this expression arises from a modified cosmological framework. Our
approach extends [97] by incorporating fractional derivatives and time-delay corrections to
evolution equations. A rigorous derivation from Einstein’s field equations would clarify
the role of viscosity and retardation in cosmic dynamics. Applying Laplace transformations
requires justifying assumptions and examining their implications for nonlocal transport
in cosmology. This phenomenological approach seeks to determine whether the modified
framework recovers standard viscous or non-viscous cosmology in specific limits.

The corresponding evolution equation is

H(E) + ST H2(1) — qoH(t—T) = 0. (34)
Taking the limit T — 0, this equation simplifies to the Riccati equation
. 3y
H=f(H):=-H 7H—ﬂo . (35)

The solution is
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2
250Hoem! a 3vHy (e — 1) »
H(t) = , —=H t) = — = 41 . (36

(®) 210 + 37 Ho (e — 1)’ 4 = alt) =a 2170 + (36)

The critical points of Equation (35), where f(H) = 0, are Hy = 0 and Hp =
(210)/ (37)-

For H 4, referring to Equation (23), this corresponds to a universe with zero energy
density (p = 0). This condition describes an empty universe or a universe where a — oo,
with vanishing matter and energy density.

For Hp, we obtain

Hp = g — Hy = a(t) = age!™®. (37)

This exponential expansion characterizes the de Sitter phase.

The stability of the critical point is determined by the sign of % |H=H,- If % |H=H, <0,
the critical point is an attractor, while if % |H=H, > 0, the critical point is unstable.

Applying the variable transformation y(t) = H(t) — Hp, Equation (34) transforms into

() + SL2(0) + 20y(H) — noy(t — T) =0, 38)

3.2. Linearization

We linearized the last equation around y(t) = 0 to obtain

y(t) +2n0y(t) — noy(t — T) = 0. (39)

Now, applying the Laplace transform to Equation (39), we obtain

sC{y(t)} —y(0) + 20 L4y ()} —noe*T L{y(t)} = 0. (40)

Combining the steps, we have
L{y(t) Z u for0 < ’1705*1 (e*ST — 2) ‘ <1 41)

Using the Newton binomial, we have

(er—sT - 2170) Z k' )] k77] —skT (42)
Thus,
o ] ]| ik jefskT
L{y(t)} =y(0 )];);;)W(_Z) oS+t (43)

Applying the inverse Laplace transform

o : o—SkT
y(t):y(O)XZW( 2) KL [SJ-H ] (44)
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,0(t—2T)

+(-2) o

[—210(t — 2T)]Pe~2M0(t=2T) 4. }

B ® o= 200(=kT) [0 (+ — kT)]*0(t — kT)
=y(0) P T(k+1) '

Therefore, the analytical solution of Equation (39) is given by

B ] U G KT)]0(t — kT)
= Ik+1)

Hence, given y(0) = Hy — Hp, H(t) is

_ S e 2K [ (r — k)]0t — kT)
H(t) = Hp + (Hp HB)k;) Tkt 1) ,

where Hy = H(t = 0), and from

a(t) = exp {/ H(t)dt]

Hence, omitting a multiplicative factor that we set to 1,

a(t) = exp/ Hg+ (Hy—Hg) )

P T(k+1)

exp <2<k+1> (Ho—Hp)6(t—kT) )

o2 (1K) kT)]"WkT)}dt

o

=t ﬁ =)
2~ (k+1) (Hy—Hp)0(t—kT)T (k+1,250 (t—kT)) \ ’
k=0 exp( 0B T D) 0 )

where I'(a,z) is the incomplete Gamma function

I'(a,z)= / t"“e~'dt, where I'(a,0) = I(a).
z

(45)

(46)

(47)

(48)

(49)

(50)

(51)



Fractal Fract. 2025, 9, 318

15 of 46

e}

[]

Remark 5. Foreach t > 0, the series in (46) is a finite sum. To see this, note that 0(t — kT) = 0
forallk > t/T. Then,

WO e=2m0=KD) [y (¢ — KT)]*6(t — kT)
t)=(Ho— H

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Nosuchthatt € [nT,(n+1)T) and [t/T] = n.

Proposition 4. For each t > 0, the solution of (39) is

L/T] g=200(t=KT) [0 (+ — KT)]*0(t — kT)
& T(k+1) ’

and
y(0)e 20!, fort € [0,T). (52)

<

—~
~

~—
I

Proof. Proposition 4 is proven directly by applying Remark 5. O

Remark 6. For eacht > 0, the product in (50) is finite. To see this, note that 6(t — kT) = 0 for all
k> t/T. Then,

k=0 exp

2 (k+1) (HO—HB)G(t—kT)> ) exp (z<k+1>(HO—HB)9(t—kT))
1o o
2*(k+1)(HofHB)Q(tfkT)l"(k+1,2r]O(t7kT))) - lg) ex (2*<k+1>(HO—HB)G(t—kT)r(kH,z;yo(t—kT)))'
7T (k1) p ML (k1)

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Nosuchthatt € [nT,(n+1)T) and [t/T] = n.

Proposition 5. Foreacht > 0,

UT) =200 (t=KT) [y (+ — KT)]*0(t — kT)

o ‘ (53)
(t) = Hp + (Ho — Hp) k;) e
—(k+1) (g .

(1) = e tlfl/_ij ex]p<2 (HO%HB)G(t T))
a(t) = e'B | (54)
2= (41 (Hy— Hp)0(t—kT)T (k+1,210 (t—kT))
k=0 eXP( 0 B);yor(k+1) /0 )

Proof. Proposition 5 is proved by using (47) and (50) and applying Remarks 5 and 6. [
Proposition 6. As t — oo the exponential term e~210* dominates. Therefore,

lim H(t) = Hp.

t—4o0

Proof. Denoting by S, (t) the n-term of the sum in (47), we can see that

t—nT
Suia () < 0?7, (t) ——

< note®™T S, ().
n+1—’70€ Sn()

Applying this recursively, we obtain S, (t) < nge?l0Te=210!, for n > 1. The result
follows by replacing (47) and passing the limit when t — +co. [
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Moreover, in standard cosmology, we have the deceleration parameter g, which tells
us whether the Universe’s expansion is accelerated or decelerated. It is defined as

H(t)
q(t) = -1 HOZ (55)
and the function we¢ represents the behaviour of the fluid, given by
_ 2H(t) _ (29(t) —1)
Proposition 7. In the initial interval [0, T), we have
H(t) = Hp + (Ho — Hp)e ™", (57)
6y170e>10" (2579 — 3y H
(3’)/H0 + 219 (62770t — 1))
4y10e*0! (2179 — 3vH
wg(t) = —1— Vo (2170 — 3vHo) (59)

(3vHo + 210 (e%10! — 1))2'

Proof. Proposition 7 is proven using (53), (55), and (56). Using continuity, for t = 0,

dig 2 815 | 4
H(O) =Ho, q(0) = —1— g + 3, we(0) = —1- gl + . O

However, using Equations (55) and (56), which are from the standard model of cos-
mology, and using (34) to replace H(t), we explicitly have the deceleration parameter g(#)
and weg(t), which depends on the retarded time T that we have for t > T, as follows:

3y H(t—T)

q(t) = —1+ 5 - T (60)
wee(t) = =147 — énong(z)zT)- (61)

Proposition 8. Ast — +oo, the exponential term e~ 210t dominates. Therefore,
lim g(t) = =1, lim we(t) = —1. (62)

t— 400 t——+oo
Proof. Consequence of Definitions (55) and (56) and Proposition 6. [

The exponential growth of the scale factor aligns with inflationary cosmology but
may also arise naturally from time-delay effects within our framework. While inflation is
widely accepted, alternative theories, such as cyclic cosmologies and emergent spacetime
models, challenge conventional views [148]. Cyclic cosmological solutions have been
extensively studied, though previous research has primarily focused on cyclic universes
centered around a static Einstein universe [149-154]. The averaging approach has also
been applied to determine periodic behaviors in cosmology [155-157]. In [149], a cyclic
cosmological model was proposed in which the scale factor undergoes exponential growth
in each cycle. This framework addressed various early-universe problems, including the
horizon, isotropy, and flatness issues.

