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Abstract: Multi-focus image fusion is an important method for obtaining fully focused
information. In this paper, a novel multi-focus image fusion method based on fractal dimen-
sion (FD) and parameter adaptive unit-linking dual-channel pulse-coupled neural network
(PAUDPCNN) in the curvelet transform (CVT) domain is proposed. The source images
are decomposed into low-frequency and high-frequency sub-bands by CVT, respectively.
The FD and PAUDPCNN models, along with consistency verification, are employed to
fuse the high-frequency sub-bands, the average method is used to fuse the low-frequency
sub-band, and the final fused image is generated by inverse CVT. The experimental results

demonstrate that the proposed method shows superior performance in multi-focus image
fusion on Lytro, MFFW, and MFI-WHU datasets.

Keywords: multi-focus image; image fusion; fractal dimension; PAUDPCNN; curvelet

1. Introduction

Multi-focus image fusion (MFIF) is a technique used in image processing to combine
multiple images of the same scene, each taken with a different focus setting, into a single
image that contains all the focused details from various depths. This method is particularly
useful in scenarios where a single image captured with one focus setting cannot provide
sufficient clarity for objects at different distances [1].

In practical terms, a camera or imaging device typically focuses on one specific plane,
leading to blurred details for objects either closer or farther away from the focus point. By
using multi-focus image fusion, multiple images taken with different focal distances are
merged, resulting in a final image where all parts of the scene are in sharp focus [2]. This
technique has numerous applications in fields such as medical imaging, remote sensing,
microscopy, and computer vision, where it is essential to capture fine details at various
depths in a single, comprehensive image.

The fusion process often involves various algorithms and techniques, including
wavelet transforms, pyramid decompositions, and gradient-based methods, to selectively
combine the sharpest details from each input image. These methods aim to preserve the
high-frequency details while minimizing artifacts such as ghosting or blurring [3-8]. In
recent years, deep learning approaches have also been integrated into multi-focus image
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fusion [9,10] and remote sensing image fusion [11,12], further enhancing the quality and
efficiency of the fusion process.

In transform domain-based methods, the curvelet [13], contourlet [14,15], and
shearlet [16,17] are commonly used. These algorithms are often applied in fields such
as image enhancement [18-20], image denoising [21-23], and image fusion [24-30]. Vish-
wakarma et al. [31] introduced the multi-sensor image fusion method based on the curvelet
transform and Karhunen-Loeve transform, and the algorithm has achieved good results in
the fusion of multi-focus images, medical images, and infrared and visible light images,
demonstrating strong robustness. Li et al. [32] introduced the MFIF method based on fractal
dimension and coupled neural P systems in a nonsubsampled contourlet transform (NSCT)
domain, and the algorithm was experimentally validated on three multi-focus datasets,
demonstrating its effectiveness in image fusion and achieving state-of-the-art (SOTA) re-
sults. Lv et al. [33] proposed the MFIF method based on parameter-adaptive pulse-coupled
neural network and fractal dimension in nonsubsampled shearlet transform (NSST) do-
main; in addition to achieving advantages in multi-focus image fusion, the algorithm has
also shown significant results in medical, infrared and visible light image fusion.

With the rise in deep learning, several advanced fusion techniques based on neural
networks have been proposed [34,35]. These methods aim to learn optimal fusion strategies
from large datasets without requiring manual feature extraction or explicit fusion rules. The
convolutional neural networks (CNNs) [36], generative adversarial networks (GANs) [37],
autoencoders [38], transformers [39], mamba [40], and diffusion model [41] are widely
used in image fusion. CNNSs are trained to learn how to fuse images by automatically
selecting and combining the most relevant features from multiple inputs [36]. GANs
can be used to generate high-quality fused images by training a generator to combine
focus information while using a discriminator to evaluate the quality of the fusion [37].
Autoencoders can be used to extract and fuse relevant features from images, reconstructing
a final output with enhanced focus [38]. Ouyang et al. [42] proposed the MFIF method
based on superpixel features generation Graph convolutional neural network and pixel-
level feature reconstruction CNN; Zhang et al. [43] introduced the unsupervised generative
adversarial network with adaptive and gradient joint constraints for multi-focus image
fusion; and Shihabudeen et al. [44] introduced an autoencoder deep residual network
model for multi-focus image fusion. Wang et al. [45] proposed the unsupervised universal
image fusion approach via a generative diffusion model; the algorithm was simulated for
multi-focus image fusion, multi-exposure image fusion, infrared and visible image fusion,
and medical image fusion, demonstrating its versatility and broad applicability. These deep
learning-based fusion methods can achieve superior performance by learning from data
and adapting to complex image characteristics, but they require a large amount of data
for training and may be computationally expensive, and they also face challenges such as
overfitting, where the model performs well on the training data but poorly on unseen data.
To address this, regularization techniques and data augmentation are often employed to
improve the generalization of the model. Moreover, the choice of network architecture and
hyperparameters can significantly affect the performance of the fusion process. Researchers
are continuously exploring novel architectures and optimization strategies to enhance the
robustness and efficiency of these fusion techniques.

