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Abstract: This paper presents a generalized fractional Stockwell transform (GFST), extend-
ing the classical Stockwell transform and fractional Stockwell transform, which are widely
used tools in time—frequency analysis. The GFST on L?(R, C) is defined as a convolution
consistent with the classical Stockwell transform, and the fundamental properties of GFST
such as linearity, translation, scaling, etc., are discussed. We focus on establishing an or-
thogonality relation and derive an inversion formula as a direct application of this relation.
Additionally, we characterize the range of the GFST on L?(R,C). Finally, we prove an
uncertainty principle of the Heisenberg type for the proposed GFST.

Keywords: fractional stockwell transform; generalized fractional Stockwell tranform;
special affine Fourier transform; Stockwell transform; convolution; uncertainty principle

MSC: 42A38; 42A85; 44A15; Secondary 44A05

1. Introduction

It is well known that the Fourier transform is an efficient tool in signal processing.
To address the limitations of the Fourier transform, researchers have explored various

integral transforms that extend the classical Fourier transform. In [1], Namias introduced
7T

j/
this fractional Fourier transform reduces to the Fourier transform. The fractional Fourier

the fractional Fourier transform, which depends on a real parameter «. When & =

transform has applications in optics [2], quantum mechanics [1,3], and signal processing [4].
The linear canonical transform [5], a generalization of both the Fourier and fractional Fourier
transformes, is used in quantum mechanics [6] and optical systems [7].

The special affine Fourier transform (SAFT), introduced by Abe and Sheridan [8-10],
stands out as a more general and versatile approach among the generalizations of the
Fourier transform. The SAFT presents a time—frequency representation of a signal in
quantum mechanics and optics, characterized by six real parameters a,b, c,d, p,and q, with
ad—bc = 1 and b # 0. Notably, the SAFT includes the generalizations of the Fourier
transform, such as fractional Fourier transform [1,2] and linear canonical transform [5,11], as
special cases determined by specific parameter choices. It also includes pivotal transforms
such as Laplace, Fresnel [12], Bargmann, Gauss—Weierstrass, offset Fourier, and offset
fractional Fourier [13] within its framework. For more details, one can refer to [14]. Also,
the special affine Fourier transform has been discussed on quaternion-valued functions [15]
and on octonian-valued functions [16]. Using the SAFT, there are many hybrid transforms
in the literature—for instance, see windowed SAFT [17], short-time SAFT [18], special affine
wavelet transform [19], and special affine Stockwell transform [20].
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In this paper, we introduce a hybrid integral transform involving SAFT and Stockwell
transform. We now briefly recall the theory of Stockwell transform from the literature.
Stockwell et al. [21] introduced the Stockwell transform, commonly referred as the S
transform, which employs a Gaussian window function that dilates and translates to
achieve localization of the signal f € L?(IR). For a one-dimensional signal f, it is defined
as follows.

-

S(t,t) = ff(x) 2T G (T, 1) e R x R*.

In 2008, Du et al. [22] introduced a Stockwell transform using a general window function
¢ € L1(R) n L2(R) instead of a Gaussian function and obtained an inversion formula. The
Stockwell transform with a general window function is given as followers:

5p(6,8) = 2L [ e f()GEGe—B)) dx, ¥ (b,E) e Rx ", 1)
V2 JR
The Stockwell transform is widely applied in geophysics [23] to provide more detailed
information about spectral (frequency) components.

Hybrid versions of the S transform with the kernels of the generalized Fourier trans-
forms have been extensively studied. Xu and Guo [24] extended the classical Stockwell
transform by introducing the fractional S transform, which incorporates a single real pa-
rameter. Du et al. [25] also explored the applications of fractional S transform in seismic
data analysis. The paper in [26] introduced a fractional Stockwell transform with a general
window function instead of a particular window function as in [24,25]. More recently,
the fractional S transform has been investigated in higher-dimensional Euclidean spaces
and quaternion function spaces [27,28]. In this direction, the linear canonical Stockwell
transform (LCST) [29-32] and offset linear canonical Stockwell transform [33] have also
been recently investigated.

