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Abstract: Gravity water waves in the shallow-ocean scenario described by generalized
Boussinesq-Broer-Kaup-Whitham (gBBKW) equations are discussed. The residual symme-
try and Backlund transformation associated with the gBBKW equations are systematically
constructed. The time and space evolution of wave velocity and height are explored. Addi-
tionally, it is demonstrated that the gBBKW equations are solvable through the consistent
Riccati expansion method. Leveraging this property, a novel Backlund transformation,
solitary wave solution, and soliton—cnoidal wave solution are derived. Furthermore, mis-
cellaneous novel solutions of gBBKW equations are obtained using the modified Sardar
sub-equation method. The impact of variations in the diffusion power parameter on wave
velocity and height is quantitatively analyzed. The exact solutions of gBBKW equations
provide precise description of propagation characteristics for a deeper understanding and
the prediction of some ocean wave phenomena.

Keywords: generalized Boussinesq-Broer-Kaup-Whitham equation; residual symmetry;
Backlund transformation; shallow-wave propagation; nonlinear effect

1. Introduction

Nonlinear equations are widely applied in many branches of natural science, includ-
ing but not limited to fluid mechanics [1,2], cosmology [3-5], field theory [6,7], plasma
waves [8,9], geophysics [10], nonlinear optics [11,12], and oceanography [13]. These equa-
tions and their solutions furnish essential mathematical frameworks for elucidating com-
plex natural phenomena. Classical methods for deriving exact solutions to nonlinear
equations include Painlevé analysis [14-16], the Hirota bilinear method [17,18], the inverse
scattering transformation method [19], the Darboux transformation method [20,21], sym-
metry analysis [22-24], the Riemann-Hilbert method [25,26], the Backlund transformation
method [27,28], and so on. Among these, the symmetry method is widely regarded as
one of the most systematic and effective approaches. Notably, within symmetry analy-
sis, nonlocal symmetries are capable of generating more diversified forms of solutions
that are unattainable through Lie point symmetries alone. This diversity is particularly
advantageous for modeling and interpreting a wide array of complex physical phenomena.

It is well known that Painlevé analysis is an effective method with which to study the
integrability of nonlinear differential equations. Based on truncated Painlevé expansion,
Lou proposed a method to construct the nonlocal symmetry, which is also called residual
symmetry [29]. Lou further extended the truncated Painlevé expansion to propose a simpler
method to obtain the interaction solutions, which is called the consistent Riccati expansion
(CRE) method [30,31]. When a system is CRE-solvable, this method enables the analysis
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of interactions between solitons and other nonlinear waves. Numerous systems have
been demonstrated to exhibit CRE solvability, including the Korteweg—de Vries (KdV)
equation [32], the modified Korteweg—de Vries (mKdV) equation [33,34], the Kadomtsev—-
Petviashvili equation [35], the Kaup—Kupershmidt equation [36,37], and the Boussinesq
equation [38,39].

As a novel and robust method that has emerged in recent years for solving non-
linear partial differential equations (NPDEs), the Sardar sub-equation method (SSM)
was initially introduced by Rezazadeh et al. [40] to address the (3 + 1)-dimensional
Wazwaz-Benjamin-Bona-Mahony equation. Subsequently, Akinyemi et al. developed
the modified Sardar sub-equation method (MSSM) [41] as an advanced approach for solv-
ing NPDEs. As an extension of the original SSM, the MSSM demonstrates enhanced
versatility, enabling it to tackle a broader spectrum of equations. This method has been
successfully employed to solve various NPDEs, including Schrodinger equations [42-44]
and the modified Korteweg—de Vries—Zakharov-Kuznetsov equation [45]. In comparison
to traditional methods for deriving exact solutions, the MSSM is capable of generating
novel exact solutions characterized by diverse functional forms, such as trigonometric,
exponential, and rational functions. For certain nonlinear or strongly coupled systems, the
application of classical methods to derive exact solutions may prove challenging. How-
ever, the MSSM offers a streamlined approach to simplifying complex nonlinear equations.
Its superiority over other methods in solving certain NPDEs is evident in terms of com-
putational efficiency and higher accuracy, making it a valuable tool in the analysis of
nonlinear systems.

The Boussinesq equation serves as a fundamental model for describing the propa-
gation of nonlinear dispersive waves in shallow water, while the Broer-Kaup equation
characterizes the dynamics of dispersive long waves in shallow-water environments. The
Whitham equation, on the other hand, provides a mathematical framework for modeling
the propagation of weakly nonlinear, long waves in dispersive media, such as water waves.
The generalized Boussinesq—Broer—-Kaup-Whitham (gBBKW) system can be regarded as a
comprehensive extension that integrates the Boussinesq equation, the Broer-Kaup equa-
tion, and the Whitham equation. The gBBKW equations can describe certain gravity water
waves in a shallow-ocean scenario in terms of the wave height and surface velocity of the
water wave, which can be used to simulate complex wave phenomena in fields such as
fluid flow, plasma waves, nonlinear optics, and condensed matter physics. Investigating
the symmetries and deriving various forms of exact solutions for the gBBKW equations
hold significant importance for advancing our understanding of its physical implications
and broadening its practical applications.

We consider the gBBKW equations for certain gravity water waves in a shallow-ocean
scenario [46]:

U + Uy + vy + Buyxy =0,

1)
vt + (U0), + Qllxxx — BUxx + YUy =0,

where the real differentiable function u(x, t) represents the velocity of the water-wave
surface along the x axis. The real differentiable function v(x, t) represents the wave height
of the water—wave surface. a, 8, and -y are constants representing different diffusion powers.
The dispersion effect parameter a controls the dispersion characteristics of the wave. In
shallow water waves, the dispersion effect is mainly determined by water depth and
wavelength. The dissipation effect parameter § reflects the viscous dissipation. It is mainly
related to fluid viscosity, wavelength, and water depth. The modulation parameter
mainly reflects the modulation effect of external energy input or dissipation mechanisms
on shallow water waves. It is mainly related to the wavelength and water depth.

There have been some related studies for special cases of the gBBKW equations [47-57].
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(1) Whena = v = 1and 8 = 0, the gBBKW Equation (1) reduces to the Broer-Kaup
equations. These equations serve as a mathematical model for describing the bidirectional
propagation of water waves in a narrow channel of constant finite depth [47]:

@2Whenf=9=0,a >00rp=7=0a = —%, gBBKW Equation (1) reduces to
the Kaup-Boussinesq (KB) equations. These equations serve as a mathematical model for
describing the dynamics of shallow water waves [48,49]. Specifically, when f = v = 0
and & = 1, gBBKW Equation (1) reduces to the (1+1)-dimensional dispersive long-wave
equations [50,51]. Furthermore, when f = v = 0 and & = 1, gBBKW Equation (1) reduces
to a variant of the Boussinesq equations [52,53].

(3) When ¢ = 0, gBBKW Equation (1) reduces to the Whitham—Broer-Kaup (WBK)
equations, a model describing the propagation of dispersive long waves in shallow ocean
water [54,55].

(4) Whena = v = 0and 8 # 0, gBBKW Equation (1) reduces to the classical long-wave
equations, a model describing the propagation of diffusive shallow water waves [56].

(5) When a = = v = 0, gBBKW Equation (1) reduces to a classical dispersiveless
long-wave equation, a model describing long waves in shallow water [56].

(6) When « = %, B =0,and v = 1, simplified gBBKW Equation (1) models gravity
waves in oceanic environments [57].