3.3. Error Estimation

For a given t > 0, and based on Remark 5, the sum in (53) is effectively finite. Conse-
quently, the solution can be considered exact, ensuring that the analytical representation
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accurately characterizes the specified range. In Appendix F.1, we present an optimized algo-
rithm to implement the exact solutions (53), (58) together with (60), and (59) together with
(61), as provided in Section 3.2. Figure 1 shows the analytical solution for H(t) from (53),
where v = 4/3 corresponds to radiation and ¢ = 1 to matter. In both cases, viscosity,
defined by the function # as a function of the retarded time T in Equation (33), drives the
Universe’s expansion. Recently, the expansion has approached a de Sitter space-time. The
model agrees with current observations and supports Proposition 6, showing that a scalar
field is not the only way to accelerate the Universe’s expansion.

10 y=4/3 10 y=1

— HI(t) — HI(t)

"""" Hg + (Ho — Hg)e ™2t s Hg + (Ho — Hp)e ™20t
0.8 2 0.8 2m
--- Hg=2P -=- Hg=5"
0.6 0.6
H(t) H(t)

0.4 0.4
o /\_/\ 02 [\ [~
095 40 60 80 100 %% 20 40 60 80 100

t t

Figure 1. Analytical solution H(t), for the cases v = 4/3,1. The other parameters are 17y = 0.2,
T =20, Hy =1, and yg = Hy — Hp. The dashed line represents the de Sitter solution.
Figure 2 presents the analytical solutions for q(t) and weg(t) for vy =4/3 and v = 1.
y=4/3 y=1
1.0 1.0
— q(® — q(t)
0.5 q(t), te[0,T) 0.57 q(t), t€[0,T)
"""" Weff(t)
0.0 -=-qt)=-1

~0.54f\

C1.0f——-2 _—2 — T
_1.5,
—2.0

_25,

-3.0

40 60 80 100 3% 20 40 60 80 100

t t

Figure 2. Analytical 4(t) and weg(t) given by (60) and (61), respectively, for the cases v = 4/3, 1.
The other parameters are 1y = 0.2, T = 20, and Hy = 1. The minimum values of 4(t) and w.g(t) are
(9 = —18.9, wegr = —12.9) for the case v = 4/3 (radiation) and (g = —10.7, wegr = —7.47) for the case
v = 1 (matter).

3.4. Discussion

For the interval [0, T), Definitions (57)-(59) describe H(t), q(t), and weg(t) as outlined
in Proposition 7.
Based on Propositions 6 and 8, the asymptotic behavior is

. _ 21 . _ : _
Lm H(t) = 3y JAm g(f) = -1, Im we(f) = -1,
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corresponding to the de Sitter solution. This solution emerges after a finite number of
phantom epochs, where the effective equation of state satisfies weg(t) < —1, as illustrated
by the numerical results in Figure 2. For v = 4/3, the deceleration parameter takes on
both positive and negative values, while for ¢ = 1, it remains consistently negative. The
viscosity, modeled by H and evaluated at the retarded time, generates the negative pressure
necessary to accelerate the expansion of the universe. Consequently, at late times, both
the deceleration parameter and the effective equation of state parameter converge to the
expected values characteristic of a de Sitter space-time. These numerical results align with
and support Proposition 8.

4. Time-Delayed Bulk Viscosity in Fractional Cosmology

In this section, we promote Equation (39) to the fractional version, which we will
solve analytically:

DFy(t) = cry(t) +cy(t—T), y(t) =0 Vi<, (63)

where CDf‘ is the Caputo derivative of order «, and in our case, ¢c; = —21p and ¢ = 7.
We need to find the solution to this time-delayed fractional differential equation.

4.1. Problem Setting
Our master Equation (63) belongs to the following class of fractional differential equations:

CDyy(t) +ay(t—T) +by(t) =0, y(t)=0,t<0,

/ (n—1) (64)
y0) =y, ¥ O0) =y, ..., ¥ 0)=y,1, n—-1<a<mn,

with parameters

e u: order of the fractional derivative;

*  a: constant coefficient of the delayed term;
e b: constant coefficient of the linear term;

e T time delay.

Derivation Steps.

1. Start with the differential equation D¥y(t) + ay(t — T) + by(t) = 0.
Apply the Laplace transform: L{“D%y(t)} + L{ay(t — T)} + L{by(t)} = 0.

3. Laplace transform of the Caputo fractional derivative:
L{Diy(t)} = s*Y(s) — L= s* ¥~y (0), where Y(s) is the Laplace transform of
y(t) and y¥) (0), are the initial conditions.

4. Laplace transform of the delayed term: £{y(t — T)} = e~*TY(s).

Laplace transform of the linear response term: L{y(t)} = Y(s).

6.  Substitute into the original equation:

o

n—1
7Y (s) — Y s* K1y 0 (0) + ae~TY(s) + bY(s) = 0.
k=0

7. Combine terms: (s* +ae~T +b)Y(s) — L) s k=140 (0) = 0.
8.  Characteristic equation: (s* +aeT + b)Y (s) = Yr=) s* k1) (0).

The objective is to explore a model using inverse transforms, focusing on its mathe-
matical and physical properties. The investigation involves the following steps:

1. Inverse Transforms: Inverse transforms, such as the inverse Laplace transform, are
powerful tools for solving differential equations. They convert complex differential
equations into simpler algebraic forms, making them easier to analyze. Once solutions
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L)+ — 1 — e T) = T s Fy0(0) — £{y(1)
k=0

are obtained in the transformed domain, inverse transforms convert them back to the
original domain. This approach helps in understanding the system’s behavior.

2. Characteristic Equation: The characteristic equation is derived from the differential
equation governing the system. It encapsulates the system’s key properties and helps
determine its stability, oscillatory behavior, and response to external stimuli. By
examining the roots of the characteristic equation, we gain insights into the system’s
dynamics and can predict its long-term behavior.

3. Physical Application: Time-Delayed Bulk Viscosity Cosmology. Consider applying
the model to time-delayed bulk viscosity cosmology as a practical example. Bulk vis-
cosity refers to the resistance of cosmic fluids to compression, affecting the Universe’s
expansion rate. Time delays account for the finite response time of these fluids to
changes in pressure and density.

We can develop a more accurate representation of the Universe’s evolution by incor-
porating time delays and bulk viscosity into cosmological models. This approach allows
us to

1.  Capture Delayed Reactions: Time delays introduce memory effects, meaning the
system’s current state depends on its past states. This is crucial for modeling realistic
physical systems where changes do not happen instantaneously.

2. Analyze stability: The characteristic equation provides information about the stability
of the cosmological model. By examining the roots, we can determine whether the
Universe’s expansion will be stable, oscillatory, or exhibit other behaviors.

3. Predict Cosmic Evolution: We can predict how the Universe’s expansion rate evolves
by solving the time-delayed differential equations. This can help address unresolved
issues in cosmology, such as the nature of dark energy and the mechanisms driving
accelerated expansion.

Investigating this model using inverse transforms, examining the characteristic equa-
tion, and exploring a physical application, such as time-delayed bulk viscosity cosmology,
offers a comprehensive approach to understanding complex systems. This method pro-
vides valuable insights into the model’s mathematical structure and physical behavior,
contributing to our knowledge of cosmological dynamics.