Pulse-coupled neural networks (PCNNs) have demonstrated significant advantages
in the field of image fusion, particularly in multi-source image fusion, where it has gar-
nered widespread attention and in-depth research [46]. Especially when PCNN and its
improved models are combined with multi-scale transforms to fuse the low-frequency or
high-frequency components of decomposed images, the fusion performance is significantly
enhanced [47,48]. Deeply inspired by these excellent image fusion algorithms, in this paper,
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a novel multi-focus image fusion method based on fractal dimension (FD) and parameter
adaptive unit-linking dual-channel PCNN (PAUDPCNN) in the curvelet transform domain
is proposed to solve the noise and artifact issues. The FD-based expression is utilized to
motivate the linking strength while fusing the high-frequency sub-bands. The algorithm
is validated for its fusion effectiveness and universality on multi-focus datasets through
simulation experiments on three common datasets: Lytro, MFFW, and MFI-WHU.

The remaining structure is as follows: Section 2 presents related work, Section 3
describes the proposed algorithm, Section 4 covers experiments and analysis, and Section 5
concludes the paper.

2. Related Work
2.1. Curvelet Transform

Curvelet transform (CVT) [13] is a mathematical tool designed to efficiently represent
images with discontinuities along curves. Unlike traditional wavelet transforms, which
are effective at capturing point singularities, the curvelet transform excels at representing
smooth edges and features with more accuracy. It uses multi-scale, multi-directional
decompositions that allow for better handling of anisotropic structures in images. This
makes it particularly useful in fields like image denoising, compression, edge detection,
and image fusion, where preserving fine details and sharp boundaries is crucial.

2.2. PAUDPCNN

The functional diagram of the parameter adaptive unit-linking dual-channel pulse-
coupled neural network (PAUDPCNN) model is depicted in Figure 1, and it contains three
components: the dendritic tree, pulse generator, and information fusion module. The
PAUDPCNN model can be computed by the following [48]:

FA(i, ) = $%(, ))- (1)
FB(i,j) = SB(i, }). )
{ 1if Y Y, 1(k1) >0
L.(i,j) = (k1) EO(ij) : 3)
0 else
Uit (i) = FA(5,) (1 + B2 ) La(ir ) ) @
U (i,j) = FPGi,j) (1+ B2, L)), ©)
Un(i, ) = e~ Uy (i, ) +max (U (0, ), U, ))- ®)
Co 1if Un(l,]) > Enfl(i/j)
Yuli j) = { 0 else ’ @)
En(i,j) = e "FE,1(i,j) + CEYu(i, ])- (®)

where S4(i, ) and SB(i,j) show the external stimuli of the PAUDPCNN model corre-
sponding to the (i, j)th pixel of the images A and B, respectively. The two symmetric
feeding inputs F/ (i, j) and FB(i, ) for the (i, /)" neuron store the external stimuli S (i, j)
and SB(i, f), respectively. The L,(i,j) shows the linking input at the n'" iteration for the
(i,/)" neuron, whereas its 8-neighborhood neurons are represented utilizing the set (i, f).
The UX(i,j)|X € {A, B} constitutes the internal state of X at the (i, j)" neuron acquired af-
ter the n'" iteration, which corresponds to the non-linear modulation of feeding and linking
inputs. The Uy (i, ]) is the internal activity of the PAUDPCNN model after the n'’* iteration
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corresponding to the (i, f )th neuron, which can be employed to generate the fused image.

The external output and dynamic threshold of the (i, )’ " neuron after the n'" iteration are
represented using Y; (i, j) and E, (i, j), respectively. The 8X(i,j)|X € {A, B} is the linking
strength corresponding to SX (i, ) € [0, 1]|X € {A, B}, which is computed by the following

that uses the sigmoidal membership function.

