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Abstract: This paper presents a modified Euler—Maruyama (EM) method for mixed
stochastic fractional integro—differential equations (mSFIEs) with Caputo—type fractional
derivatives whose coefficients satisfy local Lipschitz and linear growth conditions. First, we
transform the mSFIEs into an equivalent mixed stochastic Volterra integral equations
(mSVIEs) using a fractional calculus technique. Then, we establish the well—posedness of
the analytical solutions of the mSVIEs. After that, a modified EM scheme is formulated to
approximate the numerical solutions of the mSVIEs, and its strong convergence is proven
based on local Lipschitz and linear growth conditions. Furthermore, we derive the modified
EM scheme under the same conditions in the L2 sense, which is consistent with the strong
convergence result of the corresponding EM scheme. Notably, the strong convergence order
under local Lipschitz conditions is inherently lower than the corresponding order under
global Lipschitz conditions. Finally, numerical experiments are presented to demonstrate
that our approach not only circumvents the restrictive integrability conditions imposed by
singular kernels, but also achieves a rigorous convergence order in the L? sense.

Keywords: mixed stochastic fractional integro—differential equations; fractional calculus;
mixed stochastic Volterra integral equation; modified Euler—Maruyama method; convergence
rate analysis

1. Introduction

Mixed stochastic fractional integro—differential equations (mSFIEs) are essential tools
for understanding certain system properties that cannot be captured with a deterministic
framework; for example, such equations can capture the long—memory effects arising
from macroeconomic factors or systemic trends [1-3].

Many numerical methods have been developed for SFIEs, such as the EM method [4-7],
stopped Euler—Maruyama method [3,8], truncated Euler—Maruyama method [9-11], Mil-
stein method [12,13]), 0 —Maruyama method [14,15], explicit Euler method [16], and implicit
Euler method [17]. In particular, the authors of [3] considered a class of mixed SDEs driven
by both Brownian motion and fractional Brownian motion (fBm) with the Hurst parameter
H € (1/2,1), and they obtained the convergence rate v/4 (the diameter of partition) using
a modified Euler method. In [4], the authors proved strong first—order superconvergence
for linear SVIEs with convolution kernels when the kernel of the diffusion term becomes
0. In [5], nonlinear SFIEs were considered under non—Lipschitz conditions, and the EM
solutions of SFIDESs shared strong first—order convergence. The authors of [7] introduced
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the initial value problem of Caputo—tempered SFIEs and proved the well—posedness of
its solution, and the strong convergence order of the derived EM method was reported
to be & — 3, with the fractional derivative’s order « € (1/2,1). Additionally, a fast EM
method based on the sum—of—exponentials approximation was developed. However,
most SDE models in real—world applications do not satisfy the global Lipschitz condition
in the analysis of numerical solutions, especially Caputo—type fractional SDEs [5,18,19],
where the local Lipschitz condition alone is insufficient to guarantee the existence of a
global solution [12,20,21]. In [21], the authors found that, under linear growth conditions
(Khasminskii—type conditions), both the exact and numerical solutions obtained via the
EM or stochastic theta method satisfy the moment—boundedness condition, thereby estab-
lishing the strong convergence of the numerical solutions to the exact solution under local
Lipschitz and linear growth conditions [9-11]. As the classical explicit EM method has a
simple structure, is not time—consuming, and has an acceptable convergence rate under
the global Lipschitz condition, it has attracted significant attention [16,17,22].

Additionally, research on the above numerical methods for SFIEs or SVIEs has con-
centrated on convergence under global Lipschitz and linear growth conditions, but the
numerical stability properties of SFIEs or Holder continuous kernels under local Lipschitz
and linear growth conditions are rarely discussed. Specifically, no results have been re-
ported on the mean—square stability of the analytical solutions of mSFIEs with singular
kernels. Based on the Caputo—type fractional SDE, we consider the following mSFIE in
Itd’s sense:

d d dwH
D*y(1) = kalt,(6) + Kt y(s) G + kalts,y(9) Gt +haltsv) g

t 6 T’ y(()) = }/0/

where D* represents the Caputo—type fractional derivative of order « € (1/2,1) on
T2[0,T], ko € LT xRERY), ky € L'{(t,s) : 0 < s <t < THxRLERY, ky €
L2({(t,5) : 0 < s <t < T} x RELRIXT), and k3 € L2({(t,5) : 0 < s <t < T} x R4 R,
W; is defined as an r—dimensional standard Brownian motion on the complete probability
space (Q), F,P) with an algebra filtration { F;, t > 0}, where F; is right—continuous, and
Fo contains all P-null sets. yy is an Fy—measurable R?—valued random variable, which
is defined on the same probability space and satisfies E|y|? < co. WH is an fBm defined
on (Q), F,P). As observed above, mSFIE (1) includes the Riemann—Liouville fractional
integral operator and the fBm process. It becomes more complex to compare classical SDEs
containing Brownian motion and fBm. Two major difficulties arise when investigating
stochastic equations driven by W/; namely, the presence of correlated increments and
the absence of the martingale property, which compromises the validity of the classical
convergence theorem [12] in numerical analysis. In addition, it is challenging to deter-
mine the stability properties of analytical and numerical solutions, necessitating further
in—depth research.

To the best of our knowledge, few studies have investigated the convergence rate of
the numerical solutions of mSFIE (1) under local Lipschitz and linear growth conditions. To
overcome the above difficulties and obtain the strong convergence rates in additive noise
cases when H € (1/2, 1), we first loosen the assumption of the global Lipschitz condition to
the local Lipschitz condition and proceed to prove the well—posedness, and then we study
the strong convergence order of the numerical method. We first transform the mSFIEs
into the equivalent mSVIEs using a fractional calculus technique, and then we present
the well—posedness of the analytical solutions of the mSVIEs. After that, a modified
EM method is devised to approximate the numerical solutions of mSVIEs, and its strong
convergence is obtained under local Lipschitz and linear growth conditions. Furthermore,
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we derive the modified EM scheme under the same conditions in the L? sense, which is
consistent with the strong convergence result of the corresponding EM scheme. Notably,
the strong convergence order under local Lipschitz conditions is inherently lower than the
corresponding order under global Lipschitz conditions. Finally, numerical experiments are
presented to demonstrate that our approach not only circumvents the restrictive integrabil-
ity conditions imposed by singular kernels, but also achieves a rigorous convergence order
in the L? sense.

The structure of this paper is as follows. In Section 2, some basic notations, preliminary
facts on stochastic integrals for fBm, and some special functions are given, and some mild
hypotheses are constructed. In Section 3, we transform the mSFIE into an equivalent mSVIE
using a fractional calculus technique and Malliavin calculus. In Section 4, we employ a
modified EM approximation to study the well—posedness of the solution to the mSVIE. In
Section 5, we derive the strong convergence order of the modified EM method under local
Lipschitz and linear growth conditions in the mean—square sense. Numerical experiments
are presented in Section 6. Finally, we end with a brief conclusion in Section 7.

2. Preliminaries
In this paper, E denotes the expectation corresponding to P. Let | - | be the Euclidean
norm |x| = /X% ; x? on R and the trace norm | - || on R**". We define matrix A, and

then ||A|| = \/trace(ATA) for A € R™". Consider a complete probability space (Q2, F,P)
with a filtration {F; };>¢ that satisfies common assumptions. For the real numbers 4, b, and
¢, wewritea AbAc:=min{a,b,c} and a VbV c := max{a,b, c}. The following notations
and preliminaries are provided in [23,24].

Definition 1 ([23,24]). Leta,b € Randa < b, and let f € L'([a,b]) and 0 < a < 1. The
a—order left—sided fractional Riemann—Liouville integral of f on [a, b] is defined as

1t _
= gy 9 s
and the «x—order right—sided fractional Riemann—Liouville integral of f on [a, b] is defined as

e f— exp{—zmc}/ o 1fsds

where T'(-) denotes the Gamma function.

Consider two continuous functions f,¢ € L'([a,b]) and 0 < a < 1. For almost all
t € (a,b), we define the following fractional derivatives:

(D8 )0 = p g [ 0, s 1 )

o} = DB 8w [ S a1 0

Assume that D%, f, € L!([a,b]) and D1 “*¢ € LP([a,b]), where f,1 (t) = fi — fo and
Qb (t) = g+ — gp- Under these assumptions, the generalized (fractional) Lebesgue—Stieltjes

integral [ ab frdg is defined as

b b
| fidgr = exp{—ima} [ (D%, fur) (1) (D} "gs-) (el @
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Note that, forall 0 < ¢ < H, fBm WtH has the (H — ¢) Holder regularity of continuous paths.
Then, for f € L([a,b]) and 1 — H < & < ¢ < 1/2, the explicit expression in (2) becomes

b b
| fidwf = expi—ima} [(DE fas) (1) - (DI WED) (et )
where W[ (t) = WH — WH.