This paper aims to develop a novel integral transform called generalized fractional
Stockwell transform (GFST), by utilizing the kernel of the special affine Fourier transform
(SAFT). Hence, the transform may also be referred as the special affine Stockwell transform
(SAST). To achieve this, we apply the special affine convolution introduced in [18]. Using
the SAFT kernel in the GFST definition, the transform gains greater flexibility and broadens
the applicability of the Stockwell transform across various fields. It is worth noting that [20]
addresses a form of the special affine Stockwell transform. As one of the SAFT parameters,
g, is not included and the parameter p is involved only in the constant factor ¢25 P pz, the
transform introduced in [20] is essentially a linear canonical S transform with an additional
constant factor involving p.

The structure of this paper is organized as follows. Section 2 introduces the funda-
mental notations, definitions, and results. In Section 3, the definition of the generalized
fractional Stockwell transform (GFST) and its key theorems are presented. This section
emphasizes proving Parseval’s identity and, based on that, deriving the inversion formula
for the GFST. Additionally, a theorem that characterizes the range of the GFST is included.
Section 4 then addresses another key topic in the paper: the uncertainty principle. In this
section, we demonstrate the uncertainty principle related to the GFST, using the uncertainty
principle of the special affine Fourier transform and several supporting lemmas.

2. Preliminaries

Throughout this article, the symbol A denotes the six real parameters a,b,c,d, p, and g
such that ad — bc = 1 with b # 0 and the symbol A denotes the number bg — dp. We denote any
A that satisfies the above-stated condition as the parameter matrix with a representation
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A= ( Z Z s ) Furthermore, we make use of the following notations from the paper [18]
for easier computation.

Hpp(X) = exp (i%x) ;o Qa(x)=exp (ﬁ[de + ZAx]), (2)
D, p(x) =exp (i;—bxz) ; Ya(x)=exp (zib[dx2 -2px + 2/\x]), 3)

As usual, the set of reals, non-zero reals, and complex numbers are denoted by R,R*, and
C, respectively. The space of integrable and square-integrable complex valued functions on
R are given by L!(R,C) and L?(R, C), respectively, with the norm and inner product

1 1 _
|f|1=mﬂzlf(x)ldx;(f,h)=mef(X)h(x)dX-

We denote the Hilbert space of square-integrable complex valued functions on R x R* by
L*(R x R*,C) with the inner product given by

46

1) =5 [ [FeORGD .

R* R

For x >0 and t € R, the dilation and translation of a function f are given by

(Dif)(x) =xf(kx); (Tef)(x) = f(x 1),

respectively.
Next, we recall necessary definitions and required results. If the Fourier transform of
f is given by

£ 1 —ix
(FN@ =F©) = —— ﬁ! Fx)e ™ dx, VE e R,

then we have the following well-known results [34]:
L Ifg(x) = f(x) = f(-2), then §(&) = ().
2. Ifg(x) = f(xx) and x > 0, then ¢(¢) = (D1 f)(8)-
According to Ref. [14], for f € L}(R, C), the special affine Fourier transform (SAFT) of
f, denoted by Sp f, is given by

(S = [ fOKa(xy)dx, y <R,
R

where K (x,y) = ﬁ D5 (x) QA(Y) H(p-y)p (%)
d -b|bg-dp
- a |cp-aq
is a parameter matrix and the inverse of Sy is given by Sp«. Precisely, the inversion formula

Notably, if A* = ( ), then A* is also a parameter matrix whenever A

for SAFT is given as follows.

Theorem 1 (Inversion Formula for SAFT [10]). If f,Sa f € LY(R,C), then

f@) = [(SHWKa ) dy = [ (SAHWKa(x,y)dyaeonE.
R R



Fractal Fract. 2025, 9, 166

4of 16

Theorem 2 (Parseval’s identity for SAFT [14]). The special affine Fourier transform Sp on
L2(R, C) satisfies the following:

(f.9)2we) = (SAf, SAg)12r2 0
Vf,g e [3(R2,C).

Definition 1 ([18]). Suppose that f € LP(R,C), p =10r2, g€ L'(R,C), and A is a parameter
matrix. We define a novel special affine convolution or a generalized fractional convolution as
follows.

q)u,b(x)
|b|

(f @A 8)(x) = (@4 * ¥ag)(x), Va R,
where (I« 12) (x) = = [ In (9o =) dy.