4.2. Solution

The Caputo derivative is defined as (A12) where « € R and n € Z. Calculating the
Laplace transform of the Caputo derivative is as follows:

1 o rtdmhy(T) 1 _
Cru _ Y (+ _ ~\n—1-a st
L{ Dty(t)} = r(n—a)/o [ [ (=) dt|e st dt. (65)

We see that 0 < t < oo and 0 < 7 < £, and following the steps of Appendix D, we
apply the Laplace transform to Equation (63), and using the Laplace transform of a delayed
function (A10), we obtain

n—1
s'L{y(} = Y s y0(0) = el £y (1)} + cre T L{y(1)}. (66)
k=0
We can solve for L{y(t)}:

e T )
Cost—cp—cesT

(67)
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Considering 0 < & < 1, and combining the steps, we obtain
sy y(0) (e tee T\
Ly®)} = s« —cp —cpe—sT s <1 B st )
00 —sT\/ —sT
_ ¥ y. (tae™) o |atae™ <1
S i s% st
Using the Newton binomial, we have
Sy _ ¢ /! —k k —skT
cp+eeT) =Y L ke 68
(c1+e2e™) kg')k!(]—k)!l 2 (68)
The Laplace transform becomes
j ]'! i~k kefskT
L{y(H)} =y(0) Jgkgo RG—H1 2T (69)
The inverse Laplace transform gives
o ° —skT
— J: j=k kp-1|€
y(t)_y(o)]glgk!(j—k)'cl 2 lsaj+l]
o ] ‘| . _ aj _
_ j ok g (= KT)¥8(t — KT)
=y(0 - c, C : (70)
! )];k;’)k!(]—k)! L2 T+ 1)
2 ok x (F—KT)MO(t —kT)
=y(0 - c -
y )kg)];(k!(]—k)! 12 T aj+1)
Remembering that c; = —219 and cp = 179, the solution is
o2l ki (t—KkT)MO(t — kT)
t) =y(0 ——(=2)/ , , (71)
which, assuming y(0) = Hy — Hp, leads to
H(t) = Hy+ (Ho— Hg) ¥ 5" — I ()it L=KDYOUZKT) =
=BTt — B < kI — k) T T(aj+1)

k=0 j=

We can notice that in the limit & — 1, we recover the solution without a fractional
derivative given by (47).

Remark 7. For each t > 0, the external series in (71) is a finite sum. To see this, note that
6(t —kT) =0 forallk > t/T. Then,

y(t) = (Ho—Hg) Y, Z k!(]-jik)!(—z)j_k’?{) - I;];Z;]i(tl)_ 2

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Ny, such thatt € [nT,(n+1)T), and [t/T| = n.

Proposition 9. For each t > 0, the solution for

“Diy(t) = —2noy(t) +noy(t—T), y(t) =0 Yt<O0 (73)
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is

[t/T] oo : . aj
- i i (t— KT)N6(t — kT)
y(t) = (Ho — Hp) k;) ch W(—z)] k’7{) T(aj 1 1)

For the initial interval t € [0, T), recalling the definition of the Mittag—Leffler function (A3),
t)=(Ho— H —2not*)) ———— = (Hop — Hp)E(a, —27j0t“). 74
y(t) = (Ho B)];)( o )r(a]Jrl) (Ho — Hp)E(a, =210t") (74)

Proof. Proposition 9 is proven directly by applying Remark 7. O

We analyze the convergence of the partial sums:

[t/T] n i L — gt —
B iU ik j (E—KT)Y6(t —kT) -
Su(t) = lg/’;kik!(]‘_k)!( 2) 5}, NOES) as 1 — oo (75)

Proposition 10. For eacht > 0,

H(t) = Hp + (Ho — Hp) lim WiJ Z e —2)i= kné<t _’;T(ch]i(tl)_ k1), (76)
a(t) = e8! lim Lﬁj ﬁexp (770( 2" kr(j - 1)(H°. — HB)G(.t — kD)t = kT)VT ) : (77)
noe LG ik F(k+1)I(ja+2)T(j—k+1)
Moreover, from (55) and (56), we have
Proposition 11. Foreacht > 0,
gm 1 (Ho — Hp) limy—c0 ZWTJ =k k'(j]lk) (—2)/ kTr)Z;]jfl()t £ . 78)
(Hip + (Ho — Ha) limyseo 3007 Tty i (—2) g ST )
Wer = (29 — 1) /3. (79)
For the initial interval t € (0,T),
g= 1 (Ho — Hg) £ E(at, —2170t*) N 6yn0t* 1 (37Hy — 2170)E(a, a, —2t"‘170)’ (80)
(Hp + (Ho — Hp)E(a, —25ot*)) (210 + (3vHo — 210) E(a, —2t%11p) )2
P dynot* 1 (3yHy — 2170) E(w, &, —2t%1) @)

(2170 + (3vHo — 210) E(at, —2t%10) )?

4.3. Error and Smooth Transition Correction

Now, we specify the number of terms used in the series expansion and discuss the
criteria for convergence. Additionally, we provide details on computational runtime,
round-off errors, and measures taken to ensure numerical stability.

We define the following function:

[t/T] n ' ] (. oj _
. i o (£ = KT)Y0( — KT)
Hn(t) = Hp + (HO - HB) kZ::O ];{ m(*z)] Mo F(ch—i- 1) (82)

The round-off error in approximating H(t) by truncating the series at 7 is given by

B W gt—kT) &t (t —KT)%
H(t) — Hn(t) = (Ho — Hp) k;) mj:;rl G-k (—ZWO)]W (83)
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We expand the falling factorial,

= =Dk, &9

which asymptotically simplifies to

il
ﬁ ~ j*, forlarge j. (85)

Approximating the gamma function using Stirling’s formula, we apply upper and
lower bounds given in [158-161]:

1/6 1/6
X\ g.3 2 1 XN (243 2 1
\/E(e) <8x +4x +x+100> <T(1+x) <\/E(e> <8x +4x +x+30> . (86)

Taking the reciprocal, we have

eve( /2 Z
F(ll—i—x)N<x) (\/\/2;7-[+O<<31c) )) (87)

By substituting x = «j, we approximate

]' -k e & 1
r=orrw " (%) Vamaj (%)
Expanding the denominator, we have
e \Y A
<aj) = (aj) ™ - €Y, (89)
which simplifies further:

.' .k . a]

I ~ (90)

(G=Rt-Tlaj+1)  \/2maj- (aj)
Thus, the final asymptotic approximation is as follows:

it el . ik—aj
S L S 1)
(G—=K!-Tlj+1)  /2maj-a

Hence,

H(t) —Ha(t) Wﬁ O(t—kT) & ek
Ho — Hy k=0 (—Z)kk! j=n+1 \/Z?OCjoc"‘j

Breaking down the terms:

(—=2n0)/ (t —kT)™, for large n.  (92)

e [t/T]: Integer division of ¢ by T, which determines the upper bound of summation.

*  0O(t — kT): Heaviside step function, restricting contributions to cases where t > kT.

. k,(l—z)k A rapidly decaying term as k increases, primarily driven by factorial growth in
the denominator.

e ¢Y: An exponentially growing term, significant for large ;.

e  j<%: A power-law term dependent on k — aj, which decays when &j > k.

e (—270)/: An exponential factor determined by 7o, growing or decaying based on |21

e (t—kT)¥: A power-law term influenced by (t — kT):
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- Ift — kT > 1, this term increases with «;.
- If0 <t—kT < 1,it decreases with «j.
- Ift — kT =1, it remains constant.
e /2maj: A polynomial decay factor in the denominator, which is subleading.
e  aY: A dominant exponential decay term in the denominator for large j.
By combining all terms, the dominant contribution for large #n comes from k = 0:
1 a(n+1)
1 e(2no)i -t
H(t) — Hy(t) ~ (Ho — Hp)(—1)"*! : 93
() 71() ( 0 B)( ) 27toc(n+1) DC(TI+1) ( )
The error approaches zero as n increases, provided that
1
0<t<tn="21FY (94)
6(21’]0) o
Under these conditions, we obtain
H(t) = lim H,(t), 0<t< oo. (95)

n—oo
For a given n, the time to achieve the tolerance is
)
trol(n) = t(n) ( \/WTOIeranCe> a(n+1)

|Hy — Hp|

Defining tgin, = max{t(n), t1o;(n)}, a reasonable stopping condition is

t
2na(n+1) (t(n

(n+1)
tpinal < fLimit and |Hy — Hp| - )> > Tolerance.

Therefore, |H(t) — Hy(t)| < Tolerance for t > tgijna and 1 > nmax.
To ensure a smooth solution, we introduce the following mollifier:

t— tFinal 2
S(t/ tFinal) =1- exp| — T .

(96)

Mollifiers are functions used in numerical analysis and differential equations to ensure

smooth transitions between values, preventing discontinuities [162,163]. They allow the following:

Smooth Transition: The exponential decay gradually introduces the correction as ¢

exceeds tginal-

Bounded Between 0 and 1: The function transitions smoothly from 0 at t = tg;,, and

asymptotically approaches 1 as f increases.

Gaussian-Like Decay: The squared term in the exponent resembles a Gaussian

mollifier, controlling the transition rate.

Discontinuity Prevention: This function ensures corrections are applied smoothly

rather than abruptly, preserving continuity.