1

IBX(Z/]) = 1+ eux(if) )
where X € {A,B}. Here, ux € [—6, 6] because the other values of uy either converge to
0 or 1. The value of ux depends on either S%(i, ) or SB(i, j) but not both. This ensures
different linking strengths for corresponding pixels of the source images, which persist the
behavior of HVS. The mechanisms to set the values of uy are described in Section 3. The «;,
and af are the exponential decay constants, whereas Cr, is the amplitude of the dynamic

threshold. The value of &, for the PAUDPCNN model is computed by the following:

1

where 0gx|X € {A, B} is the standard deviation of SX. Always, a;, > 0 which prevents the
exponential growth of U, with respect to n. The values of Cr and af are estimated using
Equations (11) and (12), respectively. Here, 54" and S represent the Otsu threshold of
SA(i,j) and SB(i, j), respectively.

A GB
2maxmax (11)

DCE:h‘l

Ce . (12)
VEASE (1) e (/5B — VEASP)

where SX .. |X € {A, B} is the maximum value of SX.

Information fusion

module Pulse generator

Dendritic tree

| |
| |
S*(i.j) ' '
BAGL.) 1 ' '
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, exp(-a,) |
N | |
| |
L) ol b | G
n\1,]) o | » |
ot 1 1 e | exp(-ap)
I k |
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Figure 1. Parameter adaptive unit-linking dual-channel PCNN.
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3. The Proposed Method

In this section, we will provide a detailed introduction to the multi-focus image
fusion algorithm proposed in this paper, which can be divided into four parts: image
decomposition, high-frequency fusion, low-frequency fusion, and image reconstruction.

3.1. Image Decomposition

The source images A and B are decomposed by CVT into low-frequency sub-bands
{L4, L} and high-frequency sub-bands {Hf;‘k, Hg'k }, respectively.

3.2. Fusion of High-Frequency Sub-Bands

The high-frequency part contains most of the noise and detailed information. The
fractal and fractional models have extensive applications in fields such as image process-
ing [49-58]. The fused high-frequency sub-bands generated by the PAUDPCNN model
combined fractal dimension (FD) [32,48] and consistency verification [59]. For Hf‘ik, Hgk },
the absolute values of the sub-bands are fed as external inputs, which is defined as follows:

FAG,j) = |G )| (13)
FB(i,j) = |Hi (i, j)|- (14)

The values of Uy,Y), and Ej are initialized using the following:
Uo(i,j) =0, Yo(i,j) = 0&Eo(i,]) = 1Vi, j. (15)

where Eg(i, j) = 1 ensures the immediate activation of neurons, which prevents unwanted
void iterations.
The fractal dimension (FD) is defined as follows [48]:

FDx(i,j) = g™ — g™" (16)

where FDX(z',]')‘X € {Hiik/ H%’k} is used to define the linking strength, ,BX(i,j)’X € {Hi’,‘k, H%’k},

for the high-frequency sub-bands. The values of BX (i, j) ’X € {H i"k, Hgk} are computed using
Equation (9), where ux (i, j) can be calculated by the following:

12(FDx (i, j) — FD®n)

FDpa — FDRin 17

Z/lx(i,j) = -6+

where FDPI" and FDP® are the minimum and maximum values of FDy, respectively.
The values of a,,,Cr, and af are estimated utilizing Equations (10)—(12), respectively. The
PAUDPCNN model is run up to N iterations, and then the decision map D' (i, ) is
computed by the following:

Y S
D;k<i,j>_{ 1 U ) 2 U ) -

Lk 1Lk
where UZ{]{A (i,7) and Uﬁg (i,7) are the internal activities of Hi’lk (i,j) and Hfg’k(i, j) at the

N iteration, respectively.

Consistency verification (CV), as introduced in [59], is a commonly used post-
processing step in multi-focus image fusion algorithms to enhance the quality of the
fused image. This process involves examining a specific region of the decision map where
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Source A

Source B

CVT

CVT

the central block originates from A, while the majority of surrounding blocks belong to B.
In such a case, the central block should also be assigned to B. This can be achieved by
applying a majority filter, such as a 3 x 3 averaging filter, as follows:

Ikse - 1 & 1k, .
CVD{(i,§) =5 Y. Y Dgf(i+m,j+n). (19)

m=—1 n=—1

where the C VDé’k(i, j) shows the filtered decision map, and the fused high-frequency
sub-bands HlF'k(i, j) are generated by the following:

HI (i ) = HY (G, j) if CVDMk (i, j) =1 0)
FAY H]’B’k(i,j) else

3.3. Fusion of Low-Frequency Sub-Bands

The low-frequency part contains the background information of the image; the averag-
ing method is a very common algorithm in image fusion and has wide applications in this
field, so we obtain the fused low-frequency sub-band Lr (i, j) using the averaging method,
the corresponding equation is defined as follows:

i = LD

where Lr(i, j) denotes the fused low-frequency sub-band.

