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Abstract: In this paper, a second-order predefined-time terminal sliding mode (SPTSM) is
proposed, which is investigated for the practical applications of the speed regulation system
of a permanent magnet synchronous motor (PMSM) by using predefined-time stability
theory and Lyapunov stability theory. At first, we propose the SPTSM, which involves
the controller’s design by using the novel reaching law with predefined-time terminal
sliding mode (PTSM) and the novel sliding mode surface with PTSM. Second, we derive
the novel SPTSM controller for the universal second-order nonlinear single-input single-
output (SISO) system and the practical applications of the speed regulation system of the
PMSM separately. Then, numerical simulation results of the speed regulation system of the
PMSM are also included to check the effect of the theoretical results and the corresponding
parameters on the convergence rates, so that the results can be guidance for the selection
of SPTSM controller parameters. Finally, the dynamic responsiveness and robustness of
the system are validated through numerical simulations and experimental results. It has
been observed that the robust SPTSM controller, which is designed with the PTSM-PTSM,
referring to the sliding mode that involves a reaching law with PTSM and a sliding mode
surface with PTSM, exhibits superior performance.

Keywords: permanent magnet synchronous motor (PMSM); predefined-time terminal
sliding mode (PTSM); second-order predefined-time terminal sliding mode (SPTSM); speed
regulation system; nonlinear system

1. Introduction
A permanent magnet synchronous motor (PMSM) control system is a kind of typ-

ical nonlinear time-varying system [1–4]. High tracking accuracy, efficient dynamic re-
sponse, and strong robustness are considered as the main objects of PMSM control system
design [5,6]. So, some nonlinear system control methods are usually used in PMSM control
systems, which improve the control performance of PMSMs in different aspects based
on their advantages [7,8]. Among them, sliding mode control (SMC) has been widely
used in PMSMs and other nonlinear control systems because of its simple control system,
excellent dynamic response, and insensitivity to parameter disturbance and external dis-
turbance [9,10]. Its effectiveness has also been experimentally verified. It improves the
robustness of the system to the PMSM drive system with load disturbance and parameter
uncertainty, and can improve the control accuracy and response speed in the control system
of a PMSM [4,11,12].

Based on the theories of SMC, several representative reaching laws have been pro-
posed, including the constant reaching law, exponential reaching law, power reaching
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law, and general reaching law, all of which aim to achieve faster convergence rates [13,14].
These SMC laws all have discontinuous sign functions, which will inevitably cause the
chattering problem, and also easily affect the performance of the control system [15,16]. In
addition, the issue of chattering and the system’s convergence rate form a pair of mutu-
ally limiting contradictions that cannot be entirely eliminated, but can only be alleviated
to a certain extent [17]. The control problem can be reframed as a suitable approximate
linear–quadratic problem. Here, the coupling parameters are determined by the Riccati
equation [18–20]. To improve the reaching quality of SMC, terminal sliding mode control
(TSM) is proposed [21–23]. By introducing terminal attractors, TSM has no switching
function in the control system and effectively eliminates the chattering problem in the
convergence process [23], but it does not achieve the optimal convergence rate. However,
the fast terminal sliding mode (FTSM) is proposed to improve the convergence rate [24].

For control systems, the settling time is commonly used as a criterion to evaluate the
quality of the control system. Based on the settling time characteristics, control systems can
be categorized into three types: finite-time control [25–27], fixed-time control [14,28–30],
and predefined-time control [31–35]. Among them, the predefined-time terminal slid-
ing mode (PTSM) combines the advantages of both predefined time and TSM, serving
as the amalgamation, and its total settling time Tc for the system is determined by the
predefined-time parameter Tp, i.e., Tc(x0) ≤ Tp. Therefore, it has garnered widespread at-
tention, particularly in the realm of nonlinear control systems, where extensive research has
been conducted [33,35–37].

Motivated by the aforementioned discussion, we delve into the investigation of the
novel second-order predefined-time terminal sliding mode (SPTSM) controllers. These
controllers are dedicated to the conception and actualization of the integration of high-
order SMC strategies, predefined-time control, and fractional computation for second-order
nonlinear single-input single-output (SISO) systems. First, based on predefined-time syn-
chronization theory and Lyapunov stability theory, we propose the SPTSM, which involves
the controller’s design by using the novel reaching law with PTSM and the novel sliding
mode surface with PTSM for a second-order nonlinear SISO system. Second, we derive
the novel SPTSM controller for the universal second-order nonlinear SISO system and the
practical applications of the speed regulation system of a PMSM separately. Third, the
controllers and their respective parameters are meticulously designed and comprehensively
investigated for comparison. Then, the effectiveness of the SPTSM controllers is validated
through numerical simulations. Finally, an experiment platform for PMSM drive control is
established to verify the dynamic response and robustness of the speed regulation system
under the novel sliding modes.

The remainder of this article is organized as outlined below. In Section 2, we derive
the second-order state equation of the speed regulation system of a PMSM. Then, the
fundamental definitions and lemmas are included, and several novel theories, which
involve the SPTSM controllers for a second-order nonlinear SISO system, are proposed in
Section 3. The results of simulations and experiments are given in Section 4 to demonstrate
the dynamic response and robustness of the SPTSM controller. Section 5 provides a
conclusive overview and poses open problems for further exploration.

2. Mathematical Model
2.1. Mathematical Model of PMSM

An ideal PMSM neglects saturation of the motor core and neglects eddy currents and
hysteresis losses. The mathematical model of a PMSM on the d − q axis can be formulated
as follows [38].

Ld
did
dt

= −Rid + PnωmLqiq + ud (1)
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Lq
diq
dt

= −Riq − PnωmLdid − Pnωmψ f + uq (2)

J
dωm

dt
= −Bωm + Te − TL (3)

Te =
3
2

Pniq

(
id
(

Ld − Lq
)
+ ψ f

)
(4)

where R is the stator resistance; Pn is the number of pole pairs; ωm is the angular velocity;
ψ f is the rotor flux linkage; TL is the load torque; B is the viscous frictional coefficient;
J is the rotor inertia; Ld, Lq are the d-axis and q-axis stator inductance; ud, uq are the
d-axis and q-axis stator voltage, respectively; and id, iq are the d-axis and q-axis stator
current, respectively.