Thus, the final computational solution is

corrected _ ' B Cntl 1 . ¢ a(n+1)
HE™™ed (£) = H, (£) + S(t, tpinat) (Ho — Hp)(—1) N ey [t(n)} .

(97)
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Appendix F.2 presents an algorithm for approximating H(t) using Equation (97) with
the mollifier given in (96). Figure 3 illustrates analytical H,,(t) for m = 500 from (82), with
parameters « = 0.9, v =4/3,1,79 = 0.2, T =20, and Hy = 1. Using Hflorre“ed(t) from (97)
0.004, ify=3%
0.005, ify=1
with fewer terms for t > tmax &~ 105.39, while maintaining | HSo™ected (£) — H,,(t)| < 0.025,
significantly reducing computational cost. Figure 4 compares HS°ected (¢) defined by (97)
for n = 114, with Mittag-Leffler Hg + (Hy — Hp) E(a, —2#ta), using the same parameters.

for n = 114 ensures best accuracy, satisfying |H(t) — HSo™eeted ()| <

a=09,y=43 ‘ ‘ a=09,y=1 ‘ ‘
! Corrected H(t) for n =114 i Corrected H(t) for n =114
\
081 Hy(t), m = 500 108 Hp(t), m = 500
|
e H =(2 no)/(3 ¥) | S Hz =2 )3 v)
0.6 | { os6p}
= 1 = '\
= \ =
X 1 = 1
041 | 0.4} \\
\ ~
\\ ™\ ‘\ ," \\
\, + ~. ~——— 4
020 N N~ I S e e —
0.0 | | | | . 0.0k L L L L L
0 20 40 60 80 100 0 20 40 60 80 100
Time (t) Time (t)
LR S p— ] 0025 o 1 Hcorrec(edi ‘ ‘ ‘
n n
0.020F 1 0.020f
§ g
] 0.015) 1w 0.015F
] ]
3 3
& 0.010F 1 o010}
o o
< <
0.005 1 o.005}
0.000 L. - - - - 7/ 4 0.000k: - - - - /4
0 20 40 60 80 100 0 20 40 60 80 100
Time (t) Time (t)

Figure 3. Analytical Hy, () for m = 500 from (82), witha = 0.9, y = 4/3,1and §p = 0.2, T = 20,
and Hy = 1. Using Ho™ected (¢) defined by (97) for n = 114 achieves high accuracy with fewer terms.

a=0.9,y=43 a=09,y=1
100 Corrected H(t) forn=114 7 1.0 Corrected H(t) for n = 114 |
osll T Mittag-Leffler Approx { ¢ ----- Mittag-Leffler Approx

0.8

H(t)
H(t)

0.0L . . . . LA 0.0L . . . . .
0 20 40 60 80 100 0 20 40 60 80 100
Time (t) Time (t)
0.25F — |Mittag-Leffler - Corrected H(t)| | — |Mittag-Leffler - Corrected H(t)|

Absolute Error
Absolute Error

20 40 60 80 100
Time (t) Time (t)

of

0 20 40 60 80 100

Figure 4. H{oected (1) defined by (97) for n = 114, witha = 0.9, v = 4/3,1and 159 = 0.2, T = 20,
and Hy = 1 compared with Mittag—Leffler Hg + (Hy — Hp)E(a, —2xj9tw).
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4.4. Numerical Solution

We want to solve Equation (63) numerically. We use the fractional Euler method for
fractional differential equations. The discrete fractional Caputo derivative is given by the
following [85]:

DY = 6%+ Ry, yni=vy(ty), ta=mnh, h=T/m, h>0, (98)

where m is the number of sub-intervals on which the intervals [kT,(k + 1)T),
k € {0,1,2,...} are divided, such that integer multiples of T, t.,, = kT, are on the mesh.

Define
50{ B h—o n—1 N g . 1 1—u ' ‘ 99
g Bl o
d
" Ry~ - a1y, e 0h) (100)
" TT2—a) AL Y

where ( is the Riemann—Zeta function.
On the other hand, from [164], we have the formula for the fractional Euler method:

i) = (00 + s eay(e) + an(ti = 7)),
tis1) = Y(8) + gy () + cay(i = m)h), (10

th
y(tiv1) = y(t) + m[ﬁy(ti) + oy (tim)]-
The calculation of g and wegs using the series (78) and (79) is affected by error propa-
gation. Hence, we use a discretized derivative to approximate H(t) by using the forward
difference formula (see Appendix E):

. H(tu1) — H(tn)

H(ty) ~ ; , (102)
where ¢, is the current time step. But
. t —y(t
H(ty) = Hp +y(ty) = H(ty) ~ w (103)
where Hp = Hp. Hence, we calculate g at ¢, g5, defined as
(Yn+1 = Yn)
g = —1— . (104)
h(Hg + yn)?
Calculate weg at ty,, Wegr, defined as
Westy = (290 —1)/3. (105)

Investigating the causes of anomalous initial behavior is essential, as it may stem from
numerical artifacts or initial conditions influenced by viscosity and time delays. Sensitivity
analysis assesses robustness under small perturbations. We applied the forward difference
Formula (102) for time derivative evaluation, with additional reliable schemes listed in
Appendix E.
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For implementing this numerical procedure, we require the initial terms
yo = y(to),y1 = y(t1),.- . ym = y(tm), with tg = 0,41 = h,...ty = kh,...t,, = T. For
t €10,T), using (74), we have

y(t) = (Ho — Hp)E(w, —210t"), t€[0,T). (106)

By continuity, yo = y(0) = 1 and y,, = y(T) = (Hp — Hp)E(a, —219T").
For calculating g1 = q(t1),...qm = q(tm), with t; = h,...ty = kh,...t,, = T, which
belongs to t € (0, T), we use (80), giving

6oty " (3yHo — 2170) E (&, , —2t8770)
(2170 + (3yHo — 210 ) E (, —2t4170) )%

Hence, using (101) and (103)—(107), we have

glte) = -1+ (107)

vo = Ho— Hg,...,yx = yoE(a, —2170(kh)"), ..., ym = yoE(a, —2170T"), (108)

o

Ynel = Yn + W[Clyn + Czl/nfm] (109)
Hy, = Hp + yn, (110)
Yo(E(a, —2moh*) — 1)
go=—1-— , (111)
hH}
Go= -1+ 610 (kh)" " (3yHo — 2170) E (, &, —2(kh)" o) DT (112)
(2170 + (3vHo — 210) E (a, —2(kh)"10) ]2~ '

a—1

P G +62yn7n;), n>mal (113)
F(a + 1)[HB + ]/n]

Wefty = (290 —1)/3. (114)

The fundamental algorithm for executing the numerical procedure (108)—(114) is
detailed in Appendix F.3. By solving Equation (63) for y(t), with c; = —219 and ¢, = 17,
and implementing the numerical procedure, we obtain Figure 5, which shows H(t) for the
numerical solution using the general formula for the fractional Euler method (101), which
is the linearized version. This figure shows that in a universe dominated by radiation
(v = 4/3) or dust (7 = 1), the system reaches the de Sitter phase after some perturbations
due to the memory effects introduced by the retarded time. Figure 6 presents the numerical
solutions for (t) and weg(t) for v = 3 and 7 = 1.

a=0.9,y=4/3 10 a=0.9,y=1
— H() — H(®)

1.0

0'00 20 40 60 80 100 O'00 20 40 60 80 100

Figure 5. H(t) for the numerical solution using the formula for the fractional Euler method (101),
for e = 0.9 and y = 4/3, 1, and the Mittag-Leffler function Hp + E (&, —219t"*). The other parameters
are 79 = 0.2, T = 20, and Hy = 1. The dashed line represents the de Sitter solution.
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a=0.9, y=4/3 a=09,y=1
1.0 1.0
— q( — ql(t)
0.5 q(t), t€[0,T) 0.5 q(t), t€[0,T)
00 e We(t)

0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 6. Numerical solution of the functions g(#) and weg(t), for the cases y = 4/3,1, considering
a = 0.9. The other parameters are #jp = 0.2, T = 20, and Hy = 1. The minimum values of 4(t) and
wegt(t) are (g = —20.6, wegs = —14.1) for the case v = 4/3 (radiation), and (g = —12.9, weg = —8.95)
for the case ¢ = 1 (matter).