By adjusting parameters «, 3, and 7y, the gBBKW equations can be degraded to the
above six cases, but the more general parameter choices of the gBBKW equations achieve a
unified description of the complex shallow-water-wave dynamics. In comparison to related
studies, the primary novelty of this work lies in the following aspects:

(1) We investigate the gBBKW equations, which unifies and extends several important
mathematical models including the Boussinesq equation, the Broer-Kaup equation, and
the Whitham equation. The gBBKW equations model gravity waves, long-wave dissipa-
tive effects, and nonlinear dispersion uniformly, which is suitable for a wider range of
ocean shallow-water scenarios. Diverse wave propagation phenomena in shallow ocean
environments are discussed, which have a wide range of applications in the fields of fluid
dynamics and nonlinear fluctuations.

(2) After trying a variety of analytical approaches, we derive a wide range of novel
solutions for the gBBKW equations, such as a soliton—cnoidal wave solution, multi-soliton
solutions, and singular periodic solution. The main characteristics and physical implica-
tions of these solutions are thoroughly analyzed. We explicitly analyze the synchronization
rule of wave velocity and wave height in the spatial and temporal evolution (e.g., the
point of maximum change in the wave velocity corresponds to the trough of the wave
height). The exact solutions obtained exhibit features consistent with the characteristics of
shallow water waves as modeled by the gBBKW equations, providing precise mathematical
representations of the system. These exact solutions are useful as a guide toward obtaining
numerical solutions or performing simulations, which can be used as benchmark solutions
to test the accuracy and stability of numerical algorithms or to account for the observed
anomalous fluctuations.

(3) The impact of variations in parameters &, , and v on wave behavior is inves-
tigated, which reveals some new phenomena that could not be demonstrated in special
cases where these parameters are specific constants. The time and space evolution and the
characteristics of wave height and velocity across different wave phenomena are systemati-
cally analyzed. Through these analyses, the abstract mathematical solutions are associated
with the observable physical phenomena, thus bridging the theoretical model with the
actual problem. As a significant nonlinear system modeling gravity water waves in shallow
ocean environments, the gBBKW system provides a powerful model for advancing the
understanding and prediction of oceanic wave dynamics.
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The rest of this paper is organized as follows. In Section 2, the residual symmetry
and localization of gBBKW Equation (1) are derived using truncated Painlevé expansion,
and kink and soliton solutions are obtained. In Section 3, the CRE solvability of gBBKW
Equation (1) is proved. And the soliton solution and interaction solution between a soliton
and cnoidal wave are obtained. In Section 4, a concise overview of the MSSM is provided,
and a variety of solutions for gBBKW Equation (1) with 8 = 0 are derived, including a
singular periodic wave solution, periodic wave solution, dark periodic singular soliton
solution, singular solitary wave solution, and singular soliton solution. Additionally, the
physical significance of the selected solutions is discussed alongside graphical representa-
tions. Finally, some conclusions are presented in Section 5.

2. Residual Symmetry and Localization
2.1. Residual Symmetry and Bicklund Transformation
The general form of the truncated Painlevé expansion for gBBKW Equation (1) is

1 ) 12 )
u=)y uf ™M, v= Zv]-ﬂ*”?, ()
i=0 =0

where u;(0 <i < ny),v;(0 <j < ny), and singular manifold f (f # 0) are undetermined
functions of variables x and t. According to the homogeneous balance principle, we choose
n1 = 1 and ny = 2 in (2), which can balance the highest derivative and nonlinear terms in

(1). Hence, u o o
20 0. A

f P
Substituting Equation (3) into gBBKW Equation (1), collecting coefficients correspond-
ing to different powers of f, and equating them to zero, we obtain

u= +uq, v + vy. 3)

g = 2y/a+ P2 fy, vo = 2(By/a+ B2 —a— B*)f7,

o ft+\/06+52 xx
__f—x’ v

Uy 1 =2(a+ B> — By/a+ B?) frx, (4)
02:( w+ﬁ2—‘3)(fxxft+ Vf§‘+132 J%x_fxt+\/“x‘|‘7,32xxx)_ ,

where f satisfies the following Schwarzian equation:
Ci+2¢/a+ B2Cxy + (¢ + p*)Sy — CCy = 0, (5)

2
with € = £, 5 = 2 = .

Lemma 1. The Schwarzian equation remains invariant under Mobius transformation.

Proof. Consider

ft fxxx 3f§x
C(f) ==, S(f) = — . 6
(=1 80 ="Lm - ©

The Mobius transformations [58] is
b
o:f =Yg (ad £ bo),
which means .

o(f) = L+ %

cof +d
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Then, Kf y
o(f); = (f+d)2 o(f), = (de)z,
_ Kfzxx B ZCKfJ%
(P(f)xx - (Cf+d)2 (Cf+d)3l 8)
21 £3
P(f) xx = Kfexx _ 6cKfafex  6CKfy

(cf+d)  (cf+d)°  (cf+d)*

where K = ad — bc. By combining Equations (6) and (8), we can derive

Kfi
_ _ 9 _ (efrd? _ fr _
Clolh) =Cloef) = otat = ks - = =)
(cf +d)
Cotwo ) — P 39(F)i
Slelf)) =5Sleof) =5y ™ ~ 20012 9)

_ fxxx 6Cfxx 6C2f§ 3(fxx chx )2

fx cf +d (Cf+d)2 2
= S(f)-

Therefore, C(p o f) = C(f) and S(¢ o f) = S(f), which means Schwarzian
Equation (5) remains invariant under Mobius transformation. O

fxocf+d

In combining Lemma 1, Schwarzian Equation (5) possesses three symmetries:
o =cy, of =c1f, of =%

Based on the preceding analysis, the following Backlund transformation theorem can
be deduced.

Theorem 1. If f satisfies Schwarzian Equation (5), then

_2 D“":BZX ft+ D“",Bzxx
_ 2V fo
ﬁ\/HﬁZ—a PIfe | 20atp - ﬁ\/wﬁz fax (10)

fxxft+ \/(X"'ﬁ2 xx fﬁ"‘\/@xxx .
fz f

+(yJa+ B =B

is a solution of gBBKW Equation (1).

According to residual symmetry theorem [29], the residual symmetry of gBBKW
Equation (1) can be derived as follows:

ot =2\/a+ B*fx,

=2(a+ B> — By/a + B?) fx-

(11)

To determine the group of residual symmetry,

u—ii(e) = u+edt,

v—0(e) =v+er®,
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we are supposed to solve the following initial value problem:
B —2\fat EF(e), 1(6)eco = u
dS X’ £= 4 (12)

2o = 2wt B2 = Byt B)f(e)y, B(e)le=0 = 0,

where ¢ is an infinitesimal parameter.