Theorem 3 (Convolution Theorem for SAFT [18]). Let f € LP(R,C),p =1,2and g e L'(R,C).
Then, Sp(f ®a &) = Qa (Saf) (Saga), where ga = g Popp YA

3. Generalized Fractional Stockwell Transform
For a given parameter matrix A, (y,{) e RxR*,and 0+ g ¢ LY(R, C)n LZ(R,(C), we
let 8?,5(96) =161 8(8(x =) Pap(y) Pup(x) pp-ap(y—x) pzp(x), Vx € R, and let A = bg - dp.

Definition 2. Let 0 # ¢ ¢ LI(R,C) n L?(R,C) and f e L>(R,C). For a parameter matrix A, we
define the generalized fractional Stockwell transform (GFST) of f as follows.

(&N .0

= \/;_If(x)g‘;"é(x)dx,V(y,C)GRxR*,

mtlb| R
= o [ FESEG=m)exp ([ - %) +2((p - [ba - dp) (v~ ) + )]
¥(y,8) e RxR".

Remark 1. Applying the generalized fractional convolution introduced in Definition 1, the general-
ized fractional Stockwell transform can also be rewritten as follows.

L (KW E) =[p-epf ®a PapDegl(y), V(y,E) e RxR*.
2. (K NWE) = [SaAB) @) Para(Wptps(y), V(y,8) e Rx R,
where E(t) = ty—-0(1)(Ty(Dgd)) (1):

Remark 2. For particular choices of the matrix A, the generalized fractional Stockwell transform
reduces to the existing transforms in the literature.

1. IfA-= ( (1) (1) g ), then S[,f,g is the classical Stockwell transform given in (1).
2. IfA = cosf sinf ) 0 where 0 € R, then &  is the fractional Stockwell trans-
' ~\ -sin® cosb |0 ) ’ Ag

form [26], with a constant factor given by

‘Z| e—ic%—teyzff(x)m€i¥xze—icscezxdx,

\/27t|sin 0] %

(F3oN(W,2) =

where (y,z) e R xR*.
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a b|0

3. IfA =
f ( c d|0
Stockwell transform [30], which is given below. For (y,z) e R xR*,

), where a,b,c,d € R with b + 0, then we obtain the linear canonical

1

(ﬁfx,gf)(]/rz) = 7“7'

Db (y) f F)2lg(2(x =) Py p (%) pzp(x)dx,
R
where g is a Gaussian window function.

Lemma 1 (Properties of ‘Sx,g)' Let 0+ ge LY(R,C)nL*(R,C). If f1, f € L>(R,C), z € C, and
0+x,telR, then

1. Linearity: The generalized fractional Stockwell transform is a linear map on L*(R, C).
2. Translation:

[ (TN, E) = pysgp(B) Pap (V2O o (e )1y~ 1,6)-

. b { A b )
3. Parity: If f(x) = f(-x), then [SAs,gf](y/ )= [‘%\s,gf](_y’ ~G), where A = [ Z d —Z ]/
4. Scaling:
IfOax(x) = exp (55[2A (L - x)x]) and A, - [ T qﬁK ] e

[ ¢ (D)W, €) =k Onx(iy) [&,4(Oaxf)](ky,E/x), ¥(y, &) e RxR".

Proof. Letze Cand 0 £ «,t € R.

1. One can observe that the special affine convolution ® satisfies
(fi+f2)®a f3=(f1®a f3) + (f2®4 f3) and (zf1) ®a f2 = z(f1 ®A f2),
forall f1,f> € L*(R,C), f3 € LY(R,C)nL*(R,C), and z ¢ C. Using these facts, we
obtain that the GFST is a linear map on L?(R, C).
Assume that f e L'(R,C) n L2(R, C). Since L} (R,C)) n L?(R, C) is dense in L?(R,C)
and the SAFT is continuous on L?(R, C), the results remain true for f ¢ L?(R,C).

2 [&,(TNW.E)

1
o Rf (Tef) (1) (x) dx
- 2_17'(|b| Rff(x—f) 181 8(E(x =) Pup(y) p-rp(y = X) Pop(x) pgp(x) dx

1
= Nl f(s)1618(E((s+1) =y)) Pup(y) tp-ap(y—(s+1))

Dy p(s+ t)mds (putting x = s + 1)
- ﬁlﬂ—w Rf £(5) 16186 = (=) @aply =5 gD 1y (G -1)-9)
Dy 1(5) Py (V20) pop(£) 1 (s) e (F)ds
— 1

= D, (V2t) py(H) ﬂg,b(t)m ]k[ £(8) mep(s) €l g(E(s— (y—1)) Dap(y—1)