Definition 2. We define the following norms for « € (1 —H,1/2):

floms = swp ((LBE [T a:),

0<u<v<T

15 Bas = [ 1 st 9)ds
[ fllooast = sup || fllas,

s€(0,t]

where g(t,s) = s~* + (t —s)~*"V/2, and

Iflos = Vit + | 2L

| flloo0T:e = sup |ft| + sup |ft _fSoJ'
0<t<T 0<s<t<T (t—s)

Next, we formulate some necessary mild hypotheses, which will be used in the
next section.

Assumption 1. There exists a constant L > O that, for any t1,tr,s € T,y € R?, such that k;
(i =1,2,3), satisfies the following condition:

lki(t1,8,y) —ki(t2,s,y)| + [ka(tr,s,y) — ka(t2,8, )|
+ [ks(t,s,y) — ka(ta,s,y)| < L1(1+[y|) - [t — t].

Assumption 2. There exists a constant L, > 0 that, for any t,s1,5p € T,y € R4, such that
ki(t,s,y(s)) (i = 1,2,3), satisfies the following condition:

lko(s1,y) — ko(s2, y)| V |ki(t, 51, y) — k1 (t,s2, )| V [ka(t, 51, y) — ka(t,52,)|
V |ks(t,s1,y) —ks(t,s2,y)| < La(1+|yl) - [s2 —s1]-

Assumption 3. There exists a constant L, > 0 (m > 1) that is dependent on m and,
for any s,t € T, y1,y2 € RY and |y1| V |ya| < m, such that k; (i = 1,2,3), satisfies the
following condition:

lko(s,y1) —ko(s,y2)| V |ki(t,s,y1) — k1 (t,s,y2)| V [ka(t,s,y1) — ka(t,5,2)|
V ks (t,s,y1) —ka(t,s,y2)| < Lw(1+ [y]) - ly2 — yal-

Assumption 4. There exists a constant L4 > 0 that, for any s,t € T,y € R4, such that k;
(i =1,2,3), satisfies the following linear growth condition:

[ko(s, )| V [k (£, s, y) [V [ka(t 5, y)| V [ka(E s, y) | < La(1 4+ [y])-



Fractal Fract. 2025, 9, 296

5 of 31

Remark 1. In Assumption 3, we point out that this local Lipschitz condition is significantly weaker
than the following global Lipschitz condition; that is, there exists a constant £ > 0 that, for any
s,t €T, y1,y2 € R?, such that k; (i =1,2,3), satisfies the following condition:

lko(s,y1) —ko(s,y2)| V [ki(t,s,y1) — ki(t,s,y2)| V [ka(t,s,y1) — ka(t,5,2)|
Vks(t,s,y1) —ka(t,s,y2)| < L |y2 — 1l

3. An Equivalent mSVIE

In this section, an equivalent mSVIE of mSFIE (1) is formulated for the deterministic
fractional integral equation see [25] Section 2.2.2. page 119, [26] Section 3.1.3. page 204,
and the integral Equation (2.14) of [27]. The integral equation form of mSFIE (1) can be
rigorously defined to form the following mSVIE:

y(t) =yo+ r(la) /Ot(t — 1) Yo (1, y(1))dT

" ﬁ /ot(t -0 /o kl(ffs'y(s))ds} dr

N r(106) /0*<t_ 7)1 :/OTkZ(T,S,y(s))dws}dr

+ r(la)/(:(t,r)a—l :/()Tk:;(T,S,y(S))dWSH} dr.

Similar to the solution definition of the stochastic integral equation in [20] (Section 2.2.
page 48, Definition 2.1), the solution of mSFIE (1) can be defined as follows.

Definition 3. Let {y(t) : t € T} be an R*—valued stochastic process if it satisfies the
following conditions:

(1) {y(t)} is Fr—adapted and continuous;

(2) ko € LMT x RERY), by € LY({(t,5) : 0 < s <t < T} x RERY), ky € L2({(t,5) :
0<s<t<T}xRGR), and kz € L2({(t,s) : 0 <s <t < T} x RGRIXT;

(3) mSVIE (4) holds for every t € T with probability 1.

A solution {y(f)} is determined to be unique if any other solution {#(t)} is indistin-
guishable from {y(t)}, such that

P{y(t) = j(t) forallt € T} = 1.

Under Assumption 1, we can use the stochastic Fubini theorem (ref. [2] Theorem 1.13.1.
page 57) for mSVIE (4); then,

y(t) = yo + r<1> ./JU — )" ko(T,y(7))dT

+ 1,(10() /Ot(t — 1)t -/T kl(T,S,y(S))dT- ds
+ T(lac) /Ot(t —1)*1 —/T kz(T,S,y(S))dT_ dw;

+

r(la)/ot(t_r)ocl :/Tk3(r,s,y(s))d”f: dwi.

We let



Fractal Fract. 2025, 9, 296 6 of 31

Kolt5,9(5)) = ey [ (0= 0 ol p(s),

Kalt5,y(s)) = ey [ (0= 0" (s o),

o ©
Kalt5,y()) = gy (=0 alms y(s)dr,
Kalt5,9(5)) = ey [ (0= O (s (o),
and then mSVIE (5) is equivalent to the following mSVIE:
vt = o+ [ Koltss,y(9)ds + [ Kalers,y(s)ds+ [ Kalt,s,y(s))a. ,

t
n /O Ks(t,s, y(s))dWH.
For technical reasons, we need the following auxiliary lemmas.

Lemmal. Letg: 7 — RY bean e—Holder continuous function. We define g°(t) = 1 f(;\/t—c g(m)dr
forc > 0and ty,ty,51,50 € T. Then, for « € (1 —¢,1), there exists a constant C* > 0 such that

”g(t) _gc(t)Hp,O,T;zx < C*ﬁe(g)cgﬂ_l, teT,

where

Le(g) = sup 8(|t1 — ta]) — g(Is1 —s2])|
() =
0<|s1—52|<|t1—t2|<T (Ith — to| = |s1 — s2])*

is the e-Holder constant of g(t).
The proof can be seen in Appendix A.

Lemma 2. Under Assumptions 14, for any « € (1 — H, 3), mSVIE (7) has a unique solution
y(t) such that {y(t),t € T} € Ly" (T, R?) a.s. Furthermore, forany 0 <y < Yands <t e T,
there exists a constant C > 0 such that

1_
ly(8) =y () = () + ¥ ($)llporia < Cloy 3y WETETT, (8)

where

y(t) —y(s)
L - I I
204-&-(%_’7) (y) OgililtggT (t _ S)2a+(%717)

is the [2a + (3 — 17)]-Holder constant of y(t).
The proof can be seen in Appendix B.

4. Existence and Uniqueness of Solution to mSVIE (7)

In this section, we employ a modified EM approximation with the aim of proving the
existence, uniqueness, and stability of the solution to mSVIE (7).
4.1. A Modified EM Scheme

For every integer N > 1, we let Ty = {t, £ % =nh:n=0,1,...,N} be a given
uniform mesh on 7. Then, we can define a stopping time 7y = T Ainf{t : ||W|o; > N}
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and a stopped process W) = Wiz,. The solution of mSVIE (7) is denoted by yV, with W
replaced by WV. For t = t,, mSVIE (7) becomes

tn

Wt = vo-+ [ Kaltus,y(&)ds + [ Kb, y(9)ds

tTl tn
+ /0 Ka(tn, s, y(s))dW; + /O Ks(tn, s, y(s))dWH

n—1 ti+1 n—1 ti+1
=yo+ ), /t Ko(tn,s,y(s))ds+ Y /t Ki(ty,s,y(s))ds
i=0 i i=0 i

n=1 ;4 n=l et o ©)
+ Z/t Ko(tn,s,y(s))dWs + Z/t K3 (tn,s,y(s))dW;
i=0 "% i=0 "%
n=l et n=l ety
~ Yo + Z/t Ko(tn, s, y(t;))ds + Z/t Ki(tn,s,y(t;))ds
i=0 7t i=0 /ti
n=l et n=l rtig H
+ Z/t Ka(tn, s, y(t;))dWs + Z/t Ks(tn, s, y(t:))dWH,
i—0 Jti i—o /i
and N
y~ (tn)
N n=l ety N n-l ety N
=+ L [ Koltus gV )ds + 1 [ Kb,V (1) ds
i=0 /1 i—0 /ti (10)

n=l rtiy N n=l et N H
+ 3 [ Kats ¥ )aWe+ T [ Katas, ™ (1) awd,
i=0 "' i=0 "'

forn =1,...,Nand yN(tp) = yo. Let gN(t) = X, yN(tn)I[tmth)(t),t € T. Then, the
modified EM scheme is as follows:

yN(f) :yo+/Ot1<0(t,s,gN(s))ds+/Ot1<1(t,s,gN(s))ds

(11)
t t
+/0 Kz(t,s,gN(s))dws+/o Ks(ts, 9N (s))dWH.