However, directly solving initial value problem (12) is non-trivial. Consequently, the
nonlocal symmetry should be localized to a Lie point symmetry within an extended system.
To achieve this, auxiliary variables are introduced:

8§ =fx, h = fax. (13)

Thus, a closed prolonged system incorporating Equations (1), (5) and (13) can be
constructed, and the corresponding linearized equations for the system are derived
as follows:

ot + c"uy +uoy + o + Boi, =0,

of + 070+ uxo’ + vy + uoy + aoy,, — poy, +yoy =0,

[0+ 20/ a+ B0l + (a o+ BYL L + [ fu

- ZWUffxxt —(a+ o) fux — 200, fi — 4\/@0!; xx
—20] fur — 20+ B0] frxx — 4y + B0Lfir — 4w+ B frx
~ 2+ B0l fi — e+ B2 ohn furl £ + [ fuf

18y /a+ B0 fux ft + 4+ 20 fura f

T 8(0 -+ B0 fus e + 0l f? + 8\ + Bl funi

+9(a + B0k 2+ 20] feufi+ 4y Ja+ Bof R f

+[-30) feuf? — 120+ Bol 2o fe — 9w+ PIoL 2N F = 0,

(73—(73{:0, (Th—a{x: . (16)

(14)

(15)

Using Equations (11), (13) and (14), we have ¢ = 2y/a+f?g and
0¥ = 2(a + B* — By/a+ B2)h. According to the Mébius transformation analysis, the
point symmetry form of variable f can be expressed as ¢/ = ¢ + ¢ f + cof2. It can be
derived that ¢f = — f2 is a solution of Equation (15). Using Equation (16), we can obtain
08 = —2fg and ¢ = —2¢? — 2fh. Therefore, the Lie point symmetry of the prolonged
system can be derived by solving Equations (14)—(16), yielding

o =2¢/a+ B2g, 0¥ =2(a+ B* — By/a + B2)h, 17)
of = —f%, 08 = —2fg, o = —2¢* — 2fh.

The corresponding Lie point symmetry vector field is given by

V=2t Re v (et B pyfat P f2aaf - 2fg£g — (28 +2fn) o

Next, we give the finite symmetry transformation theorem, which is derived by
applying the finite transformation associated with Lie point symmetry (17).
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Theorem 2. If {u,v, f,g,h} is a solution of prolonged system (1), (5), and (13), then
/ 2 o2
ﬁ(e):u—i—w,ﬁ(e):v—i—Ze(zx—i—,Bz—,B a+ﬁ2)7h+sfh ig,
L+ef (14¢f)
f g h 2eg? (1%
fle) = 3(e) = —=—, h(e) = -

1+ef’ (1+¢f)* (1+¢f)?  (1+ef)’

is also a solution of this prolonged system.

Proof. According to Lie’s first fundamental theorem [59], the initial value problem corre-
sponding to Lie point symmetry (17) can be expressed as

d”;(:) = ZWg_(g)/ i(e)]e=0 = u,

D) _p(ay g2 pyfat BIE), 2o =

Y _P(e), Fle)lecn = £, (19
dg;zig) = —2f(e)g(e), §(e)le=0 = &

dh(e) 2

Ge = —28°(e) = 2f(e)h(e), (e)le=o = h-

Through the resolution of initial value problem (19), solution (18) is obtained, which
completes the proof of Theorem 2. [

2.2. Soliton Solutions

Case 1. One-soliton solution.

Based on Theorem 2, new solutions can be derived from various seed solutions of
gBBKW Equation (1) and its associated Schwarzian Equation (5). Take the trivial seed
solution of gBBKW Equation (1) as

u=0 0=0, (20)
and assume the one-soliton solution takes the following form:
f = A+ Befr¥tat, (21)

where A, By, p1, and g; are arbitrary constants. Substituting Equations (20) and (21) into
11 and v in Equation (4) and Schwarzian Equation (5), we obtain

g =—\/a+p2pi, v =0. (22)

Substituting Equations (20)—-(22) into Equation (18), the one-soliton solution of gBBKW
Equation (1) is obtained as follows:

2e/a + B2p1BreP1¥ Vv a+p2pit
u= ,
1+ &(A + ByeP*—VatFpit)
2e(a + B2 — By/a + B2) p2B1eP 1 VatF It (1 4 Ag)
0=
2
[1+e(A+ Brel*~ “+ﬁ2P%t)]

(23)
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We further examine the space-time evolution of wave velocity and wave height, along
with the impact of variations in the diffusion power parameter on wave velocity and
wave height.

(1) The evolution of wave velocity and wave height.

The parameters in Equation (23) are chosen as & = —%, B=le=1p=-1A=2,
and B; = 3. This yields the kink solution for # and the dark one-soliton solution for v, as
illustrated in Figures 1 and 2.

0
02
04
05
- 106
3
4 ‘-UB
4
454 El —t=1
0
- 12
4

—t=2
—t=3

4 -10 8 6 4 2 0 2 4 6 8

(a) (b)

Figure 1. (a) Three-dimensional plot of kink solution u in Equation (23). (b) Two-dimensional plot of
kink solution u(t = 1,2, 3).

0

001

0021
002
003

004+
004

o , 01

(a) (b)

Figure 2. (a) Three-dimensional plot of dark one-soliton solution v in Equation (23). (b) Two-
dimensional plot of dark one-soliton solution v(t = 1,2,3).

Figure 1a illustrates a kink-type wave for u, which undergoes a smooth transition from
one stable state to another within the spatial domain. In contrast, Figure 2a depicts a dark
one-soliton wave for v. From Figures 1b and 2b, it is observed that the wave propagates
leftward over time while maintaining its waveform without distortion.

A comparison of Figures 1b and 2b reveals that nonlinear effects and shallow-water
effects significantly influence wave velocity and height:

(i) For the same time, the positions where wave velocity and height undergo changes
exhibit consistency. Specifically, the position where wave velocity changes corresponds to
the position where wave height changes, while the position where wave velocity stabilizes
aligns with the position where wave height stabilizes.

(ii) The point with the highest tangent slope in Figure 1b corresponds to the same
x-coordinate as the lowest point in Figure 2b. This suggests that the position where the
wave velocity undergoes the most significant change aligns with the wave trough. In fact,
regions where wave velocity changes most prominently often coincide with the peaks
or troughs of shallow water waves. This phenomenon arises because peaks and troughs
represent points of maximum energy density during wave propagation. At these locations,
the amplitude reaches its peak, resulting in energy concentration and, consequently, more
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pronounced changes in wave velocity. These variations may be attributed to changes in
water depth, submarine topography, or other oceanic physical factors.

(2) The influence of changes in the diffusion power parameter on wave velocity and
wave height.

For t = 1, different values of the diffusion power parameter a are substituted into
Equation (23), while keeping the remaining parameters consistent with those used in
Figures 1 and 2. The resulting variations in wave velocity and wave height for different
are illustrated in Figure 3.

0.05 N\
3 45 5 /
° —
2 —a=-0.7 — a=07
— a=-02 W5 0= 09
25 —a=0.2 or—a=02
a=0.7 a=0.7
3 -0.15
15 10 5 0 5 10 15 10 5 0 5 10
x T
(a) (b)

Figure 3. (a) Spatial evolution of u in Equation (23) under different parameter values of «. (b) Spatial
evolution of v in Equation (23) under different parameter values of .

For t = 1, different values of  are substituted into Equation (23), while the remaining
parameters are held consistent with those used in Figures 1 and 2. The resulting variations
in wave velocity and height for different p are illustrated in Figure 4.

o —
- / =09
02 02 04} =081
#=0.8
04 04 03 $=09 |
3 06 3 06 2 02

(a) (b) (c)

Figure 4. (a) Spatial evolution of u in (23) with § = —0.9, —0.8. (b) Spatial evolution of u in (23) with
B = 0.8,0.9. (c) Spatial evolution of v in (23) with different j.