Hp-ap((y—1t) —5) @, p(5) pep(s)ds
D5 (V28) g () [S8 g (s )1y~ 1, ).
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-p
—q

], then A is a parameter matrix. Using the easy identity Hp-ap(8) =

D;p(s) Ya(s), Vs € R, we have that

[8(DIw.0)

1
V2nb| 4

1
V27bl 5

1
V27|b| %

1 . -
N R[ F@)gh () dx

f F=x) 81 8(E(x = y)) Pap(y) Hp-a,b(Y = %) P ()i (%) dx

f ) 81 8(E(x = y)) Pap(y) Pap(y —x) Faly =)Dy p(x)pgp(x) dx

[ ) 213G =) ) Pap(y+3) ¥a(y +9)Pas(-5)g(5) ds

(by the change of variable x = —s)

1
V27 5

f f(8) 181 8(=8(s = (=9))) Pap(=y) Pap(=y =) Y1 (=Y =)Dy p(s)p—gp(s) ds

= 18Dy D).

a

4. IfAK:[ xZ
C

b
dx?

14
I3

qK

], then Ay is a parameter matrix. Hence,

(82 (DN, E)

—

\é‘\

O

1
\/27t|b) %

1
V27b| 5

1
V27bl 5

[ Oep ) ()

f Kf (xx) 8] 8(E(x = y)) Pap(y) Hp-2,b(y —x)

Dy (x)pigp(x) dx
f wf (kx) |51 §(G(x~y)) Dup(y) Pup(y—x) Yaly-x)

Dy (x)pigp(x)dx

\/Zln—ll)'/Kf(S) |¢|MWWTA(%E)
R

v ees()

by the change of variable x = %)

VP Bl (& 5~ w0)) @ (9 B9 =9) i =)

Dy 5 (5) b (5) eXp( [ZA(Ky S)(K—l)])ds

¢ p(Zb[“("‘l)"y])kf s©e (55[2A(x-)+])

s(E6- w)) B 00) P 059 =3) ¥, (59 =) Py (5 (3) s
(@) [y @), /1), ¥(1,0) e R R

Lemma 2. For f € L>(R,C), t € R, and A = bq - dp, we have
L [Sfly) = \}—QA(y)(fabp)( ), where fo,,(x) = f ()P4 ()1 (x),
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2. [Safl(y—1) = exp (55[d(# - 2yt) - 2At])[Sa (16 /)1(¥),
3. [Salugnf)1(y) = exp ([d(E% - 2y8) - 2AL])[Sa f1(y - ©).
Proof. Suppose f € L'(R,C) n L2(R,C).

1. The proof of the first claim can be found in [18].
2. ForteR,

[Saf1(y-1)

[ FKa(xy -ty dx
R

[ ) s (08 = Dy ()

R

11
~—
=
N

1
mq)a,b(x)QA(]/).u(p—y),b(x)
th(X)eXp( [d(-2yt+ %) - ZAt])dx

exp 5 [d(-2yt + ) - 221]) [ () () Ka (5, ~ ) dx

exp (5[4 ~291) - zu])[sm,bf)](y).
3.  From [35,36], we have that
iEx B bdE? )
[Sa(f ()" (W) = [Saf1(y - bE) exp | —i— +idE(y — p) +iblq .

Using this result, we can obtain the following. For 0+ b,¢ € R,

[Sa(penf)](y)
[Sa(f(x)e’®/?)](y)

(61D (5 id - p) it

(58100~ ) exp 53 [46% - 24y + 2dpc - 2000

- exp( (@ -2 -2A8) )l fl - ©).
O]
Lemma 3. Let 0 # g ¢ L'(R,C) nL2(R,C), f € L*(R,C) and A= bq — dp. Then, we have
L [Sa(®PapDed)al(y) = \/—QA(]/)g( e
2. [Sa(ppp®PapDeg)1(y) = \/1‘—QA(1/)(D§8)( ),
3. QaW)[Sa(PapDef)al(y) = Qa(y)[Sa(PapDeg)al(y).

