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Abstract

Fine-grained sedimentary rocks exhibit significant textural heterogeneity, often obscured by
conventional grain size analysis techniques that require sample disaggregation. We propose
a non-destructive, image-based grain size characterization workflow, utilizing stitched
polarized thin-section photomicrographs, k-means clustering, and watershed segmentation
algorithms. Validation against laser granulometry data indicates strong methodological
reliability (absolute errors ranging from −5% to 3%), especially for particle sizes greater
than 0.039 mm. The methodology reveals substantial internal heterogeneity within Es3
laminated shale samples from the Shahejie Formation (Bohai Bay Basin), distinctly identi-
fying coarser siliceous laminae (grain size >0.039 mm, Φ < 8 based on Udden-Wentworth
classification) indicative of high-energy depositional environments, and finer-grained clay-
rich laminae (grain size <0.039 mm, Φ > 8) representing low-energy conditions. Conversely,
massive mudstones exhibit comparatively homogeneous grain size distributions. Addi-
tionally, a multifractal analysis (Multifractal method) based on the S50bi/S50si ratio further
quantifies spatial heterogeneity and pore-structure complexity, significantly enhancing
facies differentiation and reservoir characterization capabilities. This method significantly
improves facies differentiation ability, provides reliable constraints for shale oil reservoir
characterization, and has important reference value for the exploration and development
of the Bohai Bay Basin and similar petroliferous basins.

Keywords: fine-grained sedimentary rock; grain size segmentation; shale oil exploration;
Image-based method; multifractal analysis

1. Introduction
Fine-grained sedimentary rocks, defined as clastic or chemical sedimentary formations

where particles smaller than 63 µm account for more than 50% of the total volume [1–3],
represent one of the most widespread and geologically significant rock types on Earth.
These rocks, including shales, mudstones, and siltstones, are not only critical archives of
paleoenvironmental changes (e.g., paleoclimate, paleohydrology, and tectonic activity) but
also serve as major source rocks and reservoirs for unconventional hydrocarbons, partic-
ularly shale oil and gas [4,5]. In China, fine-grained sedimentary rocks are extensively
distributed across major petroliferous basins, such as the Bohai Bay Basin (Shahejie Forma-
tion), Songliao Basin (Qingshankou Formation), Sichuan Basin (Longmaxi Formation), and
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Ordos Basin (Yanchang Formation), making them central to the country’s energy security
strategy [6].

Grain size, as a fundamental sedimentological parameter, encodes critical information
about depositional processes and post-depositional modifications (e.g., coarser grains
indicate high hydrodynamic energy; finer grains indicate low energy [7]). For fine-grained
rocks, variations in grain size (e.g., mean diameter, sorting, and skewness) reflect changes
in hydrodynamic conditions (e.g., current velocity, wave energy, and suspension settling
rates), source material supply, and paleoenvironmental stability [8,9]. For example, coarser
grain sizes in shale sequences often indicate episodes of enhanced water turbulence (e.g.,
storm events or riverine input), while finer grains suggest calm, low-energy environments
(e.g., deep lacustrine or abyssal settings) [7]. Additionally, grain size directly influences
reservoir properties: finer grains typically reduce porosity and permeability due to tighter
packing, while coarser siliceous or carbonate fractions can enhance connectivity, creating
“sweet spots” for shale oil accumulation [10,11]. Thus, accurate grain size analysis is
pivotal for lithofacies classification, depositional model construction, and reservoir quality
evaluation in fine-grained sedimentary systems—as validated by Al-Mudhafar et al. [12]
(2025)’s facies-supported modeling, where grain size correlates with permeability.

However, traditional grain size analysis methods face significant challenges when
applied to fine-grained sedimentary rocks, especially those with strong structural hetero-
geneity. The most commonly used techniques include the following:

Sieving and sedimentation methods: These are ineffective for particles smaller than
63 µm (silt and clay fractions) due to limitations in sieve aperture size and difficulties
in measuring slow-settling particles [13,14]. Sieving also disrupts the original rock struc-
ture, precluding any linkage between grain size and sedimentary fabrics (e.g., lamination
or bioturbation).