In this paper, we consider a surface PMSM as an example,

Ld = Lq = L (5)

where L is the stator inductance.
Equations (3) and (4) can be rewritten as follows.

Te =
3
2

Pnψ f iq (6)

dωm

dt
=

1
J

(
3
2

Pnψ f iq − Bωm − TL

)
(7)

2.2. Second-Order State Equation

Based on Equation (7), we define the state variables of the speed error for a PMSM
speed regulation system as follows.

x1 = ωre f − ωm (8)

where ωre f is the reference spee, which is a positive constant, and ωm is the actual speed of
the PMSM.

Here, we assume that TL is a constant or a quasi-static parameter with a rate of change
significantly smaller than that of the angular velocity of the PMSM.

The derivative of x1 is defined as x2, and the derivatives of x1, x2 are, respectively,
expressed as follows. 

.
x1 = − 1

J

(
3
2 Pnψ f iqre f − Bωm − TL

)
.

x2 = − 1
J

(
3
2 Pnψ f

diqre f
dt − B dωm

dt

) (9)

The second-order state equation of the speed regulation system of the PMSM can be
obtained as follows. { .

x1 = x2
.

x2 = − 1
J

(
3
2 Pnψ f u − B dωm

dt

) (10)

where u = diqre f /dt.

3. Fractional Robust Control Design
This section delineates the evolution of an investigation that is dedicated to the

conceiving and actualizing of an integration of high-order SMC strategies, predefined-
time control, and fractional computation within the speed regulation system of a PMSM.
Hence, a novel methodology, namely the SPTSM controller, founded on the novel reaching
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law with PTSM and the novel sliding mode surface with PTSM, is put forward. As far as
we are aware, this concept has hitherto remained unexamined.

3.1. Preliminaries

Consider the following nonlinear system equation [39]:

.
x = f (t, x; ρ) (11)

where x ∈ Rn is the system state variable, ρ ∈ Rb and
.
ρ = 0 are system parameters,

f : Rn → Rn is a function of a nonlinear system, and t ∈ [t0, ∞) is time variables, where
t0 ∈ [0, ∞), x0 = x(t0) is the initial value.

Definition 1 ([37,39–41]). Predefined-time synchronization.
Assuming that the system defined by Equation (11) possesses fixed-time stability, it is feasible to deduce

that f (t, x0; ρ) is capable of converging to the equilibrium point within a prescribed time frame, i.e.,

lim
t→T(ρ)

∥x(t)∥ (12)

where the settling time T(ρ) is solely determined by the parameter ρ, irrespective of the initial value
x0, and is globally bounded. If x0 ∈ Rn, there exist T(ρ) ∈ [0, ∞) and T(ρ) ≤ Tmax. Therefore,
the system defined by Equation (11) exhibits stability within a predefined time frame, specifically
achieving predefined-time synchronization.

Lemma 1 ([31]). The nonlinear system is characterized by non-Lipschitz continuity, given by
.
x = f (x, t), with f (0) = 0. Assume the existence of a Lyapunov function V(x), along with
positive real numbers A, B, Γ > 0, 0 < δ < 1, and 4BΓ = A2. This Lyapunov function V(x)
should be strictly positive for any nonzero x. Then, the following inequality can be satisfied:

.
V ≤ − 4

Tp A(1 − δ)

(
AV + B V

1+δ
2 + Γ V

3−δ
2

)
(13)

Therefore, the system defined as
.
x = f (x) exhibits predefined-time stability, with the settling time

being determined solely by the predefined-time parameter Tp. Then, the real settling time Tc(x0) ≤ Tp.

It is worth noting that the state variables of the closed-loop system can asymptoti-
cally converge to the equilibrium point by means of the Lyapunov theorem and LaSalle’s
invariance principle [42–44].

Lemma 2 ([31]). The PTSM for predefined-time synchronization is presented as follows:

s =
.
x + αx + β x

q
p + γ x2− q

p = 0 (14)

where the scalar variable x(t)is a real number, the scalar constants α, β, γ > 0, and the positive
integers q, p (q < p) are odd.

The system defined as
.
x = f (x) can exhibit predefined-time stability, provided that the

parameters specified in Equation (14) satisfy the inequalities outlined in Equation (15). In addition,
the settling time Tc is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp.

α ≥ 4
Tp

(
1− q

p

)
β ≥ 2µ

Tp

(
1− q

p

)
γ ≥ 2

Tpµ
(

1− q
p

)
(15)
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where Tp is predefined-time parameter, and µ > 0.

It is noteworthy to mention that the positive integers q and p in Equation (14) are odd
and solely the real solution is taken into account. Consequently, this ensures that the values
of the expression x, βxq/pand γ x2−q/p are consistently real numbers [45].

3.2. Controller Design for Second-Order Nonlinear SISO System

To further discuss practical applications of PTSM, we consider a second-order nonlin-
ear SISO system as follows [46]:{

d
dt x1(t) = x2(t)
d
dt x2(t) = f (x, t) + r(x, t)u(t)

(16)

where x1(t), x2(t) are system states, with the initial state values x1(0), x2(0), f (x) and
r(x) are known nonlinear functions, respectively, with smooth vector fields on R1, r(x) ̸= 0,
and u(t) ∈ R1, where u(t) is the control input.

There are usually two steps to design an SMC controller based on Lyapunov stability
theory [47]. The initial step involves designing a sliding mode surface, guaranteeing that
the system response meets the desired states when the plant operates within the sliding
surface. The second step involves creating switched feedback gains that drive the state
trajectory towards the sliding surface, which can be optimized by utilizing an appropriate
reaching law [46]. Then, the convergence process is divided into two corresponding phases
with the settling time Tc = Tc0 + Tc1. The first phase is the reaching motion phase, which
corresponds to the reaching process in sliding mode control with the settling time Tc1. The
second phase occurs when the system maintains a sliding mode motion under the control
law with the settling time Tc0.

3.2.1. The Novel Controller Design with PTSM-LSM

PTSM-LSM refers to the sliding mode design that involves a reaching law with PTSM
and a sliding mode surface with linear sliding mode (LSM).