Obviously, the [2a + (3 — 17)]—Holder continuous trajectory y™ (t) satisfies yN (t,) = §V (t)
forn=0,1,...,N.

4.2. Existence and Uniqueness

Lemma 3. Under Assumption 4, there exists a constant Cyy > 0 that is independent of N, and for
any p >2/6,0 € (0,a + H — 1), it satisfies

E[lyN()1%0,r] < Cn and E[I9Y(Dll5 7. <Cn, tET,

00,0,T;u
where N > 1.
The proof can be seen in Appendix C.

Lemma 4. Under Assumptions 1 and 4, for any integer p >2/6,6 € (0,a + H — %), there exists
a constant Cpy > 0 such that

E[[ly™ (8) = yN ()1 o.10) < CnlE— [, 0 <# <t <T,
where N > 1.

The proof can be seen in Appendix D.
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Theorem 1. Based on Assumption 1, Assumption 3, and Assumption 4, mSFIE (1) has a unique
solution y(t), and for any p > 2/0 (p is positive integer), 0 € (0,& + H — 1), it satisfies

Elly(t)[F] < oo, teT. (12)
The proof is provided in Appendix E.

5. Strong Convergence Analysis of the Modified EM Approximation

Note that the numerical approximation provided by EM Scheme (11) in Section 4
will incur significant computational overhead with stochastic fractional integrals. In this
section, we propose a modified version of Euler—Maruyama (EM) Scheme (11) that reduces
computational complexity while preserving the desired strong convergence rates.

Given the setting with scheme (11), we design the modified version by using
left—endpoint approximation [4]:

Y(H) =0+ | tKo<t,sﬁ<s>>ds+ [ Kt ¥6)ds

(13)
+/ Ko (t dWs+/ Ks(t,s, ¥(s))dWH,

where s = t, for s € [ty, tyy1), Y() = L0 Y(tn)Zy, 1, .,)(t). Our modified EM method
can be defined as follows:

Y, :=Y(ty)

n—1 n—1 n—1
=yo+ Z K()(tn, tj, Y])I’l + Z Kl(tn, t],Y])h + Z K2(tn, i’]‘, Y])AW]
=0 i=0 =0
i | / o
+ ) Ks(tu t, Y)AW/!, 0<n <N,
=0

Yo = yo,

~Wyand AW = Wi —W[T,j=0,1,--- N — 1. Obviously, we only
tin i

simulate AW; and AWJH without computmg stochastic integrals. Noticing that the discrete

where AWj =W;

j+1

of the fBm increment in the interval [jAt, (j + 1)At) can be using a binomial approach
(see [28]), such as

(j+1)2H — 2HAH with probability 1/2

AWH, =

(j+1)2H — 2HA with probability 1/2

and the fBm value on the interval [0, iAt] is computed as
lAf ZA At/WithWéq =0andi=1,---,n,

which effectively reduces the calculations.

5.1. The Mean—Square Convergence Theorem of the Modified EM Method (14)

To analyze the strong convergence of the modified EM method (14), the boundedness
of the numerical solution can be established using the following lemma.

Lemma 5. Under the same conditions as Lemma 2, for any t € [ty, ty1],n=1,2,--- ,N—1,
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c a4(3—
ly(t =) =y (tn = 8) | po i < CLo (3 W77,

1_
Iyt =) =yt = )lpor < CLay, gy (WHTED,
where ©
_ yle
Lons(3-p¥) = o (1)

is the [20 + (3 — 17)]—Holder constant of y(¢).
The proof can be seen in Appendix F.

Lemma 6. Under Assumption 4, for any t € T, there exists a constant C > 0, which is independent
of h, for any integer p > 2/6,0 € (0,0 + H — }), such that

E[Y(O5 010) < C EUYOIL o 10) <
The proof is similar to that of Lemma 4.

Lemma 7. Under Assumptions 1 and 4, for any t € T, there exists a constant C > 0 that,
independent of h, satisfies

E[IY(5) = Y(£) 13,0, < CH.

The proof can be seen in Appendix G.

Next, we study the mean-square convergence of the modified EM method (14) under
Assumptions 3 and 4. More details of the properties of the local Lipschitz condition can be
seen in Remark 2.1 of [29]. Notice that £, is an increasing function depending on m, and
we need to consider £, 1 o0 as m — co. Therefore, we let A, > 0 be sufficiently small for a
strictly positive decreasing function v : (0, A.] — (0, o) such that

. B 20 _
Plg%v(h) = oo, hm ﬁv(h)h =0, (15)

where O denotes the order of the modified EM method under the global Lipschitz condition
(Remark 1).

Theorem 2. Based on Assumptions 3 and 4, for the arbitrary constant { € (0,2) and p > 3,
6e(0,a+H-— ) we assume that there exists an h that satisfies

min{2 —,2a+1—-20}, a—60=1/2,

v(h) > [ﬁz(h)ho] ) , where O =
min{2,2x +1— 26}, x—0#1/2

and for any h < A, there exists a constant C > 0, which is independent of h. Then, the modified
EM solution Y (t) to mSVIE (14) converges to the exact solution y(t), that is,

E[lY(t) —y(t)[}] < CL? h)h forallt € T.

Proof. We define the error as

and the stopping time as
t=inf{t >0:|Y(t)| > m}.
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According to Theorem 1 and Lemma 7, for any J > 0, we have

Elle(t)l30ra] = Elle®I3,,, . ] +Elle®f, . . ]
2Ele(t)]"] | p-2

< Blle(t AN TR, ) + 2+ L2 (> T > T)
. 26 - 2P¢ -2 2 L , (16)
<E[e(tAtAT,) H%{(M%)ﬂ}} ” + p&z/(P—Z) g (Young’s inequality)
52Ptle  2(p—2)e

<E[le(t AtATH)[?] +

p p(Sz/(P*Z)mPI

where the constant ¢ > 0 is independent of § and m. Furthermore, we can estimate
E[le(t At A T},)|?] in the last expression of inequality (16). With a Holder—type inequality,
we have

E[le(t AtATS)|?]

EALAT R R 2
< SE{‘ / [Ko(t AEATE s, V() — Ko(EAtA TE, s, V(s))]ds
0
EARAT, R 2
v / [Ko(EAEATE s, T(s)) — Ko(t AtA TS, s, y(s))]ds
0
EAAT, R R 2
+ / Ki(EAEATE s, Y(s)) — Ki(EAEA T s, Y(5))]ds
0
EAAT R 2
+ / Ki(EAEATE s, T(5)) — Ki(EAEA TS, s, y(s))]ds
e ) 17)

EAEAT, R R
+ / (Kot AEA T, s, V(s))dWs — Ka(EAEA TS, s, Y (5)])dWs

EAAT R 2
+ / [Ka(t A A TS s, V(s))dWs — Ka(t AEA Ty, 1(s)] ) dWs

}
}
Using the Cauchy—Schwarz—type inequality and It6 isometry, under Assumption 1,
Assumption 2, Assumption 4, and Lemmas 6-7, we have

EAAT R .
v / [Ka(EAEATE s, V(s)AWH — Ks(t AtA TS s, Y(s))|dWH

(=}

EAAT, R
+ / (Ks(t AEATE, s, V() AWH — Ks(t AEATE, s, y(s))|dWH
0

= 8{f1 + K+ R+ Ry + 85+ K + K7 + R}

A1+ R3+ Rs + Ry < Ch?®, (18)

With the Cauchy—Schwarz—type inequality and It6 isometry, under Assumption 3, com-
bined with Theorem 1, we have

R+ Ry + R+ Rg

T X 19
gcuﬁaémm [(EAtATE) —s]*TIE[|Y(s) — Y(5)]* + |e(s At A ) [*]ds. 49

Applying Lemma 7 and the weakly singular Gronwall—type inequality (ref. [30],
Theorem 3.3.1. page 349), we have

thmin{2—§,2a+1—29}, x—0=1/2,

*12
Elle(t AtAT,)[7] < {thmin{2,2a+1—29}, x—0+£1/2
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Note that the constant C;;; depends on m, and it is independent of / and . Then, (16) becomes

o2rtle  2(p—2)e
p péz/(sz)mP '

E[lle(t)

%,O,T;:x] < Cul®™ +

We can then choose I, § = Eg(h)hmi“{z’z"‘ﬂ_zg}, and

. __P
m— [Ei(h)hmm{Z,szJrleG}} -2) < I/(A*).
Next, let b — 0, for any given £* > 0, such that

2rtle  2(p—2)e ef et

2 < 2
Ellle(t) Boral < Cub™ + = =+ 5 STt T3

Hence, for arbitrary t € T,

lim E[|Y(#) - y(HIF1 =0,

and the proof is complete. [

Remark 2. The limitation expression in (15) indicates the strong convergence of the modified
EM method (14). Unfortunately, it is challenging to derive the exact orders of strong convergence
since L) — oo. The precise orders of strong convergence can only be obtained under the global
Lipschitz condition. Using Theorem 2, we investigate the strong convergence order with the local
Lipschitz condition, which is inherently lower than the strong convergence order O /2 with the
global Lipschitz condition.