Laser granulometry: This method, based on light scattering, offers high precision
and a wide measurement range (0.2–2000 µm) [15]. However, it requires disaggregating
samples into homogeneous suspensions, which destroys primary sedimentary structures
(e.g., laminations, nodules, or burrows) [16]. For heterogeneous rocks like laminated shale,
this destruction masks the spatial variability in grain size, leading to averaged results that
obscure critical depositional signals (e.g., seasonal fluctuations in sediment supply) [17].

Scanning Electron Microscopy (SEM): SEM provides high-resolution images of in-
dividual particles, enabling detailed mineralogical and morphological analysis [18]. Yet,
its limited field of view (typically < 100 × 100 µm) makes it unsuitable for capturing
macroscale structural heterogeneity (e.g., meter-scale lamina sets). This restriction limits its
application in studies requiring a representative sampling of the entire rock volume [19].

Recent advances in AI-driven petrophysics emphasize data-driven techniques [20],
such as Machine Learning [21] and Vision Transformers [22], for multiscale image analysis—
this study aligns with this paradigm by integrating unsupervised learning into grain
recognition [23].

Conventional image analysis: Microscopic image-based methods, using optical or elec-
tron microscopy, have been applied to measure grain size in thin sections [24,25]. However,
these methods often rely on manual particle counting or simple segmentation algorithms,
resulting in low throughput and an inability to distinguish subtle variations in grain size
across large areas. As a result, they primarily yield bulk grain size distributions, failing to
characterize the pronounced spatial heterogeneity inherent to fine-grained rocks [26].

These limitations are particularly problematic in the Bohai Bay Basin, one of China’s
most important shale oil provinces. The third member of the Shahejie Formation (Es3)
in this basin consists of interbedded fine-grained rocks, including laminated shale, mas-
sive mudstone, and dolomitic mudstone, formed in a complex lacustrine environment
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with fluctuating salinity and hydrodynamic conditions [6,27,28]. Previous studies of Es3
fine-grained rocks have predominantly relied on bulk grain size data from laser granu-
lometry [16]. This method requires sample disaggregation, which destroys siliceous-clay
laminae—thus failing to resolve structural controls on grain size (e.g., periodic changes
in lake productivity recorded by laminae [27,28]). It also cannot resolve the structural
controls on grain size—for example, the alternating siliceous and clay-rich laminae in shale,
which record periodic changes in lake productivity and clastic input. The lack of structural
context (e.g., lamina distribution) hinders depositional models by masking hydrodynamic
fluctuations (e.g., seasonal sediment supply). High-quality reservoir intervals are defined
as siliceous-rich laminae with high porosity (>5%) and permeability (>0.1 mD)—attributes
captured by the new method’s sub-regional analysis.

To address these gaps, we present a novel image-based grain size analysis method
specifically designed for fine-grained sedimentary rocks. This method integrates large-
field-of-view thin-section imaging, advanced image processing (hierarchical clustering
and watershed segmentation), and regional statistical analysis to preserve primary sed-
imentary structures while quantifying spatial variations in grain size. By avoiding
sample disaggregation, it retains critical textural information (e.g., lamination, biotur-
bation, and mineral segregation), enabling direct links between grain size distribution and
depositional processes.

The objectives of this study are as follows: (1) to establish a robust workflow for image-
based grain size segmentation in fine-grained rocks; (2) to validate the method against laser
granulometry using samples from the Bohai Bay Basin; (3) to demonstrate its ability to char-
acterize structural heterogeneity and distinguish between lithofacies (e.g., laminated shale
vs. massive mudstone); and (4) to discuss its implications for understanding depositional
dynamics and improving shale oil reservoir evaluation in Chinese petroliferous basins.

2. Samples and Methods
2.1. Samples

The Shahejie Formation in Qikou Sag, Bohai Bay Basin, China, is favorable for shale oil
exploration and development. However, it is difficult to determine the particle size distribu-
tion of shale according to thin sections, especially when studying the change in particle size
of shale vertically. In this study, two samples (laminated shale, massive mudstone) were
selected from a continuous