Theorem 1. A novel reaching law with PTSM is proposed as follows.

d
dt

s(t) = −αs(t)− βs(t)
q
p − γs(t)2− q

p = 0 (17)

where α, β, γ > 0, q, p are positive odd integers, and q < p.
The novel reaching law s(t) can have predefined-time stability on the condition that the

parameters of Equation (17) meet the inequalities in Equation (15). In addition, the settling time
Tc(s0) required to transition from any initial state s(t0) ̸= 0 to the equilibrium state s(tc) = 0 on
the sliding mode is determined by the predefined-time parameter Tp, and Tc(s0) ≤ Tp.

Equation (17) can be rewritten as Equation (14). The proof for the predefined-time
stability of Equation (17) follows a similar approach to that outlined in Lemma 2. Therefore,
it will not be reiterated here.

It is worth noting that the novel reaching law with PTSM (Equation (17)) has
predefined-time stability, which will provide convenience for designing the parameters
to adjust the reaching speed of the variable index reaching law. In addition, the intro-
duction of the system state variable with no sign functions and the power order term
of the sliding mode function effectively mitigates the shortcomings associated with the
chattering phenomenon.
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Theorem 2. A novel approach to designing the controller (Equation (20)) for second-order nonlinear
SISO systems (Equation (16)) involves the application of PTSM-LSM.

u(t) = − 1
r(x, t)

(
f (x, t) + c x2 + α1 s1 + β1 s1

q1
p1 + γ1 s1

2− q1
p1

)
(18)

where α1, β1, γ1 > 0,q1, p1 are positive odd integers, and q1 < p1.
The systems in Equation (16) can have predefined-time stability on the condition that the

parameters of Equation (18) meet the following inequalities in Equation (19). In addition, the
settling time Tc1 for the reaching motion phase is determined by the predefined-time parameter
Tp1, and Tc1 ≤ Tp1. The settling time Tc0 for the sliding mode motion phase is determined by the
parameter c. Then, the total settling time Tc for the system (Equation (10)) is determined by the
predefined-time parameter Tp1 and Tc0, i.e., Tc(x0) ≤ Tc0 + Tp1, where Tc = Tc0 + Tc1.

α1 ≥ 4
Tp1

(
1− q1

p1

)
β1 ≥ 2µ1

Tp1

(
1− q1

p1

)
γ1 ≥ 2

Tp1 µ1

(
1− q1

p1

)
(19)

where µ1 =
√

β1 /
√

γ1 , µ1 > 0, Tp1 is the predefined-time parameter.

Proof of Theorem 2.
Step 1. Sliding mode surface
Based on the Lyapunov stability theory, a sliding mode surface with LSM is designed

as follows.
s1(t) =

.
x1(t) + cx1(t) (20)

where c satisfies the Hurwitz condition, i.e., c > 0.
Suppose the settling time Tc0, which refers to the phase of sliding mode motion under

the control law, is determined by the parameter c.
Step 2. Reaching law
The reaching law with PTSM is designed as follows according to Theorem 1.

d
dt

s1(t) = −α1 s1 − β1 s1

q1
p1 − γ1 s1

2− q1
p1 (21)

where α1, β1, γ1 > 0, q1, p1 are positive odd integers, and q1 < p1. The parameters specified
in Equation (20) adhere to the conditions outlined in Equation (19).

Then, the settling time Tc1 for the reaching motion phase is determined by the
predefined-time parameter Tp1, and Tc1 ≤ Tp1.

Step 3. Stability analysis
The Lyapunov function is designed as follows.

V(t) =
1
2

s1(t)
2 (22)

Then, the derivative of V(t) is derived by combining Equations (16), (18), and (20).

d
dt V(t) = s1(t)

( .
x2(t) + cx2(t)

)
= s1(t)( f (x, t) + r(x, t)u(t) + cx2(t))

= s1(t)
(
−α1 s1 − β1 s1

q1
p1 − γ1 s1

2− q1
p1

)
= −α1 s1(t)

2 − β1s1(t)
p1+q1

p1 − γ1 s1(t)
3p1−q1

p1

(23)
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Since both (p1 + q1) and (3p1 − q1) are positive even numbers, it can be inferred that
the inequalities s1(t)

(p1+q1)/p1 > 0 and s1(t)
(3p1−q1)/p1 > 0 in Equation (23) are valid, i.e.,

.
V(t) ≤ 0. Then, the stability of the second-order nonlinear SISO system (Equation (16)) has
been proved. □

3.2.2. The Novel Controller Design with PTSM-PTSM

PTSM-PTSM refers to the sliding mode design that involves a reaching law with PTSM
and a sliding mode surface with PTSM.

Theorem 3. A novel sliding mode surface with PTSM is proposed as follows.

s(t) = x2 + α0x1 + β0 x1

q0
p0 + γ0 x1

2− q0
p0 (24)

where α0, β0, γ0 > 0, q0, p0 are positive odd integers, and q0 < p0.
The novel sliding mode surface s(t) can have predefined-time stability on the condition that

the parameters of Equation (24) meet the inequalities in Equation (15). In addition, the settling time
Tc0(s(t0)) from any initial state s(t0) ̸= 0 to the equilibrium state s(tc) = 0 on the sliding mode
is determined by the predefined-time parameter Tp0, and Tc0(s(t1)) ≤ Tp0.

Equation (24) can be rewritten as Equation (14). The proof for the predefined-time
stability of Equation (24) follows a similar approach to that outlined in Lemma 2. Therefore,
it will not be reiterated here.

It is worth noting that the novel sliding mode surface with PTSM (Equation (24)) has
predefined-time stability, which will provide convenience for designing the parameters to
adjust the sliding mode motion of the variable index sliding mode surface.

Theorem 4. A novel approach to designing the SPTSM controller for second-order nonlinear SISO
systems (Equation (16)) involves the application of PTSM-PTSM, as in Equation (25).

u(t) = − 1
r(x, t)

 f (x, t) + α0 x2 +
β0 q0 x2 x1

q0
p0
−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0 + α1 s1 + β1 s1

q1
p1 + γ1 s1

2− q1
p1

 (25)

where αi, βi, γi > 0, qi, pi are positive odd integers, and qi < pi, with i = 0, 1.
The system in Equation (16) can have predefined-time stability on the condition that the

parameters of Equation (25) meet the following inequalities in Equation (26). In addition, the
settling time Tc1 for the reaching motion phase is determined by the predefined-time parameter
Tp1, and Tc1 ≤ Tp1. The settling time Tc0 for the sliding mode motion phase is determined by
the predefined-time parameter Tp0, and Tc0 ≤ Tp0. Then, the total settling time Tc for the system
(Equation (10)) is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp, where
Tc = Tc0 + Tc1, Tp = Tp0 + Tp1. 