3.4. Inverse CVT

The fused image F is obtained by using inverse CVT performed on Lr(i,j) and HE (i, f).
The main steps of the proposed method can be summarized in Algorithm 1, and the
flowchart of the proposed fusion method is depicted in Figure 2.

High- | >
frequency
sub-bands
FD and Fused
Low- ; PAUDPC | high-
frequency ——P» NN frequency
sub-band rule sub-band '
nverse
CVT Fused
— ™ image
> Fused
High- | Average | low- |
frequency rule frequency
sub-bands sub-bands
Low-
frequency ——p»!
sub-band

Figure 2. The flowchart of the proposed fusion method.
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Algorithm 1: The proposed fusion method

Input: the source images: A and B

Parameters: the number of CVT decomposition levels: L, the number of PAUDPCNN
iterations: N

Main step:

Step 1: CV'T decomposition

For each source image X € {A, B}

Perform CVT on X to generate {LX, Hé&d}, e[l L], ke[, KD

End

Step 2: High-frequency sub-bands’ fusion
Foreachlevell =1:L
For each direction k = 1 : K(I)
For each source image X € {A, B}

Initialize the PAUDPCNN model: Uy(7,j) =0, Yo(i,j) = 0&E(i,j) = 1Vi, j;
Estimate the PAUDPCNN parameters &, Cg, and ag via Equations (10)—(12);
Compute the value of fX(i, ) ‘X € {Hfék, Hgk } using Equations (9), (16)-(17);
For each iterationsn =1: N
Compute the PAUDPCNN model using Equations (3)—(8);
End
Get the decision map D%k based on Equation (18);
Perform the majority filtering on decision map D%k to guarantee the consistency
using Equation (19);
Compute the fused high-frequency sub-bands Hé’k according to Equation (20);
End
End
End

Step 3: Low-frequency sub-bands’ fusion
For each source image X € {A, B}

Merge L 4 and Lp using Equation (21) to generate L
End

Step 4: Inverse CVT
Perform inverse CVT on {L £, Hé’k} to obtain F;
Output: the fused image F.

4. Experimental Results
4.1. Experimental Setup

In this section, we utilize the classical Lytro [60], MFFW [61], and MFI-WHU [43]
datasets for experimentation, with examples from each of the three datasets illustrated in
Figure 3. The Lytro dataset contains 20 pairs of multi-focus data, the MFFW dataset contains
13 pairs of data, and the MFI-WHU dataset contains 120 pairs of data, and we randomly
selected 30 pairs from the MFI-WHU dataset for testing. Additionally, we can refer to the
dataset summary in the field of fusion compiled by authors from Wuhan University, which
can be found at the following link: https://github.com/Linfeng-Tang/Image-Fusion,
accessed on 30 November 2024. Our algorithm does not require training data and directly
conducts simulation experiments on the test dataset.
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Figure 3. Examples of the multi-focus datasets: (a) Lytro, (b) MFFW, and (c¢) MFI-WHU.

The eight image fusion methods, GD [62], MFFGAN [43], LEGFF [63], U2Fusion [64],
EBFSD [65], UUDFusion [45], EgeFusion [66], and MMAE [67], are used for comparison.
The parameters for each method are configured as described in the original published
papers to ensure a fair comparison. The metrics such as the edge-based similarity measure-
ment Q4p,/r [68], the Chen-Blum metric Qcp [69], the Chen-Varshney metric Qcy [69],
the structural-similarity-based metric proposed by Piella Qg [69], the feature mutual in-
formation metric Qrpy [70], the mutual information metric Qpyy [68], mean square error
Quisk [71], the nonlinear correlation information entropy Qncig [69], the normalized mu-
tual information Qs [69], and peak signal-to-noise ratio Qpsyr [71] are used to evaluate
the fusion results. Except for indicators Qcy and Qpsse, the larger the values of the other
indicators, the better the fusion performance. Qualitative and quantitative evaluations
ensure consistency and accuracy in the comparison. In our method, N is set to 200.