We can also apply a numerical method to solve the nonlinear Equation (38) in the
fractional version:

“Diy(t) = —B%yz(t) =20y () + 1oy (¢ = T). (115)

The numerical scheme to solve (115) is the following. We chose a mesh y,, := y(t,),
t, = nh,h = T/m,and h > 0, where m is the number of sub-intervals on which the
intervals [kT, (k+1)T), k € {0,1,2,...}, are divided, such that integer multiples of T,
ti.m = kT, are on the mesh.

In the interval [0, T), the dynamics is given by the fractional differential equation

CDRy(1) = LA (0) ~ 2p0y (1), £ [0,7) (116)

For implementing this numerical procedure, we require the initial terms yo = y(fo),
i=yt1), ... ym =y(tm), withtg =0,y =h, .. .ty =kh, ...ty = T:

h* 3
Yn1 =Yn+t = —ly% —21oyn|, Hu = Hp+yn,
Fa+1)| 2 117)
gn = —1— Y1 —Yn) 200 —1
n hH’% 7 effn 3 M

Results from (117) are used to initialize the delayed procedure given by equation

h* 3
Yn+1 =Yn + Tla+1) {—;y% — 21oYn + onnm} , Hn=Hp+yn,
) (118)
et (3773/% + 2n0yn — onn—m) 2, —1

qn = —1+

T(x+1)H2 » Weffn = 773

The fundamental algorithm for executing the numerical procedure (117)-(118) is
detailed in Appendix F.4.

Figure 7 compares the numerical solutions of Equations (39), (63), and (115) for differ-
ent « values with v = 4/3 (radiation). The nonlinear solution (dashed red curve) reaches
the de Sitter phase faster than the linear one (solid black curve), showing small pertur-
bations over time. Asymptotically, all solutions approach Hg + (Hy — Hp)E(a, —2170t").
Increasing a brings the curves closer to the de Sitter state.
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In Figure 8, we show the same figure as Figure 7 but with the value v = 1 (matter).
The behavior is similar to the v = 4/3 (radiation) case.

a=0.7 a=0.8
1.0
2no — 2o
= — Hy= 2
0.8 Non-fractional and linear i Non-fractional and linear
- Fractional and linear - Fractional and linear
= = Fractional and non-linear = = Fractional and non-linear
0.6 Hg + (Ho — Hp)E(a, — 2not®) 1 O I Hs + (Ho — Hp)E(a, — 2not®)
H(t)
0.4
0.2
0.0 - . ;
a=0.9 a=1
1.0
2no — 2o
=T — Hp= 2
0.8 - Non-fractional and linear i = Linear
- Fractional and linear = = Non-linear
— = Fractional and non-linear | T Hg + (Ho — Hp)E(a, — 2not®)
H() 0.6 Hs + (Ho — Hp)E(a, — 21ot®) 1
0.0 : : : : ; ! ! !
0 20 40 60 80 100 O 20 40 60 80 100
t t
Figure 7. Comparison between the non-fractional and linear Equation (39) (orange), fractional and
linear Equation (63) (black), and fractional and non-linear Equation (115) (red). The blue constant
line is the de Sitter solution, and here 779 = 0.2, T = 20, Hy = 1, and y = 4/3. The green and dashed
lines represent the Mittag—Leffler function.
a=0.7 a=0.8
1.0
2no 2no
— = — Hg=2t
0.8 Non-fractional and linear i Non-fractional and linear
— Fractional and linear — Fractional and linear
== Fractional and non-linear ) == Fractional and non-linear
H(t) 064t e Hg + (Ho — Hg)E(a, — 2not%) N Hg + (Ho — Hg)E(at, — 2not®)

Figure 8. Cont.
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’ H _2no H _2no
— B = 3_V — B = 3_V
0.8 Non-fractional and linear i = Linear
— Fractional and linear == Non-linear
= = Fractional and non-linear N e Hg + (Ho — Hg)E(a, — 2not*)
H(t)o'6 | I E— Hg + (Ho — Hp)E(a, — 2not®) 1

40 60 80 100 O 20 40 60 80
t t

100

Figure 8. Comparison between the non-fractional and linear Equation (39) (orange), fractional and
linear Equation (63) (black), and fractional and non-linear Equation (115) (red). The blue constant
line is the de Sitter solution, and here 779 = 0.2, T = 20, Hy = 1, and vy = 1. The green and dashed
lines represent the Mittag—Leffler function.

In Figure 9, we present the numerical solutions for the functions g(t) and weg () in
the non-linear case (116), for the values v = 4/3 and v = 1, considering &« = 0.9. The other
parameters are 7o = 0.2, T = 20, and Hy = 1.

Summarizing, the functions g(t) and weg(t) oscillate between positive and negative
values and, at late times, converge to the values corresponding to de Sitter spacetime. The
effect of the Caputo derivative is that the deceleration parameter and weg converge to
negative values and the Universe remains accelerated for t > T.

a=0.9,y=4/3 a=0.9,y=1
—_— t) —_— t)
5 E q(t) 5 q(t)
i q(t), te[0,T) q(t), te[o,T)
| wer® |k e Werr(t)
1% -=- q)=-1 1$\ ---q(t)=-1
0 \k
1k /”:-_V
-2 V
20 40 60 80 100 0 20 40 60 80 100

t t

Figure 9. Numerical solution of the functions g(t) and weg(t) for non-linear case, for the cases
¥ = 4/3,1, considering &« = 0.9. The other parameters are 19 = 0.2, T = 20, and Hy = 1. The
minimum values of §(t) and weg () are (§ = —33.5, wegs = —22.7) for the case v = 4/3 (radiation),
and (g = —18.6, wegt = —12.7) for the case y = 1 (matter).

4.5. Generalization

For the sake of generality, we can consider the following equation:

m
Diy(t) = Y ey(t—rT), y(t)=0 Vt<O0,
r=0

(119)

with the initial conditions

y0)=vyo, v©O0)=v1, ..., " V0)=y,, n—-1<a<n (120)

Using (A18) and (A11), and applying the Laplace Transform on Equation (119), we obtain

m n—1
L{y(t)} <s"‘ - Zcre—“T) =Y s~ y®0). (121)
r=0 k=0



Fractal Fract. 2025, 9, 318 30 of 46

Then,

gt —k=1,,(k)
£yl - B TVEO) ¢ p e

,2”1 cre~ rsT 7

Safly(o)(o) gh— Zy(l) (0) Safny(nfl) (O)
- _ Z;n:() CrefrsT S0 — Z’V,”:O C,E*TST et S0 — Z’V,”:O CyefrsT
_ % (0) N y(0) R y"1(0)
gl—u (S"‘ _ Z'rn:[) Cie*TST) §2— vz( o Z 0C e—rsT) gn—a (S"‘ _ Z:Vl:o Cr€7'ST)
7 (0) /0 Y (0) (122)

ot

Cos(l—sTa Y™ e rsT) 2(1 —s=ay M crersT)

_y00) < L }:cy rsT) y<1>(0) ):( —a ZC em)] et y=1(0) ):( —a ZC ersT)]
j=0 o ”

j=0 j=0

j
v < —u ZC’ rsT) Z Z a]+k+1 (ZC ersT) ,
j=0 r=0 k=0j=0%

Remark 8. The convergence condition 0 < |s™* Y1 c,e "T| < 1 is satisfied by all s with
s* > mmax;(cr).

n(l — g« Zm c efrsT)

m
s Z e T <1
r=0

Il
il
| —
mQA
= =
s

iR
=2
P’J

But by the Multinomial Theorem, we have

n! ko k k
(.X'O + X1 + -+ xm)n - Z onoxll e xn;”. (123)
ko+ky ++-+ky=n "0"1*
ko,k1,~-.,kn120

Finally,
n=l e k) (0 i
ciy®y =L 1 O (et ere T o T 4+ e T
k=0 j=0
n=1 e (k)0 i : . : .
_ Z ;/]+l(<+)1 Z - J: C{)ochefhsTc]zzefZ]st . c{frinefm]msT
k=0j=0 ]0+]1+ A jm=]j ]0 ]1 ] (124)
Josj1rerjm=0
{20 120 jotjy-4jm=y JOUL ! st/
Jorj1se--rjm =0
such that
1 ; 2 )T
nz o0 > jt | C{)OC]11C]22 iy 0 - [e (I 422+ +mjm)s ]
K20 70 jotjy £t JOUL it st
s >0
rw . ek (125)
_ ! jo 1 j2 . (k) [t — (L rjr) TIV 0 — (57t 1) T)
= ZZ Y e a0 x T(aj + k+1) '
K20 /20 ot jy = JOULE 2 o J
Jorj1sejm >0
Remark 9. For each t > 0, the inner series in Equation (125) is a finite sum. To see this, note that
Ot — (L rjr)T) =0 forall (X' rjy) > t/T. Then,
1 0 Lpbqriy=t/T . ) K .
e e [t — (2 rj) T 0 (e — (T, 1) T)

y(t) = Z Z B ]
k=0 j=0 jo+j1++jm ]]0 il jm
J0sj1srfm =0

]m (k)
coercy - romy () x T(aj Tk +1) . (126)

Furthermore, if we divide the time domain into intervals of length T, for each t, there exists an
n € Ny, such that t € [nT,(n+1)T), and [t/T| = n.
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Proposition 12. Fort > 0, the general solution of (119) with the initial conditions (120) is (126).