αi ≥ 4
Tpi

(
1− qi

pi

)
βi ≥

2µi

Tpi

(
1− qi

pi

)
γi ≥ 2

Tpiµi

(
1− qi

pi

)
(26)

where µi =
√

βi /
√

γi , µi > 0, Tpi is the predefined-time parameter, with i = 0, 1.
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Proof of Theorem 4.
Step 1. Sliding mode surface
Based on Lyapunov stability theory, a sliding mode surface with PTSM is designed

the same as Equation (24) according to Theorem 3.
Suppose the settling time Tc0, which refers to the phase of sliding mode motion under

the control law, is determined by the predefined-time parameter Tp0, and Tc0 ≤ Tp0.
Then, the derivative of Equation (24) is derived as follows.

d
dt

s(t) =
.
x2 + α0 x2 +

β0 q0 x2 x1

q0
p0
−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0 (27)

Step 2. Reaching law
The reaching law with PTSM is designed the same as Equation (21) according to

Theorem 1.
Then, the settling time Tc1 for the reaching motion phase is determined by the

predefined-time parameter Tp1, and Tc1 ≤ Tp1.
Then, the total settling time Tc for the system (Equation (10)) is determined by the

predefined-time parameter Tp, and Tc(x0) ≤ Tp, where Tc = Tc0 + Tc1, Tp = Tp0 + Tp1.
Step 3. Stability analysis
The Lyapunov function is designed as follows.

V(t) =
1
2

s1(t)
2 (28)

Then, the derivative of V(t) is derived by combining Equation (16), (18), and (25).

d
dt V(t) = s1(t)

(
.
x2(t) + α0 x2 +

β0 q0 x2 x1

q0
p0

−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0

)

= s1(t)

(
f (x, t) + r(x, t)u(t) + α0 x2 +

β0 q0 x2 x1

q0
p0

−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0

)
= s1(t)

(
−α1 s1 − β1 s1

q1
p1 − γ1 s1

2− q1
p1

)
= −α1 s1(t)

2 − β1s1(t)
p1+q1

p1 − γ1 s1(t)
3p1−q1

p1

(29)

Since both (p1 + q1) and (3p1 − q1) are positive even numbers, it can be inferred that
the inequalities s1(t)

(p1+q1)/p1 > 0 and s1(t)
(3p1−q1)/p1 > 0 in Equation (29) are valid, i.e.,

.
V(t) ≤ 0. Then, the stability of the second-order nonlinear SISO system (Equation (16)) has
been proved. □

3.2.3. The Robust Controller Design with PTSM-PTSM

To further explore the practical application scope of the SPTSM controller (Equation (25)),
we consider an uncertain second-order nonlinear SISO system, as in Equation (30).{

d
dt x1 = x2
d
dt x2 = f (x, t) + r(x, t)u(t) + d(x, t)

(30)

where d(x, t) is the total uncertainty, which includes system parameter uncertainties and
external disturbances. It is assumed that this total uncertainty has an upper bound D, i.e.,
|d(x, t)| ≤ D. x1(t), x2(t) are system states, with the initial state values x1(0), x2(0). f (x)
and r(x) are known nonlinear functions, respectively, with smooth vector fields on R1,
r(x) ̸= 0, and u(t) ∈ R1, where u(t) is the control input.
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Based on Theorem 4, this paper presents a new approach to SPTSM for an uncertain
second-order nonlinear SISO system as Theorem 5.

Theorem 5. A novel approach to designing the robust SPTSM controller for uncertain second-
order nonlinear SISO systems (Equation (30)) involves the application of PTSM-PTSM, as in
Equation (31).

u(t) = − 1
r(x, t)

 f (x, t) + α0 x2 +
β0 q0 x2 x1

q0
p0
−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0 + α1 s1 + β1 s1

q1
p1 + γ1 s1

2− q1
p1

 (31)

where α1 > D/| s1|, αi, βi, γi > 0, qi, pi are positive odd integers, and qi < pi,with i = 0, 1.
The system in Equation (30) can have predefined-time stability on the condition that the

parameters of Equation (31) meet the following inequalities in Equation (32). In addition, the
settling time Tc1 for the reaching motion phase is determined by the predefined-time parameter
Tp1, and Tc1 ≤ Tp1. The settling time Tc0 for the sliding mode motion phase is determined by the
predefined-time parameter Tp0, and Tc0 ≤ Tp0. Then, the total settling time Tc for the system
(Equation (30)) is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp, where
Tc = Tc0 + Tc1, Tp = Tp0 + Tp1. 

αi ≥ 4
Tpi

(
1− qi

pi

)
βi ≥

2µi

Tpi

(
1− qi

pi

)
γi ≥ 2

Tpiµi

(
1− qi

pi

)
(32)

where µi =
√

βi /
√

γi , µi > 0, Tpi is the predefined-time parameter, with i = 0, 1.

Proof of Theorem 5 .
Step 1. Stability and convergence analysis
The Lyapunov function is designed as Equation (33).

V(t) =
1
2

s1
2 (33)

Combine Equations (16), (24), and (25). Then, the derivative of V(t) can be derived as
follows.

.
V(t) = s1

.
s1

= s1

(
.
x2 + α0 x2 +

β0 q0
p0

x2 x1

q0
p0
−1

+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0

)
= s1

 f (x, t) + r(x, t)u(t) + d(x, t) + α0 x2 +
β0 q0

p0
x2 x1

q0
p0
−1

+γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0


= s1

(
−α1 s1 − β1 s1

q1
p1 − γ1 s1

2− q1
p1 + d(x, t)

)
= −

(
α1 − d(x,t)

s1

)
s1

2 − β1s1

p1+q1
p1 − γ1 s1

3p1−q1
p1

= −α′1 s1
2 − β1s1

p1+q1
p1 − γ1 s1

3p1−q1
p1

(34)

where α′1 = α1 − d(x, t)/ s1.
It follows that the existence of |d(x, t)| ≤ D and α1 > D/| s1| is equivalent to the

existence of α′1 > 0. Since both (p1 + q1) and (3p1 − q1) are positive even numbers, the
two power terms in Equation (34) satisfy s1

(p1+q1)/p1 > 0 and s1
(3p1−q1)/p1 > 0, such



Fractal Fract. 2025, 9, 180 10 of 23

that
.