From Figures 3 and 4, it is evident that variations in the diffusion power parameters
significantly influence wave behavior, as summarized below:

(i) For wave velocity, as « or the absolute value of § increases, the curve corresponding
to wave velocity becomes steeper, indicating heightened sensitivity to spatial variations.
Additionally, the amplitude of the change in wave velocity at the kink increases with the
increase in « or the absolute value of 8. Notably, when j takes opposite numbers, the wave
velocity remains unchanged.

(ii) For wave height, when « is negative, the trough of the dark soliton deepens as «
decreases. Conversely, when « is positive, the peak of the bright soliton rises with increasing
«. Similarly, for negative values of B, the peak of the bright soliton increases as  decreases,
while for positive values of 8, the trough of the dark soliton becomes lower as f increases.

The temporal variations in wave velocity and wave height exhibit characteristics
analogous to their spatial variations.
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Case 2. Multi-soliton solutions.
Take the trivial seed solution of the gBBKW Equation (1) as
u=00v=0, (24)
and assume the multi-soliton solution takes the following form:
N
f=A+)_ Bt (25)
i=1
where A, B;, p;, and ¢q; (i = 1,2,..N) are arbitrary constants. Substituting

Equations (24) and (25) into u#; and vp in Equation (4) and Schwarzian Equation (5),
we obtain
gi = —\/a+p2p?, v =0. (26)

In substituting Equations (24)—(26) into Equation (18), the multi-soliton solution of the
gBBKW Equation (1) is obtained as

N
2 AT piber VT

u = = , 27)
1+e(A+ ¥ Bl Vatprit)
i=1
N
3 2B eV
i=1

v = 2e(atp—pyfat ) (—
1+e(A+ % BjePix—Vatbipit)

i=1

(X piBier s VT PR
- ——). (28)
(+e(A+ X BiePis—VatBrit))2
1=

By adjusting the value of N in (27) and (28), we can study the interactions and dynamic
behavior between solitons of different numbers. When N > 1, it indicates multi-soliton
solutions, which can reveal complex physical processes such as interactions and energy
exchange between solitons.

(1) Two-soliton solution. The two-kink solution u# and two-soliton solution v are
obtained (c.f. Figures 5 and 6) with N = 2,0 = —l B=le=1p=-1p=1A=2,
and B; = 3, B, = 1 in Equations (27) and (28).

05 t
. E. s ot

-4

K

20

(a) (b) (0

Figure 5. Two-kink solution of # in Equation (27) (N = 2). (a) Three-dimensional plot of u. (b) The
density plot of u. (c) Two-dimensional plot of u(t = 9,12, 15).
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2
02 +

0

2

0
ot
o
0.15 h 1
00 o |
oz
03 :
0.35 h 1
=9 =12 t=15
04 .
w0

% 5 0 6 5 10 15 2

(@) (b) (0

Figure 6. Two-soliton solution of v in Equation (28) (N = 2). (a) Three-dimensional plot of v. (b) The
density plot of v. (¢) Two-dimensional plot of v(t = 9,12,15).

It can be found that the wave exhibits the following characteristics:

(i) Figure 5a,b illustrate that u in the solution manifests as a two-kink-type wave,
while Figure 6a,b depict a two-soliton wave for v. From Figure 5¢, it is evident that wave
velocity increases over space in some areas. Additionally, Figure 6c reveals that the distance
between the two troughs expands over time.

(if) In comparing Figures 5c and 6¢, it can be found that for the same time, the position
where wave velocity changes aligns with the position where wave height changes, while
the position where the wave velocity tends to stabilize corresponds to the position where
the wave height tends to stabilize. Overall, there is consistency in the location where the
wave velocity and wave height change. Furthermore, the positions where the wave velocity
changes the most correspond to the lowest points of the wave height, respectively.

(2) Three-soliton solution. The parameters in Equations (27) and (28) are chosen as
N=3a=-1p=1e=1,p=-1,pp=1p3=3A=2B, =3B =1and B3 =2
This yields the three-kink solution for 1 and the three-soliton solution for v, as illustrated
in Figures 7 and 8.

Figure 7. Three-kink solution of u in Equation (27) (N = 3). (a) Three-dimensional plot of . (b) The
density plot of u. (c) Two-dimensional plot of u(t = 15,18, 21).
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Figure 8. Three-soliton solution of v in Equation (28) (N = 3). (a) Three-dimensional plot of v. (b) The
density plot of v. (¢) Two-dimensional plot of v(t = 15,18, 21).
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From Figure 7a,b, it is evident that u in the solution manifests as a three-kink-type
wave, while Figure 8a,b illustrate that v in the solution takes the form of a three-soliton
wave. Figure 7c clearly demonstrates that the velocity of the water wave increases over
space in some areas. Additionally, Figure 8c reveals that the distance between the three
troughs expands over time. Notably, the positions where wave velocity and wave height
change remain consistent.

Remark 1. (1) The kink solution u can describe discontinuous changes in wave velocity, which
may arise from variations in ocean topography or other physical processes. The kink solutions
corresponding to the wave velocity are conducive to understanding how the energy of waves is
transferred in different areas, particularly in the regions where the wave velocity varies.

(2) The multi-soliton solutions corresponding to wave height v can describe the wave height of
multiple solitary waves interacting in shallow water.

3. CRE Solvability and Interaction Solutions
3.1. CRE Solvability
The CRE method [30,31] is an effective approach for constructing new interaction

solutions to nonlinear differential systems. The following is a brief introduction to this
method. Consider a given NPDE

P(u/ ut/ uX/ uXX/ uxt/ .. ) = 0/ (29)

where P is a function of u and its derivatives. The objective is to obtain solutions in the
form of the following truncated expansion:

u= i w;R" " (w), w = w(x,t). (30)
i=0

Here, R(w) satisfies the following Riccati equation:
R'(w) = ag + a1 R(w) + a,R?*(w), (31)

where ay, a1, and a, are arbitrary constants. The value of n can be determined using
the homogeneous balance principle, which involves balancing the highest-order deriva-
tive term and nonlinear term in Equation (29). Substituting Equations (30) and (31) into
Equation (29) yields an equation for R(w). Setting the coefficients of different powers of
R(w) to zero, we can obtain the expression for u; and the compatibility equation for w in
many integrable systems.

Based on the CRE method, the solution of gBBKW Equation (1) can be expressed as

u = ugR(w) + uy, v = vR*(w) + v1R(w) + vs. (32)

Substituting Equations (31) and (32) into gBBKW Equation (1) and setting the coef-
ficients of different powers of R(w) to zero yields an overdetermined system of partial
differential equations for uy, u1, vy, v1, and v;. Solving this system, we can obtain

—wi + /o + B2 (Wyx + agw?
vo:—Zﬂf(Oé+ﬁ2+ﬁ &+ PwE, uy = ! £x( 21 X), 33)

Uy = 2ax\/a + PPwy, v1 = —2ay(a + B>+ Br/a + B2) (wax + a1wf),
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— Wy Wyt + W Wt + /& + B2 (WxWyxx + alezcwxx — w%x + Zaoazwfc)
w} (34)

Uy = —

x(\at+pr+p)—o

with w satisfying the following Schwarzian equation:

Cr —2y/a+ B2Cxx + (2 + )5y — CCyr — (a + B?)dwywyy = 0, (35)
where C = g, § = Y — 32?0’2‘2", and 6 = a3 — 4agay.

Through the preceding axnalysis, gBBKW Equation (1) has a truncated Painlevé ex-
pansion solution based on Riccati Equation (31). Consequently, it can be concluded that
gBBKW Equation (1) is CRE-solvable [30].