Proof. We know that
Ya(x)=Pgp(x)ppp(x)pap(x). 4)

For an arbitrary (y,¢) € R x R*, we have
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L [Sa(PapDed)al(y)

| @apDed)a(x)Ka(x,y) dx
R

[ IO o P DOA WG ()

- [ (D) () e ®us COYADION Wy (i ()2 by ()
R

A(y IGIS(Ex) pia,p () pioy,p(x) dx

A(y Ot pyp(t/) dt

e N

\

\/_g(t) exp — (y CA)tdt

|b| bs’
_ L S[y-A

2. Applying Lemma 2 with f =y, ,®, , Dzg, we obtain

[Sa (1P pDe8) () = ﬁm@@é@(i)‘

3. Note that
mzexp(z_—;[dy2+d(—2y)k+/\2)+2Ay—2A2]). (5)
Therefore,

Oa(W)[Sa(PapDe8)al(y)

_ L f1(y=A
= |bg[¢§( b )](byLemma3(1))
09157
= QA(]/_/\)[SA(,”pb(DubDCg)](y A) (by Lemma 3 (2))
= Ol A exp 5[ - 297) - 2271 Sa (12,4707 @0 De) (1)
(by Lemma 2 (2))
= QaW)[Sa(paphpp®apDeg)1(y)  (by (5))
= OAY)[Sa(Pup¥aPapDeg)l(y)  (by (4))
= OAW)[SA(PapDeg)al(y)-

O

Lemmad4. If0+gc¢ Ll(]R,(C) n LZ(R,(C) and 0 +#b,t,A € R, then

i 2 2
(o
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Proof. By using the change of variables { = 7%, we can obtain the desired result. O
Theorem 4. (Parseval’s identity) Let 0 # g € L'(R,C) n L*(R, C) such that
1\ dx
0+Cre=— [o(x-3)| & 6
b,g T g b |x| ( )

Then, for f,h e L*(R,C), we have (& of, & o) = Cug(f, 1),

Proof. Let f,h ¢ L2(R,C).

(%af551)
- [ [ (KNS N

_ . S i
- ZnR[Rf[y_g'bf@\q)d’ngg](y)[”‘c'bh®Aq>dfbD5g](y)dy|§|

)(y,é‘)dy |§|

_ ;ﬂﬂJ;Rf[SA(V—I;‘,bf®A%Dggx)](t)[SA(y_gbh@A%Dgg)](t)dt|€|

(by Parseval’s identity for SAFT)

= L [ OO e IO @aaDe)a ) )
R* R

Qa()[Sa (e ph) ] (1) [Sa(PapDed)al(t) df?

Y /[ Sa(p-gp/)I(E)[Sa(p- 5bh)](t)|[3A(<I’dngg)A](t)|2dt|§|

- [ [ (S f] (t+a)[SAh](t+§>|[SA<¢dngg>A]<t)|2th

(by Lemma 2 (2))
= %ff[SAf](t)[SAh](f)HSA(CDd,ngg)A](t )|2dt§
R* R

5
1 e 1| (t-C-
- o Rf Rf [sAfJu)[SAhJ(t)wg( = )

(by Lemma 3 (1) and Fubini’s theorem)

© gz [ [ESNOEIO (- ) ot

(by Lemma 4)

9 4y

_ Cbg S0
© 2 ] [0S0

Co,g _
= —= | f(y)h(y)dy (by Parseval’s identity for SAFT)
V27 H{

= Cpg(f,h).
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Theorem 5 (The Inversion Formula). If0 # g € L1(R,C) n L?(R, C) satisfies the admissibility
condition (6), then for each f € Lz(R,(C), we have

1 S e d
f(x) = Cb,g\/z_nR[ Hep ()& of ®a PypDeg](x) é

weakly in L*(R, C).
Proof. Let h € L?(R,C). For a fixed f € L?(R,C), by Parseval’s identity, we have that

Coglfih) = (K of K gh)-

Cb,g(f/h>
- 2nj[ £y O 11 D dy o |<:|
s — d
-~ f / (610 Ol 84 Do D) (1) dy
- = [ f (S (S I NN Ss gl oa o D)0 dt 72
(by Parseval’s identity for SAFT)
- R[ R[ (S (S0 D ORA (O Sk () (O Sr BaDeDal(D 5
(by Theorem 3)
- = Rf R] (S0 (S A1 NN G TGS @ Deg)a ) 75
(by Lemma 3 (3))
- [ / (A (S5 of @4 BapDeg) (DS (g I ) dt o |¢|
(by Theorem 3)
_ P e S 4
- 5 f f of @A RPN Wi-ga (DR dy o
(by Parseval’s identity for SAFT)
1 s — ac \——=
- 5 ﬁ{[ J ug,bw)[sA,gf@Aq>d,nggJ(y>é)h(y)dy
(by Fubini’s theorem)
= <\/z—nﬂg,b[§f,gf ®A %D,;g],h), ¥heL*(R,C).
Hence,

fx) = Cbg\/—fﬂch(x) (S5 of ®a BapDeg](x) 2o |¢|

weakly in L?(R,C). O

Let us recall a definition and a result from [37] which will be useful in discussing the
range characterization of & e