V(t) ≤ 0 holds. Since the stability and convergence analysis is achieved, the un-
certain system (Equation (30)), with the robust SPTSM controller (Equation (31)), has
Lyapunov stability.

On further analysis, however, it was noticed that there is the existence of α1 > D/| s1|,
i.e., | s1| > D/α1; then, the system state reaches the neighborhood ∆ of the sliding mode
surface s1 = 0.

∆ =
{

x : | s1| ≤ D
α1

}
(35)

This is such that if there exists a sufficiently large value of scalar α1, the neighborhood
∆ of the sliding mode surface s1 = 0 can be made small enough.

Step 2. Predefined-time stability analysis
The expression of Equation (34) can be written as follows:

.
V(t) = −

(
α′1 V + β1 V

1+δ
2 + γ1 V

3−δ
2

)
(36)

where δ = q/p, 0 < δ < 1.
Comparing to the parameter condition Equation (15) for Lemma 2, the system param-

eter condition Equation (37) for the Lyapunov function Equation (36) is derived.
α′1 ≥ 4

Tp(1−δ)

β1 ≥ 2
√

B
Tp

√
Γ (1−δ)

γ1 ≥ 2
√

Γ
Tp

√
B (1−δ)

(37)

It follows that the condition in Equation (37) is equivalent to the condition in
Equation (15), with µ =

√
B /

√
Γ , µ > 0. The detailed proof process will not be

elaborated here.
Then, the predefined-time stability analysis is achieved and the condition

Equation (32) is derived. □

3.3. SPTSM Controller Design for Speed Regulation System of PMSM

In this section, we design the SPTSM controller for the second-order state equation of
the speed regulation system of a PMSM (Equation (10)) with PTSM-PTSM.

Based on Theorem 5, the following robust controller (Equation (38)) for the speed
regulation system (Equation (10)) is designed with SPTSM.

iqre f =
2J

3Pnψ f

∫ t

0

1
J

B
.

ωm + α0 x2 +
β0 q0 x2 x1

q0
p0
−1

p0
+ γ0

(
2 − q0

p0

)
x2 x1

1− q0
p0 + α1 s1 + β1 s1

q1
p1 + γ1 s1

2− q1
p1

dτ (38)

where α1 > D/| s1|, αi, βi, γi > 0, qi, pi are positive odd integers, and qi < pi, with i = 0, 1.
The systems in Equation (10) can have predefined-time stability on the condition

that the parameters specified in the robust controller (Equation (38)) adhere to the set of
inequalities as stated in Equation (32). In addition, the settling time Tc1 for the reaching
motion phase is determined by the predefined-time parameter Tp1, and Tc1 ≤ Tp1. The
settling time Tc0 for the sliding mode motion phase is determined by the predefined-
time parameter Tp0, and Tc0 ≤ Tp0. Then, the total settling time Tc for the system
(Equation (10)) is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp,
where Tc = Tc0 + Tc1, Tp = Tp0 + Tp1.

Equation (38) is equivalent to Equation (31). The proof for the predefined-time stability
of controller Equation (38) follows a similar approach to that outlined in Theorem 5.
Therefore, it will not be reiterated here.
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A block diagram of the SPTSM controller (Equation (38)) design with PTSM-PTSM is
presented in Figure 1.
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Inductance (ph-ph) 𝐿  0.708 ± 10% mH 

Permanent-magnet flux linkage 𝜓𝑓  1.56 × 10−2 Wb 

Inertia 𝐽  2.9 × 10−4 kg⋅m2 

Maximum speed. 𝑁𝑚𝑎𝑥 3 × 103 r/min 

Figure 1. Block diagram of the SPTSM controller design with PTSM-PTSM.

4. Results and Discussion
The novel controllers for the second-order state equation of the speed regulation

system of a PMSM (Equation (10)) can be used to control the speed loop current iqre f ,
provided that the rest of the system has been fully verified. In the following sections, the
simulation and experiment results of the controller for the second-order state equation
of the speed regulation system of a PMSM (Equation (10)) will verify the effectiveness of
PTSM. The control block diagram of the PMSM control system is shown in Figure 2.
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4.1. Parameters of PMSM

The parameters of the PMSM used for simulation and experiment validation are
shown in Table 1.

Table 1. System parameters of the PMSM.

Name Symbol Value and Unit

Maximum power Pmax 400 W
DC-link voltage UDC 48 V

Number of pole pairs Pn 4
Resistance (ph-ph) R 0.15 ± 10% Ω
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Table 1. Cont.

Name Symbol Value and Unit

Inductance (ph-ph) L 0.708 ± 10% mH
Permanent-magnet flux

linkage ψ f 1.56 × 10−2 Wb

Inertia J 2.9 × 10−4 kg·m2

Maximum speed. Nmax 3 × 103 r/min

4.2. Influence of Controller Parameters

Based on Theorem 5, the SPTSM controller (Equation (38)), which exhibits predefined-
time stability, is subject to seven crucial factors, Tp0, µ0, q0/p0, Tp1, µ1, q1/p1, and
initial states. The variable under investigation is the sole factor specified in each group of
experiments for comparison. Then, we design the parameters identically, with the exception
of a sole factor specified for each group, and establish an identical initial value to guarantee
fairness. The comparative simulation experiments for each factor are individually applied
to three groups.

It is worth noting that PTSM-PTSM, which makes some improvements in the design of
the sliding surface based on PTSM-LSM, has a better control effect in theory. Therefore, we
focus on PTSM-PTSM in this section. In addition, the main content of this section focuses
on several factors that have a significant impact on the effects of system convergence, and
other factors are not discussed here.

4.2.1. Comparison Results of Different Tp0

The parameters that are specified in the robust controller (Equation (38)) adhere to
the set of inequalities as stated in Equation (32), which are, respectively, designed the
same in the three comparative groups as µ0 = 0.5, q0/p0 = 3/5, Tp1 = 0.1, µ1 = 0.1,
and q1/p1 = 3/5. For the variable under investigation, the value of the parameter of
predefined-time Tp0 is assigned as Tp0(a) = 0.3, Tp0(b) = 0.6, and Tp0(c) = 0.9, respectively,
in each comparative group.