Remark 2. In the framework of CRE solvability, we use Riccati Equation (31) as the key tool
to construct the solution of gBBKW equations. By substituting (31) and (32) into the gBBKW
equations, we can transform them into an overdetermined system of partial differential equations,
and w(x,t) is required to satisfy Schwarzian Equation (35). As the discriminant of the Riccati
equation, § = a5 — 4agay determines the type of solutions. In (35), the introduction of & bounds the
topological property of the Riccati solution to the integrability condition of the Schwarzian equation.

Furthermore, a new Béacklund transformation between the solution 1 and v of gBBKW
Equation (1) with R(w) of Riccati Equation (31) can be constructed as follows.

Theorem 3. If w satisfies Equation (35), then

_ W Vot Pt ay/a+ Pl + 2000 + R (w),

Wy

—WxWyt + Wy Wt + /& + B2(WxWyxx + alwiwxx — w%x + 2a0a2w§)
2
” (36)

X (\Ja+ B2+ B) — v —2a3(a + B> + By/a + B?) (wyx + a1w3)R(w)
—2a%(a + % + ByJa + B)w?R?(w)

v=—

is a solution of §gBBKW Equation (1) with R(w), which satisfies Riccati Equation (31).

Proof. Substituting Equations (33) and (34) into Equation (32) yields solution (36), complet-
ing the proof. [J

3.2. Solitary Wave and Soliton—Cnoidal Wave Solutions
3.2.1. Solitary Wave Solutions

To obtain solutions of gBBKW Equation (1), we consider the tanh function solution of
Riccati Equation (31) as follows [60]:

R(w) = —2172[911 + \/gtanh(%\/gw)]. (37)

Select a linear solution for Equation (35) as
w=kx+It+d, (38)

where k, I, and d are arbitrary constants.
In substituting Equations (37) and (38) into Equation (36), it can be obtained that
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_ 2 TR
"y l+€llkk “+'Bz—|—2a2k /oc—i—ﬁzR(w),
v = — 2K agaz (e + B> + Br/a + B2) — v — 2K2myan (a + B + By/a + B2)R(w) (39)

—2k%a2 (a + B2 + By/a+ B2)R* (w)

is a solitary wave solution of gBBKW Equation (1), where R(w) and w satisfy
(37) and (38), respectively.

The parameters in Equation (39) are chosen as &« = —%,[5 =17 = -1a =1,
m=3,a=1k=1,1= %, and d = 2. This yields the anti-kink solution for u and the
bright soliton solution for v, as illustrated in Figures 9 and 10. Figure 9a illustrates an
anti-kink-type wave for u, while Figure 10a depicts a bright soliton wave for v. From
Figures 9b and 10b, it is observed that the wave propagates leftward over time. For the
same time, the positions where the wave velocity and height change exhibit consistency.
Furthermore, the regions where wave velocity undergoes the most significant changes in
Figure 9b correspond to the wave peaks in Figure 10b.

Figure 9. (a) Three-dimensional plot of anti-kink solution u in Equation (39). (b) Two-dimensional
plot of anti-kink solution u(t = 1,5,9).
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Figure 10. (a) Three-dimensional plot of bright soliton solution v in Equation (39). (b) Two-
dimensional plot of bright soliton solution v(t = 1,5, 9).

3.2.2. Soliton—-Cnoidal Wave Solutions

To derive interaction solutions for gBBKW Equation (1), we assume
w=kix+ht+W(G), ¢ =kx+1t, (40)

where ki, I1, kz, and I, are arbitrary constants, and Wy = W;({) = W satisfies the
following elliptic equation:

le,: = co+ 1 W1 + caW2 + 3 W3 + cy WY, (41)
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where ¢y, c1, ¢, c3,and ¢4 are undetermined constants. Substituting Equations (40) and (41)
into Equation (35) and setting the coefficients of different powers of W; and its derivatives
to zero yields

kil
L, cy =9, 11:;—22. (42)

_ K3 (Kjey —50k3)  2ki(k3c, —40k}) 40k
Co = k4 ;01 = k3 , €3 = k
2 2 2
Since the solution of Equation (41) can be expressed in terms of Jacobi elliptic func-
tions, the explicit interaction solutions between solitons and cnoidal periodic waves can
be investigated. Here, we choose the solution of Equation (41) in the following special
form [38,61]:
W(C) = CE;-[(Sn(g, m),n, m)/ (43)
dt
(1-nt2)y/(1-£2) (1—m22)

integral, sn(z,m) is the Jacobian elliptic sine function with modulus m, and n is an

where Ex(n,n,m) = foﬂ

is the third type of incomplete elliptic

arbitrary constant.
Substituting Equations (42) and (43) into Equation (41) and vanishing the coefficients
of different powers of sn, we can obtain

—0ky + / —c20k3 + 662Kk3

Cc = ,czzcz,k1:k1,k2:k2,m:m,n:0. (44)
Ok

Substituting Equations (42)—(44) into Equation (40), we can obtain

—6ky + \/ —c20k3 + 652k2
@t+ 2 1E

w=kxt . £(sn(&,m), m), (45)

where ky, ky, I, and m are arbitrary constants. E( f z,k) is the first

fO V- txz)\/l k2a2)
type of incomplete elliptic integral.
Substituting Equations (37) and (45) into Equation (36), the solution of gBBKW

Equation (1) can be derived as follows:

=[(~2\/a+ B2kika(E — a1) (V1 — $2v/1— m2S% — CD) + h,CD)
—8(cak3 — 60K2) + (86K — cak3)(E — ko + B2
1 0k112)v/T— 21— w252 — (2kik(E — ay)\Ja+ B2 + 12)CDky]
[(—\/—6(cak3 — 66K3)CD + 6k (CD — /1 — $2V/1 — m282))ky 7,
0 =[—4(\/a+ B(Z2 — 25a; + dagaz) (B(cak} — 100K3)10y/a + 20K + \Jo + p2Kc)
—67)(~V1— V1~ m252 + CD)CDky\/—6(cak3 — 66k3) — 4dc(y /o + (22
— 22a + dagaz) (B(3cak} — 20083) — 20\ /a + B25K3 + 3\ + p2Kcz) — 67)
x V1 - $2/1— m2S2DK — C2D2(y/a+ B2(E2 — 2Eay + dagnr) (B(GK3 (47)
— 240083 + 1165%kE) + 116y /a + B20%kE — 24 /o + Feadk3H3 + \Jo + p2K4CD)
+166%K3y — 2Kk3¢267)][26CD(—2k; (CD — /1 — $23/1 — m282)/ —6(cak3 — 65k2)
—2v/1— 821 — m2526Kk3 + CDSK3 — CD(cok3 — 76K3))]
where S = sn(kox + It,m), C = cn(kox + t,m), D = dn(kax + Irt,m), and

_ i1 —0kq++/—c20k2+652k2
==+ ftanh(\[(klx + % 2t+ : (5k§ . ' fO \/1—042\}1—m2a2dlx))’

(46)
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The parameters in Equations (46) and (47) are chosen as & = —%, g=1y=-1,
ap=1,a1 =3, a0 =2, k1 =1, ko =2, m=01, I = 3,and c = 1. This yields the
soliton—cnoidal wave interaction solutions u and v, as illustrated in Figures 11 and 12.
The soliton—cnoidal wave solutions expressed in terms of Jacobi elliptic functions have
broad applications in gravity water waves, particularly in describing nonlinear water
wave propagation.
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Figure 11. Soliton—cnoidal wave u(x, t) in Equation (46). (a) Three-dimensional wave plot of u(x, t).
(b) The density plot of u(x, t). (c) The wave u(x,1) along the x axis.
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Figure 12. Soliton—cnoidal wave v(x, t) in Equation (47). (a) Three-dimensional wave plot of v(x, t).
(b) The density plot of v(x, t). (c) The wave v(x, 1) along the x axis.