The number of CVT decomposition levels has a significant impact on the fusion
results, and we will now focus on analyzing these effects in detail. We tested seven different
decomposition levels on the Lytro dataset and analyzed the impact of decomposition levels
on fusion results using both subjective and objective evaluations, as shown in Figure 4
and Table 1. From Figure 4, it can be observed that when the decomposition level is 1,
the fusion result appears blurry. When the decomposition level is 2, artifacts emerge in
the fusion result. When the decomposition level is 7, noise is introduced into the fusion
result, along with darker regions. For decomposition levels 3, 4, 5, and 6, no significant
differences are visible in the fusion results, and the outcomes are relatively favorable. To
further evaluate the fusion performance, we compared the average metrics for levels 3—-6
on the Lytro dataset. As indicated in Table 1, when the decomposition level is 4, six out
of ten metrics achieve optimal values. Their values are 0.7285 for Q 45/, 0.7213 for Qcp,
0.8773 for Qg, 6.7296 for Qpy, 0.8279 for Qncie, and 0.8964 for Qng, respectively. Based
on a comprehensive analysis, we set the CVT decomposition level to 4.



Fractal Fract. 2025, 9, 157 90f23

(® (h) ()

Figure 4. Fusion results of the proposed algorithm with varying CVT decomposition levels on
Lytro-01: (a) Source A, (b) Source B, (c) Level 1, (d) Level 2, (e) Level 3, (f) Level 4, (g) Level 5,
(h) Level 6, and (i) Level 7.

Table 1. The average quantitative comparison of different CVT decomposition levels evaluated on

the Lytro dataset.
Levels  Qupr Qcs Qcv Qe Qrmr Qmr Qumise Oncie Onmr Qpsnr
1 0.5846 0.6190 83.1454 0.7065 0.8860 6.1960 23.0143 0.8244 0.8284 35.0065

0.6635 0.6263 745671  0.8233 0.8916 6.2186  24.2584  0.8247 0.8296  34.7388
0.7162 0.6787  36.7803  0.8708 0.8980 6.5071  23.4865  0.8266 0.8671  34.8569
0.7285 0.7213  20.8957  0.8773 0.8988 6.7296 222336  0.8279 0.8964  35.0684
0.7260 0.7188  20.3408  0.8773 0.8989 6.7074  21.9907  0.8277 0.8932  35.1103
0.7192 0.7058  20.7622  0.8761 0.8987 6.5883 222003  0.8270 0.8773  35.0737
0.6931 0.6352  33.2248  0.8536 0.8976 3.4157 721418  0.8124 0.4536  29.6275

N O |G| =W DN
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4.2. Fusion Results and Discussion

Figure 5 shows the image fusion results with different methods on Lytro-01 data.
From the results, we can denote that the GD method generated a blurry fused image and
introduced more noise, such as a ghosting artifact in the left arm of the person. The fused
image generated by the MFFGAN algorithm causes the color of the person’s hat region
to darken. The LEGFF algorithm produces relatively good fusion results, but the colors
of the hat and watch areas on the person in the fused image are too dark, which makes
it difficult to observe the fine details. The U2Fusion algorithm causes some areas of the
fused image to become brighter, while others become darker; for example, the brightness
of the lawn has been enhanced, but the hat area becomes severely darkened, leading to
a significant loss of information. The EBFSD algorithm did not produce a focused fused
image, resulting in significant information loss and poor fusion quality. The UUDFusion
algorithm introduced artifacts in the fused image, such as in the areas of the left arm, hat,
and golf club; additionally, some regions, such as the shirt on the left arm, have excessively
high brightness, leading to significant information loss; as a result, the overall fusion
quality is poor. The EgeFusion algorithm has improved the extraction and preservation of
texture and color information in the fused image; however, the overall fused image appears
somewhat distorted, making it difficult to realistically observe the objects themselves;
additionally, some areas, such as the left arm, have excessively high brightness, leading
to significant information loss. The MMAE algorithm produced relatively good fusion
results, achieving a full-focus image; however, the brightness of the left arm of the person
is too high, resulting in some information loss. Through comparison, the fused image
obtained by our algorithm achieved the best results; it not only provides a full-focus
image but also ensures that the fused information is fully complementary, with balanced

brightness and clarity.

Figure 5. Cont.
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Figure 5. Results of Lytro-01: (a) GD, (b) MFFGAN, (c¢) LEGFE (d) U2Fusion, (e) EBFSD,
(f) UUDFusion, (g) EgeFusion, (h) MMAE, and (i) Proposed.