The value of parameters that are not considered as subjects of this study in the con-
troller (Equation (38)) for simulations are calculated by considering the inequalities with an
equal sign in Equation (32), as presented in Table 2.

Table 2. The parameters of the controller (Equation (38)) with different Tp0.

Group α0 β0 γ0 q0/p0 α1 β1 γ1 q1/p1

(a) 33.33 8.33 33.33 0.6 100 5 500 0.6
(b) 16.67 4.17 16.67 0.6 100 5 500 0.6
(c) 11.11 2.78 11.11 0.6 100 5 500 0.6

The reference speed Nre f is set to 1000 r/min in the simulations. The PMSM starts
with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. Then, the load increases suddenly to 1 N·m at 0.3 s.

The comparison curves of different Tp0 are presented in Figure 3. At first, the relationship

among the total convergence times is Tc(a) <
(

Tp0(a) + Tp1(a)

)
, Tc(b) <

(
Tp0(b) + Tp1(b)

)
,

Tc(c) <
(

Tp0(c) + Tp1(c)

)
, which verifies the conclusion that the total settling time Tc for

the system is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp, where
Tc = Tc0 + Tc1, Tp = Tp0 + Tp1. Then, the total settling time Tc(a) < Tc(b) < Tc(c) indicates that
as the predefined-time parameter Tp0 of the novel sliding surface with PTSM increases, the total
settling time Tc of the control system increases.
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4.2.2. Comparison Results of Different Tp1

The parameters that are specified in the robust controller (Equation (38)) adhere to
the set of inequalities as stated in Equation (32), which are, respectively, designed the
same in the three comparative groups as Tp0 = 0.3, µ0 = 0.5, q0/p0 = 3/5, µ1 = 0.1,
and q1/p1 = 3/5. For the variable under investigation, the value of the parameter of
predefined-time Tp1 is assigned as Tp1(a) = 0.1, Tp1(b) = 0.5, and Tp1(c) = 0.9, respectively,
in each comparative group.

The value of parameters that are not considered as subjects of this study in the con-
troller (Equation (38)) for simulations are calculated by considering the inequalities with an
equal sign in Equation (32), as presented in Table 3.

The reference speed Nre f is set to 1000 r/min in the simulations. The PMSM starts
with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. Then, the load increases suddenly to 1 N·m at 0.35 s.

Table 3. The parameters of the controller (Equation (38)) with different Tp1.

Group α0 β0 γ0 q0/p0 α1 β1 γ1 q1/p1

(a) 33.33 8.33 33.33 0.6 100 5 500 0.6
(b) 33.33 8.33 33.33 0.6 20 1 100 0.6
(c) 33.33 8.33 33.33 0.6 11.11 0.56 55.56 0.6
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The comparison curves of different Tp1 are presented in Figure 4. At first, the relationship

among the total convergence times is Tc(a) <
(

Tp0(a) + Tp1(a)

)
, Tc(b) <

(
Tp0(b) + Tp1(b)

)
,

Tc(c) <
(

Tp0(c) + Tp1(c)

)
, which verifies the conclusion that the total settling time Tc for

the system is determined by the predefined-time parameter Tp, and Tc(x0) ≤ Tp, where
Tc = Tc0 + Tc1, Tp = Tp0 + Tp1. Then, the total settling time Tc(a) < Tc(b) < Tc(c) indicates
that as the predefined-time parameter Tp1 of the novel reaching law with PTSM increases, the
total settling time Tc of the control system increases.

Fractal Fract. 2025, 9, x FOR PEER REVIEW 14 of 24 
 

 

𝑇𝑝1(𝑏)), 𝑇𝑐(𝑐) < (𝑇𝑝0(𝑐) + 𝑇𝑝1(𝑐)), which verifies the conclusion that the total settling time 

𝑇𝑐 for the system is determined by the predefined-time parameter 𝑇𝑝, and 𝑇𝑐(𝑥0) ≤ 𝑇𝑝, 

where 𝑇𝑐 = 𝑇𝑐0 + 𝑇𝑐1, 𝑇𝑝 = 𝑇𝑝0 + 𝑇𝑝1. Then, the total settling time 𝑇𝑐(𝑎) < 𝑇𝑐(𝑏) < 𝑇𝑐(𝑐) in-

dicates that as the predefined-time parameter 𝑇𝑝1 of the novel reaching law with PTSM 

increases, the total settling time 𝑇𝑐 of the control system increases. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Comparison results of different 𝑇𝑝1. (a) Speed tracking, (b) state responses, (c) control 

inputs, and (d) phase trajectories. 

4.2.3. Comparison Results of Different 𝜇0 

The parameters that are specified in the robust controller (Equation (38)) adhere to 

the set of inequalities as stated in Equation (32), which are, respectively, designed the same 

in the three comparative groups as 𝑇𝑝0 = 0.3 , 𝑞0/𝑝0 = 3/5 , 𝑇𝑝1 = 0.1 , 𝜇1 = 0.1 , and 

𝑞1/𝑝1 = 3/5. For the variable under investigation, the value of parameter 𝜇0 is assigned 

as 𝜇0(𝑎) = 0.3, 𝜇0(𝑏) = 1.0, and 𝜇0(𝑐) = 1.5, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, in each comparative group. 

The value of parameters that are not considered as subjects of this study in the con-

troller (Equation (38)) for simulations are calculated by considering the inequalities with 

an equal sign in Equation (32), as presented in Table 4. 

Table 4. The parameters of the controller (Equation (38)) with different 𝜇0. 

Group 𝜶𝟎 𝜷𝟎 𝜸𝟎 𝒒𝟎/𝒑𝟎 𝜶𝟏 𝜷𝟏 𝜸𝟏 𝒒𝟏/𝒑𝟏 

(a) 33.33 5.00 55.56 0.6 100 5 500 0.6 

(b) 33.33 16.67 16.67 0.6 100 5 500 0.6 

(c) 33.33 25.00 11.11 0.6 100 5 500 0.6 

Figure 4. Comparison results of different Tp1. (a) Speed tracking, (b) state responses, (c) control
inputs, and (d) phase trajectories.