Soliton—cnoidal wave solutions hold significant physical meaning and practical appli-
cations in the context of oceanic shallow water waves.

(1) The soliton—cnoidal wave solutions offer an accurate description of the waveform
resulting from the interaction between solitons and cnoidal waves in shallow-water en-
vironments. These interactions may lead to phenomena such as wave breaking, wave
merging, and wave splitting.

(2) These solutions provide valuable insights into the complex dynamics of wave
propagation, interaction, and formation in shallow-water environments. They are essential
for modeling and predicting wave behavior, with significant implications for maritime
safety, coastal engineering, and environmental management.

4. Exact Solutions of gBBKW Equations by Modified Sardar
Sub-Equation Method

In the course of investigating solutions to gBBKW Equation (1), we attempted various
classical methods without achieving satisfactory results. Specifically, when employing
the truncated Painlevé expansion method, although rogue wave solutions were obtained
through Béacklund transformation Theorem 1, these solutions invariably contained imagi-
nary components, which is inconsistent with the requirement that both wave velocity and
wave height are real differentiable functions in our study. Furthermore, the application of
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the Darboux transformation method was also unsuccessful due to the inability to identify
an appropriate Lax pair. In light of these challenges, this section focuses on exploring the
application of the MSSM to solve gBBKW Equation (1).

4.1. Description of Modified Sardar Sub-Equation Method

We first present the steps for solving NPDEs using the MSSM. Consider NPDE (29).
Step 1. Consider the following traveling wave transformation:

u(x,t) =U(y), n =box — byt, (48)

where by and by are undetermined parameters. NPDE (29) is reduced to the integer-order
nonlinear ordinary differential equation (ODE)

Nu,Lu",u",. . ) =0 (49)
using the traveling wave transformation (48), where U’ = ‘%, u’ = ’ZZTIQI, u" = ‘;37%1, and
SO on.

Step 2. Assume that the general solution of ODE (49) is
n .
U@ =) fi¢'(n), fu #0, (50)
i=0

where f;(0 < i < n) denotes parameters to be determined. And function ¢(7) satisfies the
following equation:

2

(dgfl;’”) = so+519%(1) + 529 (1), (51)
where s, s1, and s, are arbitrary constants. Various forms of solutions for Equation (51)
are provided in [44].

Step 3. The value of n can be determined using the homogeneous balance princi-
ple, which involves balancing the highest-order derivative term and nonlinear term in
Equation (49). Substituting Equations (50) and (51) into Equation (49) yields algebraic
equations involving ¢'(17)(I = 0,1,2,...). A system of algebraic equations is obtained by
equating the coefficients of different powers of ¢(77) to zero.

Step 4. In solving this system of algebraic equations, the undetermined parameters
and exact solutions of Equation (29) can be obtained.

Remark 3. The MSSM offers a powerful approach for simplifying and solving complex mathe-
matical models in science and engineering. In some cases, it can deduce various methods, such as
the tanh function method, extended tanh function method, extended hyperbolic function method,
modified Kudryashov method, and generalized auxiliary equation method. A notable advantage of
the MSSM is its exceptional capability to handle complex nonlinear and coupling terms in many
physical systems, making it more broadly applicable than other existing methods.

4.2. Exact Solutions of gBBKW Equations
Consider § = 0 in gBBKW Equation (1). It can be obtained that

ur +uuy +o, =0,
(52)
vt + (U0), + Wl + Yty = 0.

In using wave transformation

u(x,t) = U(n), v(x,t) = V(y), 1 = box — but, (53)
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and substituting Equation (53) into (52), it can be obtained that

— byUy + boUUy + byVy =0,

(54)
In integrating Equation (54) with respect to 7, it can be obtained that
U+ Ry = G
1 5 / (55)

— b1V + boUV + abjUy, + vboU = Cy,

where C3 and C4 are integration constants. Assume that the general solution of
Equation (55) is

U(y) = ;}miﬂw)/ V(n) = gnjqﬂ(n), Mg # 0, Nyg # 0,
i= j=

where m;(0 < i < n5) and n;(0 < j < ng) are parameters to be determined, and the
function ¢ (1) satisfies Equation (51). According to the homogeneous balance principle, we
obtain n5 = 1 and ng = 2. Therefore,

U(y) = mo+migp(n), V(n) = no+me(y) +nap?(y), my #0, ny 0. (56)

Substituting Equations (51) and (56) into Equation (55) and vanishing all the coeffi-
cients of ¢(), we obtain

bo((m§ 4 27)s2 — —2
Cym o((m3 +27)s2 51712), Ca = by, by = @, by = mobo,
252 20(52 (57)
-2
moy = my, 7711:\/7112, HOZWr ny =0, ng = ny.

In using Equations (53), (56), and (57) and the general solutions of Equation (51)
(c.f. [44]), various forms of exact solutions for (52) can be derived.
Case1.If sg =0, s > 0,and sp # 0, then

ui (x,t) = mo £ /—2ny _S—zl sech(y/s1(7 +A)),

—2vsy + 511 S1Mp
o) = — o —— sech®(v/s1(17 + 1)),

uy (x,t) = mo £ / —2n2\/icsch(\/§(17 +A)),

—2v8y + s1n s1n
vf(x,t) —f és 172 4 15 chchz(\/sl(ry + 1)),
2 2

(58)

where A is an arbitrary constant.
Case 2. If s =0, s; > 0, and s, = +4B1B,, then

i 4B1\/—2ny./51
uy (x,t) = my =+ > 5 ; ’
(4B7 — s) cosh(,/51(1 + A)) £ (4B 4 sp) sinh (/51 (17 + 7))
v3i (x,1) = 163%51712 5+ =275y + 811
((4B% —sp) cosh(y/51( +A)) £ (43% +s7) sinh(,/51(n7 + A))) 252

where By and B; are arbitrary constants.
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Case 3. If sy = 45 , 8o > 0,and 57 < 0, then

u4(xt)—m0:|:\/7\/7tanh\/>17+/\))