Figure 6 is a line chart of the performance metrics obtained from simulation experi-
ments on 20 data sets from the Lytro dataset using different fusion algorithms. The average
performance metrics of the different algorithms are shown in Figure 6 and Table 2. Con-
sidering that a lower value of Qcy indicates better performance, we take its negative
value (i.e., —Qcy) to illustrate the sub-figure of Qcy. The horizontal axis represents the
number of image pairs in the dataset, and the vertical axis represents the metric value.
From Figure 6 and Table 2, we can observe that our algorithm achieves the optimal values
in terms of the average of 10 evaluation metrics. Their values are 0.7285 for Q 4p/r, 0.7213
for Qcp, 20.8957 for Qcy, 0.8773 for Qf, 0.8988 for Qrprr, 6.7296 for Qay, 22.2336 for Qpsk,
0.8279 for Qncir, 0.8964 for Qnpr, and 35.0684 for Qpsnr, respectively. These quantitative
results are consistent with the conclusions of the qualitative analysis, providing strong
evidence of the fusion advantages of our algorithm on the Lytro dataset.
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Figure 6. The line chart illustrates the metrics of various data in the Lytro dataset.

Table 2. Quantitative average comparative analysis of different methods on the Lytro dataset.
Qaprr Qcs Qcv Qe Qrvr Qumr Quise Qncre Qnmr Qpsnr
GD 0.7034 0.6115 123.5691 0.7874 0.8887 3.8521 150.1382 0.8139 0.5113 26.5742
MFFGAN 0.6642 0.6457 42.5655 0.8409 0.8915 6.0604 34.3748 0.8237 0.8047 33.5508
LEGFF 0.6810 0.6751 53.0073 0.8195 0.8937 5.6138 39.1523 0.8214 0.7473 32.6160
U2Fusion 0.6143 0.5682 97.5910 0.7835 0.8844 5.7765 59.4424 0.8221 0.7725 31.2098
EBFSD 0.5570 0.6076 159.9536 0.6191 0.8865 6.0670 49.9849 0.8245 0.8097 31.5131
UUDFusion  0.5107 0.5989 98.6773 0.6214 0.8703 4.8412 169.2212 0.8178 0.6417 25.9218
EgeFusion 0.3576 0.4034 340.4188 0.5032 0.8472 3.2191 77.8597 0.8120 0.4248 29.2757
MMAE 0.6326 0.6419 52.1538 0.7516 0.8846 5.2676 28.8726 0.8197 0.6995 33.7963
Proposed 0.7285 0.7213 20.8957 0.8773 0.8988 6.7296 22.2336 0.8279 0.8964 35.0684

Figure 7 shows the image fusion results with different methods on MFFW-01 data.

From the results, we can denote that the GD and MFFGAN algorithms generate artifacts in

the fused images. Although LEGFF achieves full-focus results, some information is lost
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in the stone areas due to excessive brightness. The image produced by U2Fusion exhibits
blurring. The EBFSD algorithm produces distortion and exhibits block artifacts. The fused
image produced by UUDFusion is of poor quality, with information loss in the stone areas
due to excessive brightness. Additionally, stripe patterns appear in the sea areas, and a
significant amount of noise is introduced. The fused image produced by the EgeFusion
algorithm suffers from severe information loss due to excessive sharpening. In the fused
image produced by MMAE, the brightness of the stone area on the left is too dark, making
it difficult to accurately capture the corresponding information. Through comparison, our
algorithm produces the best fusion results, with both brightness and detailed information
well preserved.

(h) (i)

Figure 7. Results of MFFW-01: (a) GD, (b) MFFGAN, (c¢) LEGFF, (d) U2Fusion, (e) EBFSD,
(f) UUDFusion, (g) EgeFusion, (h) MMAE, and (i) Proposed.

Figure 8 is a line chart of the performance metrics obtained from simulation exper-
iments on 13 data sets from the MFFW dataset using different fusion algorithms. The
average performance metrics of the different algorithms are shown in Figure 8 and Table 3.
From Figure 8 and Table 3, we can see that our algorithm achieves the optimal values for
9 out of the 10 evaluation metrics in terms of the average value, except for metric Qp/F.
The LEGFF algorithm achieved the optimal value on metric Q o5/, reaching 0.6294; our
algorithm achieved a value of 0.6290 on metric Q4p,r, ranking second among all the
algorithms we used. The values of our proposed algorithm on the other nine metrics are
as follows: 0.6276 for Qcpg, 123.8589 for Qcy, 0.8021 for Qf, 0.8796 for Qrp, 5.1029 for
QMD 43.0355 for QMSE/ 0.8181 for QNCIE/ 0.7199 for QNMI/ and 32.5370 for QPSNR- These
quantitative results are consistent with the conclusions of the qualitative analysis, providing
strong evidence of the fusion advantages of our algorithm on the MFFW dataset.