4.2.3. Comparison Results of Different µ0

The parameters that are specified in the robust controller (Equation (38)) adhere to the
set of inequalities as stated in Equation (32), which are, respectively, designed the same
in the three comparative groups as Tp0 = 0.3, q0/p0 = 3/5, Tp1 = 0.1, µ1 = 0.1, and
q1/p1 = 3/5. For the variable under investigation, the value of parameter µ0 is assigned as
µ0(a) = 0.3, µ0(b) = 1.0, and µ0(c) = 1.5, respectively, in each comparative group.

The value of parameters that are not considered as subjects of this study in the con-
troller (Equation (38)) for simulations are calculated by considering the inequalities with an
equal sign in Equation (32), as presented in Table 4.

The reference speed Nre f is set to 1000 r/min in the simulations. The PMSM starts
with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. Then, the load increases suddenly to 1 N·m at 0.15s.
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Table 4. The parameters of the controller (Equation (38)) with different µ0.

Group α0 β0 γ0 q0/p0 α1 β1 γ1 q1/p1

(a) 33.33 5.00 55.56 0.6 100 5 500 0.6
(b) 33.33 16.67 16.67 0.6 100 5 500 0.6
(c) 33.33 25.00 11.11 0.6 100 5 500 0.6

From the comparison curves of different µ0 presented in Figure 5, the relationship
among the total convergence times is Tc(a) ≈ Tc(b) ≈ Tc(c), which indicates that the
parameter µ0 of the novel sliding surface with PTSM does not affect total settling time Tc of
the system, but it will change the convergence rate and phase trajectories. Then, the control
output iqre f becomes more gradual when the value of µ0 decreases, which is beneficial for
the control system.
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4.2.4. Comparison Results of Different δ0

The parameters that are specified in the robust controller (Equation (38)) adhere to
the set of inequalities as stated in Equation (32), which are, respectively, designed the
same in the three comparative groups as Tp0 = 0.3, µ0 = 0.5, Tp1 = 0.1, µ1 = 0.1, and
q1/p1 = 3/5. For the variable under investigation, the value of parameter q0/p0 is assigned
as δ0(a) = 3/5, δ0(b) = 5/7, and δ0(c) = 7/9, respectively, in each comparative group.



Fractal Fract. 2025, 9, 180 16 of 23

The value of parameters that are not considered as subjects of this study in the con-
troller (Equation (38)) for simulations are calculated by considering the inequalities with an
equal sign in Equation (32), as presented in Table 5.

Table 5. The parameters of the controller (Equation (38)) with different δ0, where δ0 = q0/p0.

Group α0 β0 γ0 q0/p0 α1 β1 γ1 q1/p1

(a) 33.33 8.33 33.33 0.600 100 5 500 0.6
(b) 46.67 11.67 46.67 0.714 100 5 500 0.6
(c) 60.00 15.00 60.00 0.778 100 5 500 0.6

The reference speed Nre f is set to 1000 r/min in the simulations. The PMSM starts
with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. Then, the load increases suddenly to 1 N·m at 0.35 s.

From the comparison curves of different δ0 presented in Figure 6, the relationship
among the total convergence times is Tc(a) > Tc(b) > Tc(c), which indicates that the smaller
the value of the parameter δ0 of the novel sliding surface with PTSM is, the longer it takes
to reach convergence.
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4.3. Comparative Simulation
4.3.1. Comparative Controllers Design

For comparison, we introduce the FTSM to design the controllers for the second-order
state equation of the speed regulation system of a PMSM (Equation (10)) with FTSM-
LSM and FTSM-FMSM. The FTSM-LSM refers to the sliding mode design that involves a
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reaching law with FTSM and a sliding mode surface with linear sliding mode (LSM). The
FTSM-FTSM, which makes some improvements in the design of the sliding surface based
on FTSM-LSM, refers to the sliding mode design that involves a reaching law with FTSM
and a sliding mode surface with FTSM.

1. Controller design with PTSM-LSM

Based on Theorem 2, the following controller (Equation (39)) for the system in
Equation (10) is designed with PTSM-LSM.

iqre f =
2J

3Pnψ f

∫ t

0

(
1
J

B
.

ωm + c x2 + α1 s1 + β1 s1

q1
p1 + γ1 s1

2− q1
p1

)
dτ (39)

where α1, β1, γ1 > 0, q1, p1 are positive odd integers, and q1 < p1.
Equation (39) is equivalent to Equation (18). The proof for the predefined-time stability

of the controller in Equation (39) follows a similar approach to that outlined in Theorem 2.
Therefore, it will not be reiterated here.

2. Controller design with FTSM-LSM

The following controller Equation (40) for the system in Equation (10) is designed
with FTSM-LSM.

iqre f =
2J

3Pnψ f

∫ t

0

(
1
J

B
.

ωm + c x2 + α1 s1 + β1 s1

q1
p1

)
dτ (40)

where α1, β1, γ1 > 0, q1, p1 are positive odd integers, and q1 < p1.
It should be noted that the difference between the controllers of Equations (38) and (40)

lies in the fact that the controller in Equation (40) has finite-time stability.

3. Controller design with FTSM-FTSM

The following controller (Equation (41)) for the system in Equation (10) is designed
with FTSM-FTSM.

iqre f =
2J

3Pnψ f

∫ t

0

1
J

B
.

ωm + α0 x2 +
β0 q0 x2 x1

q0
p0
−1

p0
+ α1 s1 + β1 s1

q1
p1

dτ (41)

where αi, βi, γi > 0, qi, pi are positive odd integers, and qi < pi, where i = 0, 1.
It should be noted that the difference between the controllers of Equations (38) and (41)

lies in the fact that the controller in Equation (41) has finite-time stability.

4.3.2. Simulation Results and Discussion

In this section, we will compare the simulation results of the four different sliding
modes: PTSM-PTSM, PTSM-LSM, FTSM-FTSM, and FTSM-LSM. To ensure a fair compari-
son, we have designed the relevant parameters of the conditions in Equations (19) and (26)
for various sliding mode functions as Tp0 = 0.3, µ0 = 0.5, q0/p0 = 3/5, Tp1 = 0.1, µ1 = 0.1,
and q1/p1 = 3/5.

The parameters of the four controllers (Equations (38)–(41)) used for simulation
validation, which are calculated by considering the inequalities with an equal sign in
Equations (19) and (26), are designed as α0 = 33.33, β0 = 8.33, γ0 = 33.33, q0/p0 = 3/5,
α1 = 100, β1 = 5, γ1 = 500, q1/p1 = 3/5, and c = 50.

