Inclusive Subfamilies of Complex Order Generated by Liouville–Caputo-Type Fractional Derivatives and Horadam Polynomials
Abstract
1. Introduction and Preliminaries
- 1.
- Setting yields the Fibonacci polynomials;
- 2.
- Setting and give the Lucas polynomials;
- 3.
- Setting , , and yield the Chebyshev polynomials of the first kind;
- 4..
- Setting , , and give the Chebyshev polynomials of the second kind;
- 5.
- Setting and yield the Pell polynomials.
2. Coefficient Bounds for the Inclusive Subfamilies and
3. Corollaries and Remark
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horadam, A.F. Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 1965, 3, 161–176. [Google Scholar] [CrossRef]
- Horadam, A.F. Generating functions for powers of a certain generalized sequence of numbers. Duke Math. J. 1965, 32, 437–446. [Google Scholar] [CrossRef]
- Horzum, T.; Koçer, E.G. On some properties of Horadam polynomials. Int. Math. Forum 2009, 4, 1243–1252. [Google Scholar]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Aldawish, I.; Srivastava, H.M.; El-Deeb, S.M.; Murugusundaramoorthy, G.; Vijaya, K. An Application of Liouville–Caputo-Type Fractional Derivatives on Certain Subclasses of Bi-Univalent Functions. Fractal Fract. 2025, 9, 505. [Google Scholar] [CrossRef]
- Moslemi, M.; Motamednezhad, A. Coefficient estimates for a subclass of bi-univalent functions associated with the Horadam polynomials and subordination. Palest. J. Math. 2024, 13, 647–656. [Google Scholar]
- Swamy, S.R.; Nanjadeva, Y.; Kumar, P.; Sushma, T.M. Initial coefficient bounds analysis for novel subclasses of bi-univalent functions linked with Horadam polynomials. Earthline J. Math. Sci. 2024, 14, 443–457. [Google Scholar] [CrossRef]
- Wanas, A.K.; Güney, H.Ö. Coefficient bounds and Fekete–Szegö Inequality for a new family of bi-univalent functions defined by Horadam polynomials. Afr. Mat. 2022, 33, 77. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- El-Ityan, M.; Sabri, M.A.; Hammad, S.; Frasin, B.; Al-Hawary, T.; Yousef, F. Third-Order Hankel Determinant for a Class of Bi-Univalent Functions Associated with Sine Function. Mathematics 2025, 13, 2887. [Google Scholar] [CrossRef]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Compil. Anal. 2014, 2014, 693908. [Google Scholar]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Salah, J.; Yousef, F. Two inclusive subfamilies of bi-univalent functions. Int. J. Neutrosophic Sci. 2024, 24, 315–323. [Google Scholar]
- Amourah, A.; Anakira, N.; Salah, J.; Jameel, A. Coefficient estimates for new subclasses of bi-univalent functions associated with Jacobi polynomials. Contemp. Math. 2024, 5, 4712–4725. [Google Scholar] [CrossRef]
- Alnajar, O.; Khabour, O.; Amourah, A.; Darus, M. The Relationship of Borel Distribution and Horadam Polynomials Leads to Analytical Bi-Univalent Functions. Eur. J. Pure Appl. Math. 2025, 18, 5929. [Google Scholar] [CrossRef]
- Hussen, A.; Zeyani, A. Coefficients and Fekete-Szegö functional estimations of bi-univalent subclasses based on Gegenbauer polynomials. Mathematics 2023, 11, 2852. [Google Scholar] [CrossRef]
- Hussen, A.; Illafe, M.; Zeyani, A. Fekete-Szegö and second Hankel determinant for a certain subclass of bi-univalent functions associated with lucas-balancing polynomials. Int. J. Neutrosophic Sci. 2025, 25, 417–434. [Google Scholar]
- Al-Hawary, T.; Illafe, M.; Yousef, F. Certain Constraints for Functions Provided by Touchard Polynomials. Int. J. Math. Math. Sci. 2025, 2025, 2581058. [Google Scholar] [CrossRef]
- Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Ezrohi, T.G. Certain estimates in special classes of univalent functions in the unitcircle. Dopovidi Akad. Nauk. Ukrajins Koji RSR 1965, 2, 984–988. [Google Scholar]
- Chen, M.P. On functions satisfying . Tamkang J. Math. 1974, 5, 231–234. [Google Scholar]
- Srivastava, H.M.; Owa, S. An application of the fractional derivative. Math. Japonica 1984, 29, 383–389. [Google Scholar]
- Podlubny, I.; Kacenak, M. Isoclinal matrices and numerical solution of fractional differential equations. In Proceedings of the 2001 European Control Conference (ECC), Porto, Portugal, 4–7 September 2001. [Google Scholar]
- Salagean, G.S. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar: Part 1 Proceedings of the Seminar held in Bucharest, 28 June–3 July 1981; Springer: Berlin/Heidelberg, Germany, 2006; pp. 362–372. [Google Scholar]
- Libera, R.J. Some classes of regular univalent functions. Proc. Amer. Math. Soc. 1969, 16, 755–758. [Google Scholar] [CrossRef]
- Owa, S. Some properties of fractional calculus operators for certain analytic functions. RIMS Kôkyûroku 2009, 1626, 86–92. [Google Scholar]
- Salah, J.; Darus, M. A subclass of uniformly convex functions associated with a fractional calculus operator involving Caputo’s fractional differentiation. Acta Univ. Apulensis 2010, 24, 295–306. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, F.; Al-Hawary, T.; Frasin, B.; Alameer, A. Inclusive Subfamilies of Complex Order Generated by Liouville–Caputo-Type Fractional Derivatives and Horadam Polynomials. Fractal Fract. 2025, 9, 698. https://doi.org/10.3390/fractalfract9110698
Yousef F, Al-Hawary T, Frasin B, Alameer A. Inclusive Subfamilies of Complex Order Generated by Liouville–Caputo-Type Fractional Derivatives and Horadam Polynomials. Fractal and Fractional. 2025; 9(11):698. https://doi.org/10.3390/fractalfract9110698
Chicago/Turabian StyleYousef, Feras, Tariq Al-Hawary, Basem Frasin, and Amerah Alameer. 2025. "Inclusive Subfamilies of Complex Order Generated by Liouville–Caputo-Type Fractional Derivatives and Horadam Polynomials" Fractal and Fractional 9, no. 11: 698. https://doi.org/10.3390/fractalfract9110698
APA StyleYousef, F., Al-Hawary, T., Frasin, B., & Alameer, A. (2025). Inclusive Subfamilies of Complex Order Generated by Liouville–Caputo-Type Fractional Derivatives and Horadam Polynomials. Fractal and Fractional, 9(11), 698. https://doi.org/10.3390/fractalfract9110698