5.2. Strong Convergence Order Analysis

In order to analyze the strong convergence order of the modified EM method (14),
the following theorem is used to demonstrate the computational efficiency of the
numerical scheme.

Theorem 3. Based on Assumptions 3 and 4,let p >2/6,0 € (0,0 + H — %), and suppose that
there exists an h satisfying

__r min{2 —{,2a +1—-20}, a—0=1/2,
V() > [L£2yhC] 207, where O = 2-¢ ;
min{2,2x + 1 — 26}, a—0#1/2.
Then, there exists a constant C > 0, which is independent of h and e, such that

E[[Y(t) —y()["] < CLYy (hO +€2), forallt € T.

Proof. With mSVIE (7) and (13), we have

2

BV -] < 85{ | [/[Kalt,s, 7(6) ~ Kalt 5 7))

2

+ ‘ /0 "[Ko(t,s, T(s)) — Kolt, s, y(s))]ds (20)

, . . 2
+ ‘/O [Ki(t,s,Y(s)) — Ki(t,s,Y(s))]ds
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| (5, ¥(5) = K (5, (5)))ds

2
‘/'@ AW, — Ka(t,s, ¥ (s))]dWs

¢ 2
v /O [Ka(t,s,Y(5)) — Ka(t, s, y(s))|dW

ot . 2
] [ Kalts ¥6)) - Kl Y| |
}

Using similar derivation steps for inequalities (18) and (19), we also have

] [ Ka(t5,¥(5))d — Ka(t 5, y(5) !

i B{R] R R AL R R R+ AL

R+ R+ RS+ &S < Ch?, (21)
and
85+ R+ 8+ R
5 [PE[Y(s) — Y(s)|* + sup, 7 [e(s A t)[?] (22)
< CLg, - ds,
0 (t—s)l-a

where e(t) = Y(t) — y(t), and t is the same stopping time as before. Notice that
Elle(T)[*] < E[le(T)*1(trgy)> 7] + Elle(T) L) <7]
Elle(T AtA 1)) + Efle(T) P15 <1]-
Using the Young—type inequality, let p > 2/6. Then,

2E[e(T)|P  p—2
p p§2/(p*2)

Elle(T) P1ergy)<r] < P{(tAT,) <T}.

According to Theorem 2, Lemma 7, and the BDG inequality, we obtain

E[le(T)["] < C and P{(tAT:) < T} < %

Thus, we choose § = ﬁﬁ(h)hmin{Z'M“’Ze}, and

[ﬁz( )hmm{Z {21201 B, w—0—1/2,
m =
[£2( )hmm{Z 20+1— 29}] p -7, w—0#1/2.

< v(Ay).
Then, we have
E[|e(T)|*] < CL? (h)( O1¢?), forallT e T.
O

6. Numerical Experiments

In this section, we consider two examples to verify the strong convergence orders of
our modified EM scheme (11). We characterize the mean—square errors at the terminal
time ty as
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1 6500
= | ) — N2
¢, 1 £500 l; Y (T, w;) = Yp o(T, wi) |2,
where w; denotes the ith single sample path. Furthermore, the computing order is

defined as
log (€, n/€n/oN)

Order = log2

Example 1. We consider the following one-dimensional mSVIE:

W) =0+ [ (1= )t sin(P(E)ds + [ (= 5)" cos(y?(5)) e
+ /Ot(t —s5)* cos(yz(s))dWsH,
te0,1], y(0) =yo =1

It is obvious that Ky = sin(y?(s)), Ko = cos(y?(s)), and Kz = cos(y?(s)) are locally Lipschitz
continuous with L, = 2m and satisfy linear growth conditions. For p > 2/, we choose

min{2,2x + 1 —26}} r<1

v(x)—xexp{— Ap—1)

We let v(h) — oo and

g]Z/(h) pmin{2.2a+1-26} _ [zv(h)]thin{Z,leJrleG}
< Chfwhmm{zzaﬂ—ze}

2p-3 . _
< ChZr—D min{2,2a+1-26} -0

Ash — 0and p — oo, the limitation expression in (15) holds, and

~ o _ pmin{220+1-20)
(L2 imin 22 1220 < o e < w(h),

which means that v(h) satisfies the condition v(h) > [Ci(h)ho}fﬁ in Theorem 3. Figure 1
shows the mean—square errors, which become smaller as h decreases. Furthermore, we find that
the Hurst parameter H has a significant impact on the convergence order, such that an increase
in H results in a higher convergence order. To be specific, when « = 0.9, the strong convergence
order of our modified EM method is close to 1, and for the cases of H = 0.8 and H = 0.9, the
strong convergence orders of our modified EM method is also close to 1, respectively. To illustrate
this result, we recall the example 6.1 of [5], which is similar to our Example 1. Ref. [5] verified
that the mean—square errors of explicit EM method applied to SFIDEs has strong first—order
convergence. They also pointed out that the convergence rate of the numerical scheme used the
global Lipschitz condition, but under non—Lipschitz condition, to prove the convergence rate is
still an open problem. In our test, we fixed 0 = 0.5 and varying «, we find that an increase in w
results in a higher convergence order. The convergence orders with fixed 6 = 0.3 and varying « are
shown in Figure 2 and are consistent with the theoretical analysis. These numerical results verify
that the strong convergence order with the local Lipschitz condition is inherently lower than the
strong convergence order O /2 with the global Lipschitz condition.
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. H=06 H-0.8 H=0.9
10?
% /
10 ¥
10° _- 4 10 -
= -7 _ ps _ -
§ -~ s - § -
[ - & . - [ -
. - - -
- 10 - . -
- -~ 104 _-"
10 P —®— alpha - 0.1 and theta-0.5 .- —®—alpha - 0.1 and theta-0.5 - —e— aip! 1 and theta=0.5
- | —#— aipha = 0.6 and theta=0.5 _- —#— alpha = 0.6 and theta=0.5 Loe | —%— aipha = 0.6 and theta=0.5
4 nd . - 4 aipn d theta-0.5 4 ap d theta-0.5
—r o 10 — — e
— = Retsiope-1 — — Retsiope-1 — = Refsiope-1

0.00012 0.00024 0.00043 0.00098 000195 000012 000024 000049 000098  0.00195 0.00012 0.00024 0.00049 0.00098 000195
Stepsize (A) Stepsize () Stepsize (A)

Figure 1. (Left): the mean—square errors of the modified EM scheme with § = 0.5 and H = 0.6.
(Middle): the mean—square errors of the modified EM scheme with 8 = 0.5 and H = 0.8. (Right): the
mean—square errors of the modified EM scheme with § = 0.5 and H = 0.9.

Error
\
Error
\
Error
\

10°
000012 0.00024 000049 000088 000195 000012 0.00024 000049 000098 000195 0.00012 000024 0.00049 0.00098 0.00195
Stepsize (4) Stepsize (&) Stepsize ()

Figure 2. (Left): the mean—square errors of the modified EM scheme with § = 0.3 and H = 0.6.
(Middle): the mean—square errors of the modified EM scheme with # = 0.3 and H = 0.8. (Right): the
mean—square errors of the modified EM scheme with § = 0.3 and H = 0.9.

Example 2. We consider the one—dimensional mixed fractional Volterra O—U (Ornstein—Uhlenbeck)
equation (also see [31,32]), which is a special case of mSVIE (7) with Holder continuous kernels. A mixed
fractional Volterra Ornstein—Uhlenbeck equation is defined by

t t t
y(b) :y0+/0 K(t—s)(bo+b1y(s))ds+/0 K(t—s)aldWs+/0 K(t = s)ondWH,
where by, by, 01,05 € R.