The reference speed Nre f is set to 1000 r/min in the simulations. The PMSM starts
with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. Then, the load increases suddenly to 1 N·m at 0.2 s.
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From the comparative simulation results shown in Figure 7, the following conclusions
can be drawn. In comparison to the speed regulation system controlled by four different
sliding modes, PTSM-PTSM has a shorter settling time to reach the stable states, and all of
them achieve the steady state without overshoot. When the load torque changes suddenly,
the speed fluctuations under PTSM-PTSM are smallest, as illustrated in Figure 7a. In
addition, both PTSM-LSM and FTSM-LSM share the same sliding surface, but they follow
different phase trajectories, where PTSM-LSM achieves a higher convergence rate due
to its utilization of the novel reaching law with PTSM. Similarly, both PTSM-PTSM and
PTSM-LSM use the same reaching law, but they follow different phase trajectories, where
PTSM-PTSM achieves a higher convergence rate due to its utilization of the novel sliding
surface with PTSM.
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4.4. Comparative Experiments

To further validate the theoretical analysis and the proposed control method, an
experiment platform for PMSM drive control shown in Figure 8 is established. The control
system hardware is equipped with a 32-bit single-chip Aurix TriCore-based microcontroller
TC275. In this section, the platform primarily aims to verify the dynamic response and
robustness of the speed regulation system under PTSM-PTSM, PTSM-LSM, FTSM-FTSM,
and FTSM-LSM.
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To ensure a fair comparison, we have designed the relevant parameters of the con-
ditions in Equation (26) for various sliding mode functions as Tp0 = 1.2, µ0 = 0.6,
q0/p0 = 3/5, Tp1 = 3.5, µ1 = 0.01, and q1/p1 = 3/5.

The parameters of the four controllers (Equations (38)–(41)) used for experiment valida-
tion are calculated by considering the inequalities with an equal sign in
Equation (26) as α0 = 8.333, β0 = 2.5, γ0 = 6.944, q0/p0 = 3/5, α1 = 2.857, β1 = 0.014,
γ1 = 142.9, q1/p1 = 3/5, and c = 10.

4. Dynamic responses test

The reference speed Nre f is set to 1000 r/min in the comparative experiments. The PMSM
starts with only the inherent load TLin and the inherent viscous frictional coefficient Bin of the
system. The parameters Bin and TLin are, respectively, designed as Bin = 1.852× 10−4 N·m·s
and TLin = 6.658× 10−2 N·m.

5. Robust test

The second experiment is conducted to validate the robustness of the speed control
system with four distinct control strategies. The PMSM is running at a steady state of
1000 r/min, and the load increases suddenly.

In motor-related tests, the electronic load often serves as a convenient substitute for
simulating mechanical loads [48]. Thus, in this paper, a variable resistor is employed as
the electronic load, as shown in Figure 8. Here, we set the external electronic load as a
resistor with a resistance of Rex = 10Ω. Then, the parameters Bex and TLex are, respectively,
designed as Bex = 1.071 × 10−3 N·m·s and TLex = 5.399 × 10−2 N·m.

The step response and load disturbance response of the four different control methods
are shown in Figure 9; the reference speed can be tracked faster by PTSM-PTSM than
others, and the states under PTSM-PTSM achieve the steady state without overshoot.
When the load torque changes suddenly, PTSM-PTSM exhibits a minimal fluctuation in
rotation speed.

From the control inputs of the comparative experimental results shown in Figure 10,
we can draw the following conclusions. In the startup phase, a larger output of control
input current can achieve faster convergence and a higher convergence rate. In the phase
of load disturbance, PTSM-PTSM demonstrates the fastest performance in controlling the
response speed of the input current. The specific convergence time of PTSM-PTSM is 35.2%
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less than that of PTSM-LSM, 27.7% less than that of FTSM-FTSM, and 34.8% less than that
of FTSM-LSM.
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5. Conclusions
In this paper, the SPTSM controller design with PTSM-PTSM for a second-order non-

linear SISO system is proposed, which has been investigated for the practical applications
of the speed regulation system of PMSM. We focus on the impact of the relevant parameters
of the SPTSM controller with PTSM-PTSM on the control effectiveness, which provides
certain guidance for the selection of design parameters in controller design. The dynamic
responsiveness and robustness of the system are validated through numerical simulations
and experimental results. It has been observed that the robust SPTSM controller, which is
designed with PTSM-PTSM, exhibits superior performance.
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The main conclusions are as follows:

(1) This paper investigates the influence of several parameters in the second-order
predefined-time terminal sliding mode (SPTSM), which significantly impact the
system convergence effect and the convergence speed. The experimental results
indicate that the conclusion offers certain guidance for the selection of parameters in
controller design.

(2) By comparing the control input signals of four different control methods, both the
simulation and the experimental results demonstrate that in the initial stage without
an external load, a larger control input leads to a higher convergence rate of the
system state. Among these methods, the PTSM-PTSM method shows a relatively
faster convergence rate of the system state. Specifically, its experimental convergence
time is 35.2% less than that of PTSM-LSM, 27.7% less than that of FTSM-FTSM, and
34.8% less than that of FTSM-LSM.

(3) When comparing the step responses and robust test with the load disturbance of
four different control methods, the simulation and experimental results show that
the following:

(a) In the step responses stage, the control law of the speed regulation system of
PMSM based on PTSM-PTSM has a faster convergence time than the other
three control methods and does not exhibit overshoot during the process of
converging to the stable state.

(b) In the robust test with the load disturbance stage, the PTSM-PTSM method
demonstrates better robustness than other three control methods.

It is worth highlighting that, according to our current understanding, this is the
inaugural paper exploring the predefined-time stability of second-order nonlinear SISO
systems, with a focus on the practical implications for the speed regulation system of
a PMSM. Building on the current findings, our future work will focus on the following
prioritized aspects:

(1) It is anticipated that the methodologies employed in this paper will be valuable in
extending their application to other domains.

(2) The SPTSM, which is proposed in this paper, is capable of being extrapolated to
high-order nonlinear control systems.

(3) The motor control system is governed by both the speed loop and the current loop.
However, in this study, the current control system was not the primary focus. In the
subsequent research, we will delve deeper into the control problems of the Multiple-
Input Multiple-Output (MIMO) system based on SMC within the PMSM current
loop system.
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