Definition 3 ([37], p. 43). If A is a function on R x R* that takes values in L*>(R,C), then
d
O = g+ Jr AW, $) dy é means
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i g )
(©,¢) = Rf Rf (AW, ),9)y T, V< I2(R,C).

Lemma 5 ([37], p. 43). If the mapping T(g) = [ [(A(y,§),g) dy % is a bounded conjugate-
R* R

linear functional on L*(R,C), then T defines a unique element @ € L>(R, C) such that

T(g)=ff(/\(y,€),g) dy§=<®,g>rvgeL2(R,C)-
R* R

Theorem 6 (Characterization of range of SAS’g). Let he L>(R xR*). Then, h e SA,g(LZ(]R, C))
if and only if
4 !
h(y',¢") = ffh(y, OIL (. &y, C)dy |§| (7)

Cogd. 2
where J& (5, &Y', 8') = (852 8y ) = | 85008y 0 (x) .
Proof. Suppose thath ¢ Sglg(Lz(RN ,C)). Then, there exists f ¢ L(RN) such that /i = SAs/g f.

Therefore, applying the inversion formula of the generalized fractional Stockwell transform
(Theorem 5), we obtain

! o=l 1 s d
h(y',¢') = (f,g;',g') = <(Cbg f f(SA,gf)(y'g)g;(j dy é),g9,§'>-
SR* R

Now, consider the linear functional T(¢) = [ f((SAfgf) (y,C)gﬁg,q)) dy %, V¢ e L2(RN,C).
R* R ’

Clearly, T is a conjugate linear functional. We claim that T is bounded. For,

g
14

T@) = | [ [USD W0 9) dy
R* R

- [ [ Sty
R* R

- [[ oF) (0, D082 dy

ICI

_ [ [ KN @O dy o

|C|
= |Ch,g f,¢)| (by Theorem 4)
Cogl 1f121¢12-

IA

Hence, T is bounded.
Therefore, Definition 3 and Lemma 5 can be applied with A(y, &) = () (v, ¢ )8?, c
and we obtain
g
My.E) = oo = [ (SN O shah ) dxdy 7

gR* gl

- o [ [ rworeey

Cog 2
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For the converse part, let us assume that & satisfies Equation (7). We define

fo) - [ [ sl an %

Cogd. 2

Using Fubini’s theorem, we obtain the following;:

Iflz = [ Ff() dx

- = A i A oy g 48
= |Cb/g2R[(R[H§[h(y/§)gny(x) dy |§|)(R[th(y’§)g?’f¢’(x) dy i

- |Cbg‘2 [[f f [ W, OB, E) g (1) 1 () dx dy md’fg

* R R’(—
, dg
= h 7 d
'Cbgz/*R/R[[ (0 R 0,859, 2) dy 75y
- S £
TG ng[fh(% Yy, &) dy’ H (by Equation (7))
- ol

Hence, we have f ¢ L2(RN,C). Further,

(SN ff(x)mdx

R

[ = [ [nwos dygwdx
R b'g]R* R

) G[ f h(y, ¢) Rf e (0gh 2 (x) dx dy 5

— A a2 @_ I o=l
~ G ffh(ylé)lg(ylﬁ,y,é‘)dy |§|—h(y,f§)-

Hence, the theorem follows. [

4. Uncertainty Principle

In harmonic analysis, the Heisenberg uncertainty principle can be interpreted as
follows: "A signal f and its Fourier transform f cannot be both time-limited and band-
limited simultaneously" [38]. From a mathematical perspective, significant advancements
have been made in the theory of uncertainty principles over recent decades. Various
generalizations of the Fourier transform and their associated uncertainty principles have
been studied extensively, with [39—41] representing some of these works.