Figure 9 shows the image fusion results with different methods on MFI-WHU-01
data. From the results, we can see that the image fused using the GD algorithm is blurry,
and the noise has increased, especially in areas like the wooden door; additionally, the
marble region has become darker, resulting in information loss. The fusion image generated
by the MFFGAN algorithm results in reduced brightness at the door and window areas,
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Values of the metric

Values of the metric

making it darker and unable to accurately capture interior details. The LEGFF algorithm
produces a fully focused image, but the brightness in the window and marble areas is
reduced, resulting in a darker appearance and causing some information to be lost. The
U2Fusion method causes certain areas of the fused image to become darker, resulting in
poor fusion quality. The EBFSD algorithm does not produce a fully focused image, and the
image is blurry and distorted, leading to a significant loss of information. The UUDFusion
algorithm results in a fused image with a yellowish tint, causing severe color distortion.
The EgeFusion algorithm enhances and sharpens the details of the fused image, but it also
introduces some degree of distortion, making it difficult to observe the true information
in the image. The MMAE algorithm generates a fully focused fused image, and while it
enhances the image’s texture and details, it also leads to some loss of real information.
Through comparison, our algorithm achieves the optimal fusion result, preserving all
the information from the two source images in the fused image and achieving the best
complementary effect.

Figure 8. Cont.
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Figure 8. The line chart illustrates the metrics of various data in the MFFW dataset.

Figure 10 presents a line chart displaying the performance metrics obtained from

simulation experiments on 30 datasets from the MFI-WHU dataset using various fusion

algorithms. The average performance metrics for each algorithm are summarized in both

Figure 10 and Table 4. As shown in these figures, our algorithm achieves the best overall

performance across 10 evaluation metrics. Their values are 0.7199 for Q 4p,r, 0.7875 for
Qcp, 23.7432 for Qcy, 0.8429 for Qp, 0.8772 for Qrpy, 7.5215 for Qpyy, 20.5981 for Qpiske,
0.8350 for QnciE, 1.0270 for Qnr, and 35.3640 for Qpsnr, respectively. These quantitative
results align with the findings of the qualitative analysis, providing robust evidence of the
superior fusion capabilities of our algorithm on the MFI-WHU dataset.
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Table 3. Quantitative average comparative analysis of different methods on the MFFW dataset.

Qap/r Qcp Qcv Qe Qemr Qmr Qumse Qncre Qnmr Qpsnr

GD 0.6279 0.5557 217.9965 0.7011 0.8730 3.6107 141.4848 0.8122 0.4986 28.1099
MFFGAN 0.5905 0.5851 138.1153 0.7557 0.8742 5.0498 82.9576 0.8179 0.7094 29.8959
LEGFF 0.6294 0.6032 172.4173 0.7386 0.8775 4.8088 69.3044 0.8169 0.6752 30.2400
U2Fusion 0.5537 0.5499 228.0064 0.7076 0.8690 4.8894 94.3035 0.8171 0.6992 29.1532
EBFSD 0.5570 0.5608 216.0796 0.6398 0.8766 4.9049 58.1101 0.8173 0.6874 31.1015
UUDFusion  0.4733 0.5435 265.7120 0.5482 0.8581 4.4343 172.8126 0.8154 0.6245 25.8858
EgeFusion 0.3517 0.4213 443.4456 0.4581 0.8380 3.3785 77.3397 0.8115 0.4685 29.3955
MMAE 0.5526 0.5781 4249751 0.6336 0.8697 4.2843 57.8423 0.8146 0.6019 31.3580
Proposed 0.6290 0.6276 123.8589 0.8021 0.8796 5.1029 43.0355 0.8181 0.7199 32.5370

=

(8) (h) (i)

Figure 9. Results of MFI-WHU-01: (a) GD, (b) MFFGAN, (c) LEGFE, (d) U2Fusion, (e) EBFSD,
(f) UUDFusion, (g) EgeFusion, (h) MMAE, and (i) Proposed.
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Figure 10. The line chart illustrates the metrics of various data in the MFI-WHU dataset.
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Table 4. Quantitative average comparative analysis of different methods on the MFI-WHU dataset.