Proof. Proposition 12 is proven by using Remark 9. [J

We can investigate the convergence of the partial sums

H,(t) = Hp + Su(t), (127)
n—1 n Yyiqrjr=|t/T] it .. . F— m g T"‘j+k9 t— m i T
sS\H=Y Y Y ﬁcg)ocfllcfzz -y B (0) [t — (5 ]712(03'+k—({—1) (Lt 1) T) (128)
k=0 j=0 fo-jy-+ - +jo=j JO12 77 Jm? 4
jOrjl/---zjﬂtZO
asn — oo,
Remark 10. For t > 0, taking limit n — oo,
H(t) = nlglgoHn(t) = Hp + }}gx;osn(t),
we obtain the solution
H(t) = Hg +y(t), (129)
with Hg = (219)/ (3) and y(t) defined by (126) of the linearized equation
m
“D{H(t) = Y_ c(H(t — rT) — Hp). (130)
r=0

With the expression for H(t), we can derive a(t), q(t), and weg(t) by calculating (48), (55),
and (56).

5. Conclusions

Fractional time-delayed differential equations (FTDDEs) bridge fractional calculus
and time delays, providing advanced tools to model complex systems in fields such as
cosmology. These systems include viscosity and fluid dynamics in space. Techniques like
Laplace transforms and Mittag—Leffler functions prove essential in solving FTDDEs. Vis-
cous cosmology, emphasizing dissipative effects, offer novel insights into cosmic evolution
while introducing practical modeling frameworks.

Employing effective pressure terms for cosmic fluids unveils mechanisms driving
inflation and accelerated expansion without relying on scalar fields. Moreover, FTDDEs
capture delayed responses in cosmic fluids, expanding their applications and thereby
paving the way for innovative research.

We explored these concepts by studying simpler fractional time-delayed differen-
tial equations with linear responses. This foundation extended to first-order, fractional
Caputo, and higher-order fractional differential equations with delays. Their character-
istic equations were solved using Laplace transforms, providing valuable insights into
real-world phenomena.

In the context of cosmology, we derived an equation from the Friedmann and conti-
nuity equations, incorporating a viscosity term linked to the delayed Hubble parameter.
Fractional calculus advanced this into a fractional delayed differential equation, known
as Caputo fractional derivatives, which were analytically solved for the Hubble param-
eter. Due to the complexity of the analytical solution, numerical representations were
also developed. These solutions asymptotically converged to the de Sitter equilibrium
point, representing a significant result in cosmological research. Additionally, solutions for
FTDDESs with delays as multiples of a fundamental delay were analyzed, offering further
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extensions. In summary, integrating fractional calculus, viscous cosmology, and time-
delayed equations established a robust framework for addressing limitations in standard
cosmological models. This interdisciplinary approach opened new research avenues and
enriched our understanding of the Universe’s fundamental properties.
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Appendix A. Lambert W Function

The Lambert W function, product logarithm, or W function is a set of functions
denoted as W(x). The Lambert W function satisfies the equation W (x)e"(*)
complex number x. It has multiple branches, but the two most commonly used are the

= x for any

principal branch, Wy(x), which is real-valued for x > —1/e, and the secondary branch,
W_1(x), which is real-valued for —1/e < x < 0. Moreover, W(0) = 0 and W(—1/e) = —1.
The Lambert W function is used in various fields, such as solving transcendental equations
involving exponentials and logarithms, analyzing the behavior of specific dynamical
systems, calculating the number of spanning trees in a complete graph, and modeling
growth processes and delay differential equations.

Appendix B. Mittag-Leffler Functions

From the Maclaurin series expansion of the exponential,
e} Zn
Z — -
e = Z‘a prl (A1)
n=

We replace the factorial with the Gamma function:

Z __ = Zn
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It can then be extended as follows:
[ee] Zn
E(a,z) = _, A3
(2,2) };] T'(an+1) (A3)

where a € C is arbitrary real with R(a) > 0.

In fractional calculus, this function is of similar importance to the exponential function
in standard calculus. For some values of « and functions of z, already known functions can
be obtained:

E(2,—22) = cosz, E(1/2,2'/2) = ¢ {1 +erf(zl/2)}, (A4)

where the Error function, erf(z), is given by

erf(z) = \/ZE /OZ e Pdt. (A5)

The Mittag-Leffler function can also be extended as follows:

E(a,B,z) = n;) 71"(0454— 5y (A6)

which is known as the generalized Mittag—Leffler function and has several special
cases, e.g.,
E(1,2,z) = (¢* —1)/z,  E(2,2,z%) = sinh (z)/z. (A7)

Appendix C. Laplace Transform of Time-Delayed Function

We can find an analytical solution using the Laplace transform of a function y(t) as
given by the following [165]:

L{y(D) = /O Ty(tetd, s> o. (A8)

We must also know the Laplace transform of a delayed function:

Lyt =T} = [Tyt -me = [

—s(u+T) _ ,—sT « —st
7Ty(u)e du=e /7Ty(t)e dt. (A9)

We assume that y(t) =0 Vt < 0, which is telling us that y(¢) does not have an history
for t < 0; thus,

Liylt-T)} =T [Ty dt = e TL{y()).

Therefore, we have
L{y(t=T)} =eTL{y(1)}. (A10)

Applying recursively, we have
L{y(t—1T)} =e T L{y(t)},r=1,2,...m. (A11)

Appendix D. Laplace Transform of the Caputo Derivative

The Caputo derivative is defined as

1 td"y(T)
n—a)Jo dt"

“Diy(t) = i S(t=T)" %, n—-1<a<n (A12)
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Then, we can calculate the Laplace transform of the Caputo derivative:

ﬁ{ CD?V(”} - r(nl—zx) /0
1
- I'ln—a) ./0

e} t An
{ d ]/(T) . (t _ T)nflfoc dT}est dt
0

dTtn

(=)l st dt) dt

- F(nl ) /0

/'°° d"y(7)
” d”dyT(nT) (/:o(t - T)"*lf"‘e*“ dt) dt

- F(nl— o) /0

dtn

At
o dny(T) </O° =1 —s(ut7) du) dr
0

(A13)

_ 1 e d"y(’l’) —sT /oo n—1l—ua ,—su
71—'(71—“)/0 g € ; u e du)dt
— 1 * d”y(T) —ST * n—1—-ua ,—su
_F(n—a)</o R dt /0 u e du ).
Recalling the definition of the Gamma function (9), we find that
/oo d”y(l’) e ST dt /oo un—l—txe—su du
0o dt" 0

[ee]
/ prlae=t gy
0

] py(n] = (A14)

Then,

;C [ CDtth(t):| — StX*'rl AOO dny(T) e*ST dT — Sanﬁ{ dny(t) } (A].S)

dth dtr

Therefore,

c{ oy} = st{ d’;ytgﬂ }

Integrating n times by parts, the Laplace transform of the n-th derivative is

(A16)

n n—1
ﬁ{ ddytglt) } _ Snﬁ{y<t>} . Z Snfkfly(k) (0) (A17)

k=0

Finally, the Laplace transform of Caputo’s derivative is given by the following [98]:

c{ Dyt } =2 YO _apiyyy - T s F1yW(0), n-1 A18
ty(t)p=s S =S Ly} = ) s YH(0), n-T<a<n (A18)
k=0
Appendix E. Numerical Considerations and Forward
Difference Formulation
As explained in [147], following Weierstraf3, the first derivative is defined as
I%irr(l) W, backward difference
—
o(t) = %x(t) = ;1113(1) W, central difference (A19)
}llin% w, forward difference, h < e < 1,h > 0
—

If x(t) is smooth and analytic, the different derivative formulations are equivalent
when t represents a time-like coordinate. The forward difference method is advantageous in
time-dependent simulations where only past values are available for computing derivatives.
Unlike central differences, which require values from both past and future points, forward
differences rely solely on prior data, making them well suited for real-time calculations and
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delay differential equations. Additionally, they tend to be numerically stable in specific
discretized systems by avoiding dependence on future values, reducing complexity. While
forward differences provide a reasonable first-order approximation for smooth functions,
they may introduce truncation errors. In contrast, central differences use both x(f + /) and
x(t — h), while backward differences rely exclusively on past values.