(59)
+ —2ysy+simy s, Lo [—
vy (x,t) = 25 2, ——=tanh”( (17 + 1)),
uz (x, t)—moi\/—n,/—coth\/ L+ A)),
—2sy + 511 S11
v (1) = % = thm/ L+ ),
2
ug (x,t) = mo £ /—ny 1/ L (tanh(y/ —L (54 A)) + coth(y/ —+ (17+/\)))
of (1) = 212 E ﬂ(tanhq/‘—l(nwn +coth<\/ L+ A2,
) 852
—o £4/C2+ C2— Cscosh(y/=2s1 (17 + A
) — mo v Y 5 (1)
Cssinh(+/—2s1(5 + A)) + Cg
N —2vysy+ Sy sima +4/C2 + C2 — Cscosh(y/=2s1 (1 + A)) )
07 (xl t) — (AL, T A . 7
25 259 Cssinh(y/—2s1(7 + A)) + Ce
where Cs and Cg are arbitrary constants.
Case 4. If s5 =0, s #0,and s1 < 0, then
ug (x,t) = mo £ /—2n, —5751 sec(v/—s1(n+ 7)),
’ (60)
-2
vgt(x,t) _ ’Ys; +siny Slmsecz( s+ A)),
S S
—s
ug (x,4) = mo £ /=2, ?1 ese(v/=s1(7 + 7)),
2
-2
vy (x,t) = ,YS; ti s esc?(v/—=s1(7 + ).
52 52
Case 5. If sy = 4S ,51>0, 5, >0,and C2 — C2 > 0, then
uiy(x,t) = mo £ /—ny 1/ tan 1/ L+ A)),
+ _ T2ysatsinp | sinp, 5 [S1
v (X t) = s, + 2% tan(4/ 5 (n+A),
uf; (x,t) = mo £ /—ny Ve cot\/717+)\))
(61)

—27989 + 511 s1n /S
+ YS2 112 172 2 1
It - QA . ~ 7
'011( ) 252 252 cot ( 2 (}7 /\))

ud (x, 1) = mg & Fnz\/guanmz(n 1)) £ sec(v/251 (7 + 1)),

—2sy +s1np . S1np

oy () = =5 4 S (tan(y/2 g 4 A)  see(v/ 351 (7 + 1)),
ugy(x,t) = moj:\/j\/> (tan [ (n+A)) —cot(\/%(iy—i-)x))),
o (x, 1) = _2752%51”2 e (tan(\/%(r] +A)) — cot(\/%(iy +A))?,

Lo s 2/ - G~ Gscos(Vi(1+ 1))
e =mo vy e
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+ —2ysy +symy  symy /G5~ Co — Cscos(v2s1( + 1)),
vt = ————+ — - ,
25y 259 Cssin(v/2s1(n7+ A)) + Cg
V2s1(n+A))
£ (x f) = e b S 51, cos(y/2sy
vzt ) = mo vy o (G ey ) =17
ok (x, 1) = —2ysy +s1mp | simp . cos(v/2s1(n + 1)) )2
1537 25y 25y ‘sin(y/2s1(7+A))£17 "
Case 6. If sy = 0 and s > 0, then
T 451/ —2ngetVE1UI+A)
u16 (Xr ) = my + eiz\/ﬁ(ﬂ"')\) — 45152 s (62)
zﬁ(xt)—‘_Tﬁz+Sﬂ&4_ 165720 2V5101+)
163 259 (eiz\/ﬁ(v—&-/\) _45152)2’
451/ —2nzetVE1UI+A)

+ —
1/[17(x/ t) =my + 1— 45152ei2\/§(}7+)\) s

—2y5p + 5112 N 1683156 2V5101+A)

+
vy (x, ) = .
2s) (1— 4slszeiz¢§(q+A))2
Case 7. If s = s1 = 0and s > 0, then
V=2 -2
() =mg £ — Y22 ok (y ) = 22 M
V52( +A) 257 so(n+A)

4.3. Graphical Interpretation of the Exact Solutions

Using the MSSM, we derive a wide range of solutions for gBBKW Equation (1)
with B = 0. For example, Case 1-Case 3 represent hyperbolic function solutions,
Case 4-Case 5 correspond to trigonometric function solutions, Case 6 describes expo-
nential function solutions, and Case 7 provides a rational function solution. To offer a more
intuitive understanding of these exact solutions, three-dimensional, two-dimensional, and
density plots are presented in Figures below. Two- and three-dimensional plots illustrate
the evolution of waveforms over time and space, while also showing their propagation
stability. Density plots reveal the intricate topological features of the solutions. The physical
significance and characteristics of the depicted solutions are elaborated below.

(1) The parameters in Equation (58) were chosen as « = —1, ¢ = 2, mp = 0.2,
ny = —1,51 =1,sp = =3, by = 2, and A = 1. This yields the bright soliton solution
u; (x,t) and the dark soliton solution v} (x,t), as illustrated in Figures 13 and 14. The
bright soliton solution is characterized by a central maximum peak, whereas the dark
soliton solution features a central minimum peak.

10 15

X

©

Figure 13. (a) Three-dimensional plot of bright soliton solution ui" (x,t) in Equation (58). (b) The
density plot of bright soliton solution 1 (x,t). (c) Two-dimensional plot of bright soliton solution
uf (x,t)(t =1,2,3)

1 ’ 7 <y .
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Figure 14. (a) Three-dimensional plot of dark soliton solution vf (x,t) in Equation (58). (b) The

density plot of dark soliton solution vf'(x, t). (c) Two-dimensional plot of dark soliton solution
of (x,£)(t =1,2,3).

In comparing Figures 13 and 14, it can be found that the wave exhibit the
following characteristics:

(i) For the same time, as the wave velocity gradually reaches the maximum peak,
the wave height gradually reaches the minimum peak. The position where wave velocity
reaches its maximum precisely coincides with the position where wave height attains
its minimum.

(ii) Wave velocity increases as wave height decreases. This phenomenon occurs
because a reduction in wave height corresponds to an increase in wavelength, which in
turn leads to an increase in wave velocity. The features depicted in the figures align with
the characteristic behavior of shallow water waves.

(2) The parameters in Equation (59) were chosen as &« = 1,y = 2, my = 04,
ny = —1,51 = —2.6,5p = 08, by = 032, and A = 1. This yields the kink solution
u; (x,t) and the bright soliton solution v (x, t), as illustrated in Figures 15 and 16. Kink
solutions are widely applied in optics, fluid dynamics, and condensed matter physics. The
kink solutions we obtained provide a mathematical description for simulating complex
wave phenomena in fields such as fluid flow, nonlinear optics, and condensed matter
physics using the gBBKW equations. For example, in optics, kink solutions can describe
the propagation of light in nonlinear media. In fluid dynamics, they may associate with
vortices and soliton waves.

(b) (c)

Figure 15. (a) Three-dimensional plot of kink solution ui (x,t) in Equation (59). (b) The density plot
of kink solution ui (x,1). (c) Two-dimensional plot of kink solution ui (x,5)(t =1,5,9).
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(b) (0

Figure 16. (a) Three-dimensional plot of bright soliton solution vi (x,t) in Equation (59). (b) The
density plot of bright soliton solution vi’ (x, ). (c) Two-dimensional plot of bright soliton solution
of (x,t)(t=1,5,9).

In comparing Figures 15 and 16, the following can be observed: (i) For the same
time, the positions where the wave velocity and height change exhibit consistency. (ii) The
position where wave velocity changes the most corresponds to the highest point of the
wave height. As stated earlier, regions where wave velocity changes most noticeably often
correspond to the peaks or troughs of shallow water waves. Figures 1 and 2 illustrate the
scenario where the point of fastest wave velocity change aligns with the wave trough. In
contrast, Figures 15 and 16 depict the situation where the point of fastest wave velocity
change corresponds to the wave crest.