7('?75)“7% -
T(a+3)’ 2

According to Theorems 2 and 3, the convergence order is O /2. We choose the following parameters:

K(t—s) =

yo=1,bg=1, by = —03, 0y = 0.1, 0o = 0.05, & = 0.6, H = 0.65,

The computed results are shown in Figure 3, which demonstrates that our modified EM method
for the mixed fractional Volterra O-U equation can achieve strong first-order convergence when
x = 0.9.

\
Error
\
Error
\

000012 000024 000049 0.00098 000195 000012 000024 000049 000098  0.00195 000012 000024 000049 000098  0.00195
Stepsize (A) Stepsize (A) Stepsize ()

Figure 3. (Left): the mean—square errors of the modified EM scheme with 6 = 0.5 and H = 0.65.
(Middle): the mean—square errors of the modified EM scheme with 6 = 0.5 and H = 0.8. (Right): the
mean—square errors of the modified EM scheme with 6 = 0.5and H = 0.9.
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Remark 3. Example 1 and Example 2 shows that the convergence rate of our modified EM scheme
using the local Lipschitz condition is much more complex than using the global Lipschitz condition.
Since our error e(t) consists of two components, the first one is the error of a modified EM method,
and the second one is the error of Monte Carlo method, thus, it is challenging to derive the exact
orders of strong convergence under the local Lipschitz condition, even the exact orders of strong
convergence is completely invisible. The precise orders of strong convergence can only be obtained
under the global Lipschitz condition. We only show that the strong convergence order with the local
Lipschitz condition, which is inherently lower than the strong convergence order O /2 with the
global Lipschitz condition. To prove the convergence rate under non—Lipschitz condition is still an
open problem.

7. Conclusions

In this study, we relaxed the assumption of the global Lipschitz condition to the
local Lipschitz condition and showed the strong convergence order of a modified EM
method for mSFIEs. We first transformed the mSFIEs into an equivalent mSVIEs using
a fractional calculus technique, and then proved the well—posedness of the analytical
solutions to mSFIEs with weakly singular kernels. Moreover, a modified EM method was
developed for numerically solving mSVIEs, and the strong convergence of the solutions was
proven under local Lipschitz and linear growth conditions, as well as the well—posedness.
Furthermore, we obtained the accurate convergence order of this method under the same
conditions in the mean—square sense. Notably, the strong convergence order under
local Lipschitz conditions is inherently lower than the corresponding order under global
Lipschitz conditions. Finally, numerical experiments were presented to demonstrate that
our approach not only circumvents the restrictive integrability conditions imposed by
singular kernels, but also achieves a rigorous convergence order in the L? sense.
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Appendix A. The Proof of Lemma 1

We let ¢(0) = 0 and g(x) = 0 for x < 0. Taking any t1,t5,51,5, € T, for ||t; — to] —
|s1 — s2|| > ¢, there exists a constant C* > 0 such that
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lg(|t1 — ta2]) — 8°(It1 — t2]) — &(Is1 — s2|) + 8°(Is1 — s21)]

It —t2] Isy =53
/|t1—t2|—C[g(|t1 — ba]) — g(u)]du — / [g(|s1 — s2]) — g(v)]do

[s1—s2|—c
1 t1—t2 . ls1—s2] .
<[l [ (n—nldu—| [ (s - s))ido
C Ll /[th—ta]—c ls

1—s2|—¢

C

} < C*Le(g)cf,

and for ||t; — t2| — |s1 — s5|| < ¢, we also have

g([t1 — t2]) — g°(|tr — t2]) — g (|51 — s2]) + &% ([s1 — s21)|

1 0
< |g(|t1 — t2]) — &(|s1 — s2)| +C’/_C[g(|t1—tz+u)—g(|51—Sz+u)]du
< C*'Le(9) ||t — 1] —

|s1

and hence,

g([t1 — ta]) — g°(|tr — t2]) — g (51 — s2]) + &% (Is1 — s21)|

< C Le(g)[e At — ta] — [s1 — 52| []°,

that is,
lg(t) = 8°()llp,0,Tsa
< sup lg(u) —g¢(u) —g(v) +g°(v)|

0<u<v<T (U - “)1_“
C
sup / |8 (u gz( a) T8Iy,
0<u<v<T (x —u)

cA|v—ulf v e (x—u)l® }
<C'L { su — X+ su ——d
(&) 0§u<5§T (v—u)t-® O§u<11:;)§T w o (x—u)e

< C*Le(g) [c“’“‘l + sup [cA(x—

0<u<ov<T

u)]s+a—1] < Cﬁe(g)cs—l-a—l'

Appendix B. The Proof of Lemma 2
Lets < t € T. We write (8) as

1y(E) = ¥5($) | o 10 < CeEH20 1[

/KO (t,5,y(s))ds| +
+ ’ /o‘ Ko (t,s,y(s))dWs| +

\/Kltsw))ds

|

\ [ Kolts,y(s))am

Obviously,

t t ot 1
[ 1Ko(ts,y(s)lds + / / |1<o<t,u,y<u>>|duwds
gc/(1+|y ds+// (14 lyan) el >ds]<C[1+/|y”pOTads}

(t—s)&

7
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’/Kltsy ds /|K1tsy |dS+//|K1t”]/ |du( )a+1d

SC[/(1+|3/ ds+// (14 |y(u ( )“Hds}

<C{1—|—/ ly(s |ds+/ |y(u“+1d4 <C[1+ ”y(”m"ds]'

1) 0 (t—s)atl
Furthermore,
. t ot ot 1
‘/0 Kalt,sy(s)dWs| < [ Ka(tsy(s)lawe+ [ [ |K2(t,u,y(u))|dwumds

<C /(1+Iy dS+// L+ [y(u (t_s)m n)ds]
<cli+ |y<s>|ds+/ y()('ﬂ

_ u)ﬂ(+ 271

Hy ”pOTa 1
S ¢ 1_'_/ lX-‘r(j—W :| S C£a+(%_7)(y)(t_s>0¢+(2 ’7),

where

y(t) —y(s)
L = AV AV
H(%fﬂ)(y) 0<§2€<T (t—s)*+(3=n)

is the [a + (3 — 17)]-Holder constant of y(#).
Similarly,

[ Kats yis)am

1
Ks(t, dWH—I—// Ks(t, dWH—d
< [ IKs(t5,9() K 1,y AW, s

. Ot/t {( 1+|y(v)\ +/sv (Ly(_vi)—“f((;_)l)dv] (t_s);(%_n)ds}

)*F

<cli [/ Ll §§JP°:_: L]
)
)

t .
gc[l+/ Hyslpowm/ H.v>llmd}
0 (t—s a+(3-n) 0 (t—s)z"‘*(j*’ﬂ

< CLyy gy W) (=)™ 71,

where ) (s)
y(t) —y(s

£ = —_—

21x+(%*’7)(y) O;g’g (t — 5)2+(3-1)

is the [2a + (1 — 17)]—Holder constant of y(t).
Combining the above estimates, for |t — s| < ¢, we have

1_
[5(6) = 456 lpora < CLagy 3y (WA (1 = 5)PHED)

<CL (y) 2z =),

2a+(3-17)
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Appendix C. The Proof of Lemma 3

We first consider the boundedness of ||yN (t)H%,O,T;N. Using Lemma 2 and the
Gronwall—type inequality, for |t —s| < ¢, we have

Ellly™()130,7:]

< CN? {14_/ Hy )HZOT:xg / ||3/ ”iOTocg(t s)dv
|t — st (z=) |t — 5|2+ (2= (A1)

< CN£2a+(%_,7)(y ) At —s])2H (-

(o

< CN‘Cth+(%71])(yN)CZ +(z-m),
h

e N N~y (s)
)= sup ———~

L
thJr(%*’l)(y 0<s<t<T (t o s>2a+(2 1)

is the [2a + (3 — 17)]-Holder constant of yN(t). Then, according to Lemma 1.17.1
in [2] (page 88, the estimates for fractional derivatives of fBm and the Wiener pro-

cess via the Garsia—Rodemich—Rumsey inequality), we can assume that, for arbitrary
6c(0a+tH-1,

t
‘/ fdWH| < CeN(r)|t—r27%, re T,
0
Ny = (/f /f |fv”1<z(t,s,yN(s))dwsIZ/QCMV)W2
0 Jo |o —v[1/? '
Then, for p > 2/6, we have
/ Ka(t,s,yN dWS
r
<cule (sup]/Kztsy Eawe| )
teT
Ky(t, ))dWs|?
<sup / |f 2( sy /2> d ddv)}
teT o —vl|P
p/2 E[K»(t, 2ds|P/2
ch[(/ EIKz(t,s,yN(S))|2d5> (// K (t5,y" (3))Pds] dvdv)]
0 |o — v|P/2
1