Various physical quantities, such as velocity, current, and flux density, follow local
principles and obey differential equations. The derivative can also be expressed in its
integral form:

i 2 [;°dhé(h)o(t — h), backward
o(t) = 2x(h) = 2 [ dh S () IR contral (A20)
2 [y°dhé(h)o(t + h), forward

where §(t) is the Dirac delta function, satisfying the following [166]:

| anemsm = f) (A21)

The Dirac delta function is defined as a limit of equivalent regular sequences of
good functions:
6(t) = limw(a, t), (A22)

a—0

where a is a smooth parameter satisfying a > 0.
Following [166], as cited in [147], a good function is infinitely differentiable and satisfies

O(|t|™™) as|t| = oo, Vn.
Additionally, a sequence w(a,t) of good functions is called regular if, for any good

function f(t), the following limit exists:

—+o00
lim w(a, t)f(t)dt. (A23)
a—0.J—c0
Finally, two regular sequences of good functions are equivalent if the limit is the same
for both sequences. Typical examples of such sequences include

exp ( - ‘aﬂ) p, p € RT, exponential
w(a, t) = Ai (laﬂ), Airy function. (A24)
% sin (%') , sine function

Appendix F. Optimized Algorithms

Appendix F.1. Optimized Algorithm to Implement Exact Solutions for (53), (58) Together with (60),
and (59) Together with (61), as Given in Section 3.2

In this appendix, we present an optimized algorithm that implements the exact so-
lutions of (53), (58) combined with (60), and (59) combined with (61), as described in
Section 3.2. This analytical solution is constructed using a finite series that is summed
computationally. For the numerical representations shown in Figures 1 and 2, we used
5000 terms from the partial sums to compute integrations over the interval t € [0,100]. To
integrate over a generic interval ¢t € [0, IntervalCount - /], where & represents the time step
size, we require IntervalCount terms.
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The Algorithm Al takes several inputs to define the problem, including T for delay
length, m for sub-intervals, and parameters 79, v, and Hp. These values are used to
compute derived quantities such as the time step size h = %, total steps TotalSteps =
m x IntervalCount, and the constant

Hp = 23720 (A25)
The function H () is initialized using two cases, where an accumulator term modifies its
behavior after + > T. Similarly, q(t) is computed with different equations before and after
T, ensuring accuracy in defining weg(f).

The algorithm processes results by iterating over t;, computing and storing values for
H(t), q(t), and weg(t). These values are then used for visualization. Plots for each function
are generated to examine their behavior over time, and a combined plot is created to provide
an overview. The structured array ensures that all values are recorded systematically,
supporting further analysis and refinement.

Algorithm A1 Optimized Algorithm to Implement Exact Solutions for (53), (58) Together
with (60), and (59) Together with (61), as Given in Section 3.2

1: Inputs: T, m, 19, v, Hy, IntervalCount

2: Compute Derived Inputs:

3 h«+— %

4: TotalSteps < m x IntervalCount

5. Hp < %,)i,;)

6: Define time points: t; <— {k-h | k=0,1,..., TotalSteps}
7. Initialization:

8: Define function H(t): t < T

9: H(i’) <— Hp+ (HO — HB) . exp(—Z 1o - t)

10: Compute accumulator efficiently:

11: accumulator < ZLZOTJ EXP(*Z-WU-(t}lzl-(?l)j(ﬂo-(f*k-T))k
12: H(t) - Hp + (Hp — Hp) - accumulator

13: Define function g(t): t < T

14 g(t) « —1— 6-7-1j0-exp(2-179-t)-(2-1j0—3-7-Hy)

(3-7Ho-+270- (exp(2-10-1) 1))
15: q(t) « 71+3'777%
16: Compute weg(t):
2-q(t)—1
17: Wege(t) < 5
18: Process Results Efficiently: t € f;
19: Evaluate and store results efficiently
20: results < {(t, H(t),q(f), wege(£)) }
21: Output Results:
22: Generate plots for H(t), g(t), and weg(t)
23: Generate combined visualization: Show[H (), (t), weg(t)]

Appendix F.2. Algorithm for Computing H(t) Using Equation (97) with the Mollifier (96).

In this section, we discuss an algorithm for computing H(t) using Equation (97) with
the mollifier (96).

The Algorithm A2 initializes several key inputs, including T for delay length, #y and y as
parameters, and Hy as the initial condition for H. Additional constraints such as Tolerance and
fLimit define stopping conditions, while m determines the number of terms in the summation
of Hy,(t). Derived inputs are then computed, including the constant

2'770
== A2
Hp 3y (A26)
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and the upper bound function ¢(n)

() = 20D (A27)

1
e(2no)«
which satisfies the condition

1 _ ( t
2mta(n+1) \t(n

a(n+1)
Vt < t(n), |Hp— Hgl- )) — 0, as t(n)— oo

This guarantees convergence.
The time required to reach tolerance for a given n, denoted as ty,) (1), is established
based on the given parameters:

|Ho — Hp|

Ny
brog (1) = £(1) < V2ma(n + 1)Tolerance> . (A28)

The initialization phase determines g, as

tpinal = max{t(n), tro1(n)} (A29)

and verifies stopping conditions before proceeding with iterative updates. The recursive sum-
mation for Hy(t) and the truncated sum for H, () are computed, followed by the application
of smooth correction using S(t, tina) and C(t,n). The corrected function HE™ectd (¢) is then
obtained. Processed results iterate over discrete time steps, computing errors and storing
structured outputs. Finally, the results are visualized with plots for HE™eeted (¢), H,,(t), and
the error function E(t), providing an overview of the numerical behavior.

Appendix F.3. Algorithm Implementing the Numerical Procedure (108)—(114)

In this section, we present an algorithm that implements the numerical procedure
(108)—(114). The Algorithm A3 efficiently computes H(t), q(t), and weg(t) using a struc-
tured approach that integrates fractional-order calculations with iterative updates. The
initialization phase begins with key inputs, including the fractional order parameter «,
delay length T, and the number of sub-intervals m. Essential coefficients such as 7 and -y
define the system behavior, while derived parameters, including step size h = % and total
time steps TotalSteps = m x IntervalCount ensure precise numerical iteration.

The computation is divided into two main phases. In the First Interval Computation,
the algorithm initializes the function values and applies the Mittag-Leffler function

E(a, =210 (kh)*)

to recursively update y[k]. The corresponding values for H|[k], q[k], and weg[k] are computed
and stored, ensuring that initial conditions align with system behavior. The Subsequent
Intervals Computation extends these calculations by iteratively computing y[n + 1] using
previous values and weighting coefficients c; and ¢;. Each update refines H[n], adjusts
q[n] for stability, and computes the effective parameter weg[n] to analyze system properties.
The final results are stored systematically, facilitating further analysis and visualization.