(3) The parameters in Equation (60) were chosen as « = 1,9 = 2,my = —0.1,
ny = —1,51 = —0.3,5p = 0.5,bp = 10, and A = —0.0003. This yields the singular periodic
wave solutions ug (x,t) and vg (x, t), as illustrated in Figures 17 and 18. Figures 17c and 18c
provide a more intuitive representation of the periodic characteristics of the solutions. The
periods depend on factors such as water depth and the type of fluctuation. The locations
where wave velocity exhibits singularities coincide with those where wave height displays
singularities. The singular points in the solutions may represent points of high energy con-
centration or vortices in the fluid. These points can interact with the periodic components
of the wave, which can lead to complex motion patterns.
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Figure 17. (a) Three-dimensional plot of singular periodic wave solution ug (x, t) in Equation (60).
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(b) The density plot of singular periodic wave solution ug (x,t). (c) Two-dimensional plot of singular
periodic wave solution ug (x,t)(t = 1,2,3).
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—t=1—1¢(=2—1¢=3

Figure 18. (a) Three-dimensional plot of singular periodic wave solution vg (x,t) in Equation (60).
(b) The density plot of singular periodic wave solution vg (x, t). (c) Two-dimensional plot of singular
periodic wave solution vg (x, )(t = 1,2,3).

(4) The parameters in Equation (61) were chosenasa« =1,y =2,my = 1,ny = -2,
s1 = 2,5 = 1,bp = —1, and A = 2. This yields the periodic wave solution u;, (x,t) and
the dark periodic singular soliton solution v}, (x,t), as illustrated in Figures 19 and 20.
Periodic wave solutions provide an important theoretical basis for understanding and
controlling wave phenomena in oceanic environments. By analyzing the properties of
periodic waves, we can improve predictions of ocean wave behavior and mitigate potential
disasters. Dark periodic singular soliton solutions are particularly useful for describing
certain characteristics of surface waves in the ocean. They may also aid in understanding

and predicting extreme wave events, such as giant waves or tsunamis.

[—~1—~=2—3]
()
Figure 19. (a) Three-dimensional plot of periodic wave solution uﬁ (x,t) in Equation (61). (b) The

density plot of periodic wave solution u; (x, t). (c) Two-dimensional plot of periodic wave solution
ui (x, )t =1,2,3)
11 7 Ul .
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Figure 20. (a) Three-dimensional plot of dark periodic singular soliton solution v (x,t) in
Equation (61). (b) The density plot of dark periodic singular soliton solution ov{;(x,¢).
(c) Two-dimensional plot of dark periodic singular soliton solution vy (x, £)(t = 1,2,3).
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We further investigate the influence of variations in the diffusion power parameters
on the periodicity of wave velocity and wave height.

(i) The impact of parameter « on the wave. Choose t = 1 and substitute different
values of a into Equation (61). The other parameters are the same as those selected in
Figures 19 and 20. Two-dimensional plots of u{; (x,t) and v;; (x, t) under different condi-
tions of « are presented in Figures 21 and 22. From these figures, it can be intuitively seen
that as « increases, the period of spatial variation in wave velocity and height also increases.

5 5

+ ° + ‘
U 1(x’ ) . u, x.l)
p p

(a) (b) ()

—o=3

(a) (b) (c)
Figure 22. v, (x,t) with @) a = 1, (b) & = 3, (¢) a = 5.

(ii) The impact of parameter 7y on the wave. It is observed that u;rl (x,t) is not related
to v, whereas vfl (x,t) is related to 7 through Equation (61). Choose x = 1 and substitute
different values of v into (61). The other parameters are the same as those selected in
Figures 19 and 20. Two-dimensional plots of v}, (x,t) as a function of  under varying -y
conditions are presented in Figure 23a. These figures demonstrate that as -y increases, the
peak of wave height decreases, while the period remains unchanged. Choose t = 1 and
substitute different values of 1y into (61). Two-dimensional plots of v (x, t) as a function of
x under varying -y conditions are shown in Figure 23b. The variations in wave height with
respect to x exhibit characteristics similar to those with respect to t.

(a) (b)

Figure 23. (a) vf‘l (x,t) regarding t with v = 2,4, 6. (b) vﬁ (x,t) regarding x with v = 2,4, 6.
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(5) The parameters in Equation (62) were chosen as &« = 1,7 = 2,my = —1,
ny = —2,51 =2,5p =1,bp =1, and A = 1. This yields the singular solitary wave solution

u;,(x,t) and the singular soliton solution v}, (x, t), as illustrated in Figures 24 and 25.

4

o

—r-1—r2—1=3
(b) (©

Figure 24. (a) Three-dimensional plot of singular solitary wave solution u{% (x,t) in Equation (62). (b)
The density plot of singular solitary wave solution u};(x,t). (c) Two-dimensional plot of singular
solitary wave solution ui"é(x, )t =1,2,3).

(a) (b) (©)

Figure 25. (a) Three-dimensional plot of singular soliton solution Ui"é (x,t) in Equation (62). (b) The
density plot of singular soliton solution 01+6 (x,t). (c) Two-dimensional plot of singular soliton solution
o (x, £)(t =1,2,3).

The singular solitary wave solution can be used to describe the dynamic behavior of
waves before and after breaking in shallow water. In the context of wave breaking, the
singular solutions can be applied in the determination of critical point of wave breaking
and the description of nonlinear dynamic behavior during the wave breaking process. The
singular solitary wave can reflect extreme behaviors in a system, such as shock waves and
localized high-energy events. These solutions describe the propagation characteristics of
water waves with discontinuous profiles or sharp peaks, offering a mathematical tool for
modeling complex wave phenomena that cannot be adequately represented by smooth
wave solutions.

5. Conclusions

We derive a variety of novel solutions for gBBKW equations using a combination of
methods. As an important nonlinear equation describing certain gravity water waves in a
shallow-ocean scenario, the exact solutions of the gBBKW equations provide us with a tool
for a deeper understanding of ocean wave phenomena. For instance, in both one-soliton
and multi-soliton solutions, the positions where wave velocity and height change exhibit
consistency, reflecting the characteristic behavior of shallow water waves. In bright and
dark soliton solutions, the position of the wave peak for the wave velocity of the bright
soliton exactly corresponds to the position of the wave trough for the wave height of
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the dark soliton. This accurately demonstrates the characteristic while the wave velocity
increases as wave height decreases in shallow water waves. Singular periodic solutions
may help understand and predict extreme wave events, such as giant waves or tsunamis.
And a singular solitary wave solution can help describe the propagation characteristics of
waves, while the wave profiles exhibit sharp features or rapid changes.

These exact solutions provide a precise description of variations in wave velocity and
wave height, which can help us understand the propagation characteristics of waves in
shallow waters, including changes in wave speed, wavelength, and wave height. They
are useful as a guide toward obtaining numerical solutions or performing simulations.
The study of the gBBKW equations provides a theoretical basis for revealing the internal
physical mechanisms of wave systems. This research has practical implications for pre-
dicting wave impacts on coastlines, ensuring ship navigation safety, and designing marine
structures. The ratio of wave height to wave velocity obtained from the exact solutions has
potential applications in engineering design and scientific research. Future studies may
explore the geometric foundations [1] of the gBBKW equations to characterize multi-soliton
dynamics. The other forms of nonclassical symmetries and high-dimensional gBBKW
systems deserve to be further studied.
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Abbreviations

The following abbreviations are used in this manuscript:

gBBKW  generalized Boussinesq-Broer-Kaup—Whitham;
CRE consistent Riccati expansion;

Kdv Korteweg-de Vries;

mKdV modified Korteweg-de Vries;

NPDEs nonlinear partial differential equations;

SSM Sardar sub-equation method;

MSSM modified Sardar sub-equation method;
KB Kaup-Boussinesq;

WBK Whitham-Broer-Kaup;

ODE ordinary differential equation.
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