< e+ et 1 sp ( f n i _SD(%_st)”}_

Obviously,
™ (B)11E 0,750 < Cnvsup (t,s,y™ dWs (A2)
seT
Next, we prove the case for p > 2/6. We define the following stopping time:
n, = T Ainf{t : ||[yN*(t)[|s > 1},
where the integer 1 > 1, Ty, T T as ¢ — oco. We set yN4(t) = yNi(t A 1yy),

PNA(t) = gNH(t A ty,) for all t € T. Under Assumption 4 and (A2), we have
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Ellly™" (4)115,,7.4]
5P ! tA TN' a—1 ~N,1 :
< S @evory+ B (| [ 0 AT - (s V)] )
t/\TN, P
+E( [ A = sup s ) s )
0 s<u<[tATN,]
tAT L p/2
+]E( [ A )~ PO sup ks, §4(s)) s )
0 s<u<[tAty,]
ATy, . p/2
—HE(/ [(t/\TN,[)—s]z("“"E_G) sup  |ks(u,s, 9N (s))[ds >
0 s<u<[tATN,]
t/\TNL 2 u
<CN{1+/ [( A Tye) — P2 OR[EN (A T, )]
t 1 P
- sup (/ T ds) }
teT \JO |(tATy,) —s|(270)F
INTN,
<cf{t [l nn) - PR s,
0
where Cy is independent of N and «. Then, for |t — s| < ¢, we have
sup E[[ly™ ()15 7]
0<i*<t
ATN,
<cnfie sup [T len (00 Ar) -0 sup Bl QIP)as) .
0<rx<t/0 0<<s

Using the weakly singular Gronwall—type inequality [30] (Theorem 3.3.1. page 349),
we have
E[|g™()IF] < Cn, (A3)

and according to Fatou’s Lemma, for : — oo, (A3) implies that
E[|9™ (+)|"] < Cn and E[|y™ (£)[F] < Cn.

For p = 2/6, by using the Cauchy—Schwarz—type inequality, as well as Assumption 4
and (A2), we can obtain the results.

Appendix D. The Proof of Lemma 4
Using mSVIE (11), we have

Elly () =N ()11 0]
{ {/Kotsy dsf/ot Ko(t,s, 5 (s))ds

. P
/K t,s, 7™ ( dsf/0 Kq(t*,s,9N (s))ds }

H/ Ky(t,s, y ))dW; — / K2(t*,s,yN(s))dWs

]

P
|
H/Kf*tsy 5))dW! — /KB(t*,s,yN(s))de

=: 4P 1{K0 +K; + Ky + Kz}

1}
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Applying the Holder—type inequality, Assumption 1, Assumption 4, Lemma 2, and

]

Lemma 3, we have

Ko < 2‘”{E{ /f[(t — )T — (= )" 1] ko(s, 9V (5)) s

1}

p—1

+E[
<
= = B ) s

t
/ (t—s)*lds
t*

< Cylt — %,

t*t(t — s)"‘_lko(s, yN(s))ds

/0 [(F— )1 — (£ — )" 1]ds

p—1
+ = BN s

and
K, < Cy|t — ¢ er2=0)p,

Applying the Burkholder—Davis—Gundy (BDG)—type inequality (Theorem 7.3 of [20],
page 40), we also have
p/2
]

Ky < C{EH /Ot*[(t — ) — (" —5)* 112 sup |ka(u,s,9"(s))ds|

s<u<t

/ot*(t*— O30 sup k(= s)u+s,5,9V(s))

0<u<i

p/2
]
t*

t— )26 +370) sup (ko (u, s, 2ds
(t—s) P N

s<u<t

+E|

— k(£ —s)u +s,s,yN(s))ds|

I

/0 [(t _ S)zxfl _ (t* _ S)DL*]}Z

+E|f

(p—2)/2

<C{'/t* [(t—s)*1 — (t —s)*1]?ds

L E(9N () P)]

[ e B ) s

*

e O BN s |

< Clt — *|@-ewr2, x—0=1/2
C|t — #*|RN2A1=20)]p/2 g £ 1/,

Observing that 6 € (0, tx+H—f) if0 =1/2,then0 <2 —2a <1,and fore =2 — 2g,
KZSCN“_t*lM)-

Using (A2), we also estimate K3 as follows:
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p/2
i

[ 1G5yt (=51 sup k(s V()|

s<u<t

t*
/0 (t*_s)z(a+%—9) sup |ks((t —s)u+s,s,9V(s))

0<u<i

K < c{g|

+E|

p/2
—ks((t* —s)u+ s,s,yAN(s))ds|2 }

t*
[ (=520 sup Jks(u,s,97(s)) s

s<u<t

)

<cle||[ U= sy = (= TR sup (Ko, s, 9V (s))dsP?

s<u<t

+/ot*[(t—5)"‘l — (=) 1] 's<u<t </ / L Pl Zizw/z))]st'pmdvdV)]

t*
/0 (# —5)20270 sup |Ky((t—s)u+s,5,9V(s))

0<u<i
P/Z]

t*
/o (t=5)20457 sup |Ky(u,s5, 9V (s))[2ds

s<u<t

+E|

p/2

+E|

— Ko ((t" —s)u+s,5,9N(s))ds|?

+E|

t 1 E[Ka (u,s,yN(s))]?ds|P/?
_ 2atio6) | Jy ElKa(n,s, 5N (s) )H
+/0 (t —s)=l*t2 sili<t (/ / o] dodv

’ (r=2)/2 %
= C{‘ /Ot [(# =)™ = (1 =) TPds '/Ot [(t—s)* 1 — (t — )" 1]?

(p—2)/2

%

f (t* . S)Z(D&%»%*Q)ds
0

([LHEN (5)1P) + E(128 (5)[P)]ds + [t — 2

' /Ot*<f* = sPEEOLLE(9N(6)IP) +E(E () Pds

£ ) (p—2)/2
/ (t_s)z(a+7_9)ds
0

_ [Cli— e, x—0=1/2
C|t — #*|Nat1=20)]p/2 g £ 1/2.

< Cn|t—t*|*P,  (wheree =2 —2u).

* [P O BN O + B 6 Pl

*

Hence,
E[lyN(8) =y ()12, o 10] <477 H{Ko + K1 +Ka + Kz} < Cnt — ],

Appendix E. The Proof of Theorem 1

From the case of the global Lipschitz condition (Remark 1), inspired by Theorem 3.4
of [20] (Section 2.3. page 56), we define the following truncation function:

K;(t if [y| <
K (t,s,y) = i(Es9), iffy| < m i=0,1,2,3.
Ki(t,s,my/lyl), if[y| >m,
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For each m > 1, K;(t,s,y) satisfies the Lipschitz and linear growth conditions, and there is
a unique solution K (t,s,y) € L2{(t,s) : 0 < s <t < T} x RY;R¥*7) to the equation

un®) = o+ [ KE(tr5,ym(9)ds+ [ K5, (5))ds
+ /Ot K3 (t,s,ym(s))dWs + /Ot KE(t,s,ym(s))dWH, t € T.
We can define the stopping time as
T, =TAInf{t € T : |y,(t)| > m}.
Note that 7;;; is increasing and

Ym(t) = yuia(t) ift € T.

We use the linear growth condition to show that, for almost all w € (), there exists an
integer my = mo(w) such that

t/\Tm MTm
y(tAT)—yO—I—/ 0 (t,s,y(s) ds+/ T(t,s,y(s))ds
AT, H
+/O Kgl(t,s,y(s))dwer/o "R, y(s)) AW

Let m — oo; then, y(t) is a solution of mSFIE (1).

Uniqueness. We define y(t) and #(t) as two solutions of mSFIE (1) on L?({(t,s) :
0<s<t<T}xRER) with y(0) = §(0). According to Lemma 2, y(t) and #(t) are
solutions to mSVIE (7), and according to Lemma 3, for |t — s| < ¢, we have

Ellly(t) = 7()1Z0,7.a]
)

< cfB(] (=9 k(s 15D ~ ol 7))l

IE( /Ot(if—s)“*1 sup |k1(u,s,y(s)) — ki (u,s,7(s))|ds

s<u<t

)
E( /ot(t—s)z(‘”%*e) sup |ka(u,s,y(s)) — ka(u,s,(s))[*ds

s<u<t

) (A4)

)

]E( /ot(t—s)z“‘*%_e) sup |ks(u,s,y(s)) — ks (u,5,(s))[*ds

s<u<t

< [en (=91 Elly(1) - 50 gralds

Hence, for arbitrary t € 7T, using the weakly singular Gronwall—type inequality [30]
(Theorem 3.3.1. page 349), we have

Ellly(t) = 7()50,1.4) = 0,
which means
P{|ly(t) —§(t)| =0forallt € T} =1.