This approach not only ensures computational accuracy but also provides adaptability
for varying system configurations, allowing dynamic responses to different initial con-
ditions and fractional-order variations. The algorithm’s structured execution supports
stability and convergence, making it a useful tool for modeling delay-differential equations
in applied mathematics.
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Algorithm A2 Algorithm for Computing H(t) Using Equation (97) with the Mollifier (96)

13:

14:
15:

16:

17:

18:
19:
20:
21:

22:
23:
24:
25:
26:
27:

: Inputs: T, 1o, v, Hy, Tolerance, tyimit,
: Compute Derived Inputs:

217

: Compute upper bound function f(n) as (A27)

: Compute time to achieve tolerance ty,) (1) as (A28)
: Compute final evaluation time tg;,, as (A29)

: Initialization:

: Set 1 < 0 tgjpal < tLimit AND

t

1
V2rta(n+1) . (f(n

|Ho — Hp| -

a(n+1)
j ) > Tolerance

: Increment n and update tgj, )
10:
11:
12:

Set n < m for truncated sum H,, ()
Compute Recursive Summations:

Compute Hy (f):
I_t/TJ n 1 . . _ "‘j —_
B ! k. j (E—=KkT)™O(t —kT)
Hy(t) = Hp + (Ho — H IO '
(t) = Hp + (Ho — Hj) k;];(k!(]—k)!( S NFIEE)
Compute truncated sum Hy, (t):
[t/T] m i L (f— xjo(t —
B ! k. j (E—=KkT)6(t — kT)
Hy(t) = Hg + (Hy — H ar o (—2) -
(t) = Hp + (Ho — Hp) ,g)];k!(]—k)!( ) (1)

Apply Smooth Correction:
Compute smoothing factor:

t— tFinal 2
S(t, trinal) = 1 —exp| — -

Compute correction term:

1 a(n+1)

2rta(n+1)

e(2mo) /% - t

C(t,n) = S(t, tginal) - (Ho — HB)(il)n—H a(n+1)

Apply correction if ¢ >t
Hflorrected(t) _ Hn(t) -+ C(t, 11)

Process Results: t, € {k-h | k=0,1,..., |tpna /1] }
Compute Heorrected (¢,

Compute Hy, (ty)

Compute error function:

E(ty) = |Hu(tr) — HEe (1)

Store results efficiently

Output Results:

Plot HEomrected (1) ys, ¢

Plot truncated sum H,, (t) vs. t

Plot error function E(f) vs. t

Generate stacked visualization: Column |[HSo™e<*d(¢), H,,,(t), E(t)]
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Algorithm A3 Algorithm Implementing the Numerical Procedure (108)—(114)
1: Define Inputs:
2: « = Fractional order
3: T = Length of delay
4 m = Number of sub-intervals per delay interval
5: 1o = Parameter 79
6: v = Parameter y
7: Hy = Initial condition for H
8 c] + —219
9: 2 < 1o
10: IntervalCount = Number of intervals
11: Compute Derived Inputs:
12: h % {Time step size}
13: TotalSteps «<— m x IntervalCount {Total number of time steps}
14: Initialization:
15: Initialize empty lists: y = {}, H = {}, g = {}, wegs = {}
16: Compute repeated constants:
2
constTerm = 210, T, = I'(a+1)
3y
17: Set initial condition for y
210
1] =Hy— =—
y[1] 3y
18: Append y[1] to list y
19: Set initial condition for H
H[1] = Hp
20: Append H[1] to list H
21: Set initial condition for g
_ ¢ (2o =37H[1])(=1+ E(a, —2nh"))
il =1+ 3yhH[]
22: Append g[1] to list g
23: Set initial condition for weg
2q(1] -1
wegt[1] = 1l ;
24: Append weg[1] to list weg
25: First Interval Computation: k = 1 to m
26: Compute:
ylk] = y[1] - E(x, —219(kh)*), H[k] = constTerm + y[k]
6170 (kh)*~1(3yHy — 210) E(a, o, —2(kh)* 2q[k] — 1
glk] = —1 4 &YIoWk)™ " (3vHo = 20 E( ( )2’70), wusk] = q[;
(2170 + (3vHo — 2170) E(a, —2(kh)*110)]
27: Append values of y[k|, H[k], q[k], and weg k] to respective lists
28: Subsequent Intervals Computation: n = m + 1 to TotalSteps
29: Compute:
hD(
yin+1] =yn] + r—(cly[n] + coy[n —m]), H[n] = constTerm + y[n]
o
_ " (ery[n] + cay[n — m]) _ -1
q[]’l] =-1- F,,(H[n}z ’ weff[fl} - 3
30: Append values of y[n + 1], H[n], q[n], and weg[n] to respective lists
31: Output Results:
32: Return lists y, H, g, and we¢ as the solution
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Appendix F.4. Algorithm Implementing the Fractional Nonlinear Scheme (117) and (118)

In this section we propose an algorithm, implementing the fractional nonlinear scheme
(117)-(118), efficiently computes H(t), q(t), and weg(t) through a structured numerical
approach. The method leverages fractional-order calculations, ensuring precise handling
of memory effects and long-range dependencies inherent in fractional systems.

The Algorithm A4 begins with a well-defined set of Inputs, including fractional order «,
delay length T, and sub-interval count m, along with key system parameters such as # and
7. These inputs serve as the foundation for deriving essential numerical values, including
the time step size h = % and total number of iterations TotalSteps = m x IntervalCount.
The initialization phase sets up required lists to store results and establishes fundamental
constants like

210

constTerm = 3y Iy, =T(a+1).

Initial values for y, H, g, and wes are determined, ensuring consistency in subsequent
numerical updates.

The First Interval Computation defines the evolution of y[k|, applying a nonlinear
recurrence relation involving coefficients ¢y and c;. The Mittag-Leffler function-based
formulation ensures stability by incorporating memory-dependent terms, refining the
computed values for H[k], g[k], and weg[k]. The results are iteratively stored, supporting
accuracy and efficient tracking of system behavior.

Following this, the Delayed Recurrence Procedure for Subsequent Intervals extends
computations beyond the initial phase, incorporating prior interval data through a delayed
recurrence formulation. This allows y[n + 1] to dynamically adjust based on previously
computed terms, ensuring smooth evolution of H[n|, adjustments in g[n], and updates
in weg[n]. Each step accounts for fractional-order effects, contributing to an accurate
representation of system dynamics over extended time intervals.

Finally, the structured numerical output returns computed lists, facilitating visualiza-
tion and analysis of the system’s behavior. The efficient execution of this algorithm supports
the exploration of complex fractional differential equations, particularly in applications
requiring precise delay modeling and nonlinear interactions.

Algorithm A4 Algorithm Implementing the Fractional Nonlinear Scheme (117)—(118)

: Define Inputs:

: « < Fractional order

: T + Length of delay

m <— Number of sub-intervals per delay interval

1o < Parameter g

7Y < Parameter

: Hy < Initial condition for H

c1 < —219

1 C 1o

: IntervalCount <— Number of intervals

: Compute Derived Inputs:

. h + L {Time step size}

: TotalSteps «+— m x IntervalCount {Total number of time steps}
: Initialization:

: Initialize empty lists: y = {}, H = {}, 9 = {}, wetr = {}
: Compute repeated constants:

e el e e
Ul = W N = O

2
constTerm = ?%O, Iy=T(x+1)
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Algorithm A4 Cont.

17: Set initial condition for y:

_ 219
y[1] = Ho - 3y
18: Append y[1] to list y
19: Set initial condition for H:
H[1] = Hy

20: Append H[1] to list H
21: Set initial condition for g:

p (= Sy - 2n0y11))

g} =-1- T, H[1]2
22: Append g[1] to list g
23: Set initial condition for weg:
2g(1] -1
west[1] = 2l -1 ;

24: Append weg[1] to list weg
25: First Interval Computation: k = 1 to m
26: Compute:

ylk+1] = ylk] + % (—%Yy[k}z - Ziyoy[k]>, H[k] = constTerm + y/[k]

ylk +1] — y[k] 2[k] — 1
hH[K)? 7 3
27: Append values of y[k + 1], H[k], g[k], and wegk] to respective lists
28: Delayed Recurrence Procedure for Subsequent Intervals: n = m + 1 to TotalSteps

qlk] = —1— Wege k] =

29: Compute:
vl +1] = yla] + £ (= bl = 2ioylal + noyln —m] ), Hln] = constTerm -+
— 11 (= 3y [n]? — 2n0[n) + oyln — m ) 2401 -1

rle[n}z ’ weff [1’1} = 3

30: Append values of y[n + 1], H[n], g[n], and weg[n] to respective lists
31: Output Results:
32: Return lists y, H, g, and we¢ as the solution
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