Theorem 7 (Uncertainty Principle for SAFT [18]).
If fe LY(R,C)n L2(R,C) and xf(x),t(Spf)(t) € L*(R,C), then

2
( |/ |xf<x>|2dx)( / |t<sAf><t>|2dy)z'ﬂ||f||%. ®)
R R
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Remark 3. One can observe that the generalized fractional Stockwell transform of f € L?>(R, C)
can also be rewritten as follows.

(- pf ®A PapDeg] = pocplf ®a e pPapDeg]

Indeed, [p_gpf ®A Py pDeg]

_ Pap(y) / Db (g p(X) f(X)FA (Y~ )P (y — x) D (y — x) dx

\/27'(|b|

_ q’“(y) f P (¥ () f () (y = XDz (y - %)

Ya(y—x)Pyp(y - x)Deg(y — x) dx

_ q\’/d;% R[ 4 () N (Wi (y — ) a (¥ 1) By (y — 1) Ded(y - x) dx

= p_ep(Vf ®a pepPapDeg](y).

Lemma 6. If f,x*(Spf)(x) € L>(R,C), where k = 1,2 and 0 # g € LY(R,C) n L%(R, C), satisfies
the admissibility condition (6), then

\/_Cbg([t(SAf)(t)| dt)—ff|t SA(f®Aﬂgb¢th§g) (t)’ dt |€|

Proof. f f|t [Sa(f @a e @apDed) (D) dt %

ar 9

[ [ IR 10 [(Sh @ Ded)a )0t
R* R

(by Theorem 3)

f f #P[OAE) (S0 [Ss e @aa D)) e T

f [ FPIESAFI(O) [Sh (@arDe)al(e -0t 52

(by Lemma 2 (3))
- 2 1 5 y—A—g’;’) d ¢
R[ Rf P |[SaF1(6) moA(m( i ‘ a5

(by Lemma 3 (1))

ff|t S0P (y " 5) o

[ [rsory (it

(by Lemma 4)
- V2rCyg [ ISP at.
R
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Theorem 8 (Uncertainty principle for generalized fractional Stockwell transform). If

£, (Saf)(x) € L*(R,C), (Sagf)(-¢) € L*(R,C)n LA(R,C) and y*(§ . f)(y,§) € L*(R
R*,C), where k = 1,2, then

. 2 4z 2 Cog [b* 14
‘ YIRS, )| dy — It [Saf1(D)["dt | > 1112
[]R[| e | |€|)(ﬂ{[ ) V2 4 2

Proof. By Parseval’s identity, we have that

b s, WP( 1 §) [P 1 ;
S IFIE = Cog IK:f12) = 5, - (1K) ©)

C
b8 (Chg)?

Replacing f(x) by yé,b(x)[é;\slg f1(x,-) in Inequality (8), we obtain the following:

( [ WIS AP dy)( [ 1HIS5(f ®a 121 Bas DD dt)
R R

2
> ”’4'( [ \[ss,gﬂ(y,s)fdy) .
R

Using this in Equation (9),

2 2
Cos' 3 W = g (1S1)
2
_ P2 S _—
_ 4%(R[Rf\[‘%,gf](y,é)\ dym)
1 ) i 1
" Cig ’ d
<ol ( [ 1A y)

2

(f 1t [Sa(f ®a pepPapDed) (D dt) fg"
R

Y : 2 08\
ow (&[ Rf v (S F1(y, )P dy a)

*

2

Nl—

(Rf A [SA(fwAug,b%D¢§>]<t>|2dtfg)

* R
(by Cauchy Schwartz inequality)

: ac
_ m(@j R[ 1y (556 f1w, P dy m)( ﬂ! |t[sAfJ<t>|2dt).

(by Lemma 6)

Thus, the theorem follows. [
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5. Conclusions

In this research article, we proposed a generalized fractional Stockwell transform as
an application of a generalized fractional convolution, on the space of square-integrable
complex-valued functions. This transform generalizes the classical Stockwell transform,
fractional Stockwell transform, and linear canonical transform. We proved Parseval’s
identity for GFST and used it to derive an inversion formula for the transform. A theorem
describing the range of GFST was also proved. The paper was concluded by a discussion
of a Heisenberg-type uncertainty principle associated with the generalized fractional Stock-
well transform. We strongly believe this transform will be an alternative tool in signal
processing wherever the Stockwell transform is applied.
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