Uniqueness has been obtained.
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Existence. Welet N’ > N > 1. Using mSVIE (11) and estimating (A4), forany p > 2/6,
we have

B[l (1)~ ™ Ol al < C [ (6= 51BN () = 3 (1) g s

Next, we show that yN (t) is a Cauchy sequence almost surely and has a limit in L%?(7;R9).
We first construct a Picard sequence {yN"*(t) : N > 1,n = 1,2, - - - }, which satisfies mSFIE
(1), and let Ty, = T Ainf{t : [[yN"(t)||¢ > n}, yN"(ty) = yo, that is,

t -t
vV = o+ [ Kolts 9V (s)ds + [ Kaes 9N (s)ds
0 0 (A5)

t t
+ / Ka(ts, N1 () dW; + / Ks(t s, 9N (s))dWH.
0 0

e Step 1: The Picard sequence {yN"(t) : N > 1,n = 1,2,---} € L%*(T;R%). For
arbitrary t,s € [0, Ty ), using inequality (15), let K(t, s,y 1(s)) A [=Cpo(n —1) V
Cpp(n —1)]. Then, we have

Eflly™" (5112 0,7:4]

y 2
< Il + | [ Kot N1 s

2 t
+‘/O Kl(t,s,yN'”_l(s))ds

2

t 2 t
+‘/0 Ka(ts,yN"1(s))dW, +‘/0 Ks(ts,yN"1(s))dWH

< Ol (g V(A [E =821 < Cy

204(5 -1

e Step2: The Picard sequence {yN"(t) : N > 1,n = 1,2,---} € L*?(T;R%) is a
Cauchy sequence almost surely.
We define arbitrary n,m > 1and 1; = licry Aty - We need to argue that, for any
m>n>1,yN"(t) = yN"(t) (as.) for t,s € [0, TN A TNm), OF

E[|yN™(t) —yN"(1)7] 220, as m, n — +oo.
We write
|yN,m (t) N yN’n (t) |1t<TN,n/\TN,m
¢
=:|yol1, + ’ /0 [Ko(t,s, yN™=1(s)) — Ko(t,s,yN"~1(s))]ds
AKo(t,s,y(s))

| [y 16) ~ Kt s,y V() s
AKy(tsy(s))

+| [ a5y 16) ~ Kalhs, yN 1 (5) Jaw,
MKy (£5y(s))

| a5y 16) ~ K(h s,y ()

AKS (t,S,y(S))

15

1

15

15

Using the Cauchy—Schwarz inequality and Lemma 1, we have the estimate
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2

t t
E‘ | 8Kotts,y()ds| < [ EIsKo(ts,y()R.ds
0 1 0

< [ st snarotsenRast [ s [IEID 4,)q

t
< Cx, /0 g(t,5)|AKo(t, 5, y(s)) 2 ds

and

t 2 t
E‘/ AKq(t,s,y(s))ds S/o E|AK1(f,S,y(S))|%sd5
0 Cs

sc[ [ 898K (15, y(5)) s + /tgu,s)( [ |Az<(ls(t vu)ya<+l>>cvdvdu)ds]

< c[/ g(t,5)|AKy (5,y(s) ds+/ (t,5) (/ 'AKlst_”vifa(+f) © 4y )ds]

t
< Cx, /0 g(t,5)|AKq (5, (s)) 2 ds.

Furthermore, according to Lemma 2,

(A6)

2

t t
E’/ AKo(t,s,y(s))dWs g/ E|AK(t,5,y(s))3.dW;
0 0

Cs

<c| [ 59 Blaka,s yis) o
s o [ 5 a)
< c[ [ st 5)1akat s y()[E ds

s K
+/ (t,s) (// [AKa(t,2,y(0)) c”dWZ,clu)cls}
(s —u)atl

<c| [stolskalt s yo)Eds

//gts ([T E|AKy(t0,y(0)) 2 d dds} (A7)

S — u)“Jr(z ")
<c| [stolskatt s yo)Rds
N / /s E|AKs (8, 0,y (@))[G, 4 ds}

(s — ’0)“+(2 1)

< Cx, /0 g(ts) - E[AKy(t,s,y(s))[2 ds.

Similarly, according to Lemma 2,
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2

t t
E‘/ AKs(t,s,y(s))dWH §/ E|AK3(t,s,y(s))%desH
0

Cs

< o] [ S BlAK Gy W],

—u)
s o(u,0) - EIKs(t, u, yN""1 (1)) — K3(t, v, yN"—1 %u
) BB )

[ / w0) B (Kalt ™ 0) = Kat 0,0 )
1K (1, g™ () — Ka( ™ (1))
(Ka(t, ™ (w)) + Ka (0, (0)) >) (u— v>-<f+2“+“dudv] }

{/ g(t,u) - Bl AK3(t, u,y(u))[2,]

(t—u)~

du + ARs(t,u, yN (u ))}

Notice that

AR (t, 1, yN (1))

s (8(u,0) - (IIKs(t, 1, yN" (1)) — K3(4,0,yN" 1 (0))le, )
SC{[./O E( : o
g(t,u) - [Ks(t,u, yN" 1 (w)) — Ko (t,u,yN" L))o, 5. 1°

: GEECDE )d}

s (&t u) - |Ka(t,u,yN M (u)) — Ka(t, u, yN "1 (u)) e,
n {/0 IE( 3 3
(

+

(t—u)
u,) - (1K (t,u, yN" 1 (w)) + Ks(t, 0, yN" 1 (0)) [lo) s ?
(u—v) Jaul }
s (g(t,u) -E[|Ka(t,u, y™"™ () — Ks(t,u,yN" ()2,
sc“o ( e du

s o(t,u) - |Ks(t, u, yN"=1(y Ka(t,u,yNn—1 2
MY o LN O L ST A

8

S
< CN/O gt u) - E||Ks(t, 1,y (1)) — Ka(t,u,y™" " (u))|Ig, du,

and thus,

t 2 t
E‘ /O AKs(ts,y(s))dWH| < Cg, /0 g(t;s) - E|AKs(ts,y(s))2ds.  (A9)

Cs

Combining (A3), (13), and (A5), we have

t
E[ly™"(8) = yM" (15, - g(t9)] < C/O g(t,s) -E[ly™"(s) —y™"(s)|,ds.  (A10)

This means that ||y™N"(s) — yN'”(s)H%S = 0 a.s., hence, ||[yN"(t) — yN'”(t)Hi =0a.s.
for t € [0, TN A TN,m), especially Ty > Tn a8, as YN (t) < n < mfort < Ty .
Then, we conclude that the Picard sequence {yN"(t) : N > 1,n = 1,2,---} €
L%2(T;R%) is almost surely a Cauchy sequence.

e Step3: Since T > 0, and Ty increases with N and ultimately reaches T, we find that
there exists a Cauchy sequence that almost surely satisfies mSVIE (11), and mSVIE
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(14) has a unique solution for t € [0, Ty A Ty ). Noticing that y(t) € L%?(T;R%), such
that yN (t) 22 y(t) uniformly as N — oo, we take expectations on both sides, that is,

) N2 _
dim Eflly(8) =y ()5 0,7a] = 0.

Moreover, according to Lemma 4, we have
Ellly(t) —y(#) 50 10) < Clt — 1%

Then, the process y(t) is a continuous solution of mSFIE (1). According to Lemma 3, let
N — o0, and then forany t € T,

Elly(5)[F] < co.