Qapir Qcs Qcv Qe Qemr Qmr Quse Oncie Qnmr Qpsnr

GD 0.6752 0.6301 105.0418 0.7754 0.8648 3.6940 121.7647 0.8136 0.5001 27.7818
MFFGAN 0.6427 0.6329 45.6960 0.7826 0.8684 5.6832 51.5176 0.8222 0.7709 31.6060
LEGFF 0.6190 0.6060 71.1462 0.7067 0.8692 4.8291 43.1211 0.8183 0.6555 32.2127
U2Fusion 0.5502 0.5156 119.8639 0.6970 0.8565 5.1498 71.8214 0.8194 0.6991 30.1022
EBFSD 0.5485 0.6531 63.7060 0.6558 0.8619 5.5230 53.3889 0.8215 0.7556 31.1799
UUDFusion  0.4576 0.6376 69.0701 0.5364 0.8470 4.3097 183.6179 0.8161 0.5839 25.5706
EgeFusion 0.2874 0.3277 537.7216 0.3757 0.8255 2.8055 86.4381 0.8111 0.3761 28.8418
MMAE 0.5916 0.6813 54.5921 0.6834 0.8628 4.9524 38.4703 0.8188 0.6730 32.6619
Proposed 0.7199 0.7875 23.7432 0.8429 0.8772 7.5215 20.5981 0.8350 1.0270 35.3640

4.3. Application Extension

In this section, we extend the application of the proposed algorithm to the fusion of

triple series images within the Lytro dataset [60] and multi-exposure image fusion [72].

The Lytro dataset comprises four groups of triple-series image data. If the data include

three images, we need to first fuse two of them and then fuse the resulting image with the

third one to obtain the final fused image. The fusion results of our proposed algorithm

are illustrated in Figure 11. Specifically, Figure 11a—c represent the input images, while

Figure 11d demonstrates the fusion outcome achieved by our algorithm. The results demon-

strate that our algorithm is capable of producing fully focused fused images even when

multiple source images are input, which further validates the versatility and robustness of

our algorithm in the field of multi-focus image fusion.

@

(b)

(d)

Figure 11. Triple-series image fusion results: (a) Source A, (b) Source B, (¢) Source C, and (d) Proposed.
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Multi-exposure image fusion is a sophisticated technique designed to address the limi-
tations of single-exposure imaging, particularly in scenes with high dynamic range (HDR)
or complex lighting conditions [73]. By combining multiple images captured at different
exposure levels, this method aims to produce a single, high-quality image that retains
optimal detail in both bright and dark regions. The process leverages the strengths of
each individual exposure, integrating them to enhance overall image quality, improve
detail representation, and achieve a more balanced and visually appealing result. With
applications spanning photography and beyond, multi-exposure image fusion has become
an essential tool for overcoming the challenges posed by varying illumination and expand-
ing the capabilities of digital imaging systems. We applied the proposed algorithm to
the multi-exposure image dataset collected by Zhang [74] for simulation validation, and
some of the results are shown in Figure 12. Figure 12a,b represent the underexposed and
overexposed images, respectively, while Figure 12c illustrates the fusion result obtained
by our algorithm. As can be seen from the results, the proposed algorithm demonstrates
significant effectiveness in multi-exposure image fusion, producing a more detailed and

vivid fused image.

Figure 12. Multi-exposure image fusion results: (a) under-exposure image, (b) over-exposure image,
and (c) proposed.

5. Conclusions

In this paper, a novel multi-focus image fusion algorithm using FD and parameter
adaptive unit-linking dual-channel pulse-coupled neural network (PAUDPCNN) in the
CVT domain is proposed. The high-frequency sub-bands of decomposition are fused by FD
and PAUDPCNN models, along with consistency verification; and the low-frequency sub-
bands are fused by the average method. The public Lytro, MFFW, and MFI-WHU datasets
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are used to test, through subjective and objective evaluation analysis, the experimental
results and show that our proposed multi-focus image fusion algorithm has robustness
and better fusion performance compared with state-of-the-art algorithms. Additionally,
it has a clear advantage in these 10 image fusion indicators: Q4g,r, Qcs, Qcv, Qr, Qrmi,
Qwmir, Qmse, Onere, Qnmr, and Qpsyr. The proposed method demonstrates its superiority
in preserving the details and textures of the original images while effectively eliminating
artifacts and enhancing the overall quality of the fused images. The algorithm’s adapt-
ability to various imaging conditions and its ability to handle images with different focus
points make it a promising solution for applications requiring high-resolution and clear
images from multiple sources. The algorithm proposed in this paper requires selecting
the decomposition level of CVT based on experimental results or prior experience. In
future work, we plan to further investigate and optimize this selection process to enhance
its adaptability and accuracy. Additionally, we will explore the extended applications of
this algorithm in various domains, including change detection [75-77] and remote sensing
image fusion [78], to assess its effectiveness and potential improvements.
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