Appendix F. The Proof of Lemma 5

According to Lemma 2, we have
ly(t =s) =y (tn =)0,

1 n=l o a— N—
SHWZ[ (bt — )% = (b0 — £)21] Ko (5, y(5))ds

=0t
n—1 i
+ F(lvc) ;) /tvt (b1 = )" 1 = (tn = £)* ] - ki (8,5, y(s))ds
n-1 . i+1
" %ﬂt) = /tt [(Fngr = 1)1 = (b0 — £)" 1] - Ka(£,5,y(5) ) dWs
1t a1 a1 H
T L /t (a1 = )" = (ta — 1) 7] - ka(t,s,y(s))dW; }
n=l rtin . a1 Nyaa—1 n=lrtia ”y(s)”p,O,T,a
<C{hl‘20/ti [(n—i+1h)* " —((n—1i)h) ]ds-{l—i—lzé/ti TdS”
W [t (e
i=o /t
—1 i ly(s)llp0,7a nl i . o
|:1+ i=0 /tx [C/\ (tn+1 7tip* tn+ti)}adsj| * hZ;) '/1:1 [((n_l+1)h) 1
Cn e meTids. [ [ 1y(5)llp,0,7,0 )
( e {14_ z;:) '/t" [N (tuy1 —ti —tn +ti)]“+(%_ﬂ)}d
n=l iy . a1 g1 n=l et
T et s [T [ I o
. 1 ds
[e A (tagr — b — bn + 1)) T
n1 ly(s)llp0,7.a s
i i;) /t [e A (bt — b — b + 1) P4H G0 } ‘ }
n—1 n-1
< cfeatne Tr+ 1w =11 |awen T (- i he
iz0 i

£a+(l,”>(y)c“+(7_”)h Y [((n+ 1)1 - gl

£2a+(%7ﬂ)(y)cza+(%7’7)h Y [((n+ 1)h)* L — pe Y]
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Similarly,

ly(t —s) —y(t —s) Hp,O,T;Dé
n=l rtiy
<l S e =007t ) oyt

-t

+ [ [t =9)" = (£ =9)""1 - ko(s,y(s))ds

tn

1 n=l oty - o
+ ‘ﬁ Z / [(tng1 — 1)1 = (b0 — tip1)* 1] - ka(t,5,y(s))ds

+/ [(t—8)" = (t =) - ky(t,5,y(s))ds
n—1l .t

’ ‘ﬁ D /tt [(Fnsr = )" = (tn = ti32)" 1] - Ka(t,5,(s) ) AW
i=0 /ti

=9 = ()Y Ka(t5,y(s))ds

[

1 il i a—1 a1 H
+ ‘m i_;:J /tz- (g1 — )" = (tn —ti)" ] - ka(t,s,y(s))dW;

=9 = (= )Y ka(t5,y(s))ds

Jt,

<cf

|

n-1 i1
h Z /‘t [(n—i+ 1)]1)“71 —((n—i— 1)]1)“71](:15

i=0 ’t
n=l . S t

. |:1+ Z(:)/t +1 Hy( )!LP,O,T,/dejl +/t (tfg)"‘_lds
i=0 vt n

nl et |[y(s)|lp,o,7a
: {1+ ZO/ Tds}
=

+ hif/_tm[((nfﬂrl)h)“*l

(i — R s [”2/ NG n||+y1(sf)|t|fl”tf+ti)wds}

t _ = tin ()l p0,7.4
+/ t—s)" 1ds-{1+ / ds]
(t-2) Ll Tttt r 0T

i
hZ/ Tl =i DR (=i = 1)h) s
n=1 ,f
. [14_ Z / + Hy(s)Hp,O,T,uc i d5:|
20/t (tar — ti — ta + 1))
+ (t*S tX 1ds |:1+ Z / fita ||y(S)H}7,0,T,lX . ds:|
fi (bur1 — i — tn + £)]2 G
n—1 titq
+h Z/ [(n—i+Dh)* ! = ((n—i—1)h)* "ds
i=0 /ti
(SIS [y(s)llp,0,7.a
|1+ / pAO.T, s /
{ Z;)'tz [C/\(tn+1—ti—tn+ti)] (3-n) Z lly(s HpOTlx
1 t
’ dSi| +/ t—s a=14s
Py YR T ek I S

1

[+2/ 19(5) o s
-1

[ A (thrl —ti—ty + tiﬂa

K /tHl |y ()llp.070 ds] }
S0 e (bugt — ti — ta + 1)) 22 G)
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n—1 /ti+1 Mds

- C{‘h[«nmm**l + (k) =t ds {1 L <

[ [HZ/ 1965 oo

tn

+ ’h[((n +Dh)* 1+ (nh)* 1t —n* 1

. [142 /t.tm - JLyl(S)!p;Mtin)}“ds} +./t:(t_ £)*1ds
J Y R |

+ ‘h[((n + 1))+ (nh)* ! — pt Y

’ [l +lzo1 / - [/ (tusn |yt(é HZOEZ)]H(H)dS}

ti s
+ (i’* tn lX 1dS |:1+ Z / +1 Hy( )HP,O,T,DC . ds:|
b b [eA (bpgq — b — by + £)]4T )

n=l rti,
|l 0w = (14D [ O s
i=0 /i
1
(e A (tug — b = tu - 1)) G0

n—1 ; s ¢
G Iy pora } .
20/t [eA (g — b — ty +1;)]2 G t

n=1 ,t; s
. [1+ Z/ " 1y($)llp,0,7.0 e
20 (oA (g — b — ty + 1))

}

S ST .
=0/t [C At —ti— by + ti)}z"“’r(i—’?)
-1) (y)e G h 4 pt

ds

i

C{ ’2hc"‘*1 + B 4 2L4 () T+ B

+ lzcm

1
2

+ ‘252“(%_,7) (y) X FGp 4

S C£2a+(%717) (y)C2[X+(%7’7)h

The proof is complete.

Appendix G. The Proof of Lemma 7

Using the modified EM method (14), there exists a unique integer n for t € [t,, t;+1)
and Y(t,) = Y(t). For arbitrary t € T, we have

E[[[Y(£) = Y($)30,1:] = EIIY () = Y () [130,7:0]
{ H/ Ko(t s, Y ))ds — OtnKO tn,JY (s))ds
]

: . A
+E /Kz(t,sJY(s))dWs—/ Ka(tu,s, ¥(s))dWs
L 0

]

+E—/Kl ts,Y ds—/O Kq(tn,s,Y(s))ds

|

: . A
+E / Ks(t,s, V(s))dWH — / Ks(ta,s, ¥V(s))dWH
L 0

1}

=: 4{K0 + Kl + Kz + Kg}
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Applying the Holder—type inequality, Assumption 1, Assumption 4, Lemma 6, and

|

Lemma 7, we have

=9 = (=9 s V)

1

<cf [Mile=9r = (-9 s

Kogz{E{

|| [ 1= 9" ol Vo))as

=9 = a9 BT Plds
+ tt(t — )" 1ds- /tt(t — )" 1+ E(|Y(s)]?)]ds
< Cn*%,
and

Kl < ChZ/\(le+%*9) < ChZa'

Applying the BDG—type inequality, we also have

K, < C{E[/Otn[(t —g)“*l — (tn —g)“*l]z sup |k2(u,s,17(s))|2ds]

s<u<t

th A
E| ["(0 =P sup (- 55 70)
0 0<u<i

— ko ((tn s)u+§,s,?(s))|zds] +]E[/t(ts)2(“+%_9) sup |k2(u,sJY(s))|2dsH

b s<u<t

= C{ /Ot"Kt — 51— (b — 5)* 12ds - [1 4+ E(|Y(s)[?)]ds

+ h2 /Otn(tn - 5)2(“+%79)d5[1 + E(|?(s) |2)]dS + t(t _ S)Z(rx+%—6) [1 + E(|?(S)|2)}ds}

tn

Ch2=9), a—0=1/2
< Ch**, (wheree =2 —2x).
ChZ/\(ZﬂhLleQ), x—0 7& 1/2
Similarly,
- tn ~
o < C{B|| [710- 91 = (0 = 91 sup [ka(us V(o) Pl
0 s<u<t

tn N
+E[ /o (te = )204270) sup |ks((t —s)u +5,5,Y(s))

0<u<l1

|

tn %
/ (t _g)z("é*%*@) sup |k3(u,§,Y(5))|2dS
0

s<u<t

—k3((tn —s)u+s,5,Y(s))[*ds

+E|

<cfg|

[l = (=P

)

/otn[(f =) = (tn —5)* ) sup [Ka(u,5,Y(s))[?ds

sSu<t




Fractal Fract. 2025, 9, 296 30 of 31

o, ([ )

tn ~
/ (ts — 20270 sup [Kp((t—s)u+5,5 ¥(s))
0 0<u<1

|

tn ~
HEH/() (t=5)20370 sup |Ky(u,s, ¥(s))[Pds

s<u<t

+/Ot"(t—§)2<a+% ~6) sggt</ / e EK2|U_V( ))]2d5|dvdv>dsn
< c{ =9 = (-9

T+ E(YE)R) +E(2(s)Dlds + 1t — a2 [

+E|

— Ko((tn —s)u+5,5,Y(s))|ds

"= 90— (b — 5) 1P

0

" (tn _ §)2(0{—&-%—9)(15

[t PO L BT + (2 (5) Pl

tn t A
| [ et 0| [ 2O BITER) + B0 |
0 tn
. Clt — t,| 9, x—0=1/2
C‘t _ tn‘[Z/\(ZoH»leQ)]/ x—0 7& 1/2.

< Cn|t — £,  (where e =2 — 2a).
Then,
E[Y(t) = Y (ta)[1%0,70) < CNIE— tal,
and hence,

ElIY(t) = Y()|301.) < HKo+ Ky + Ky + K3} < C1?,

and the proof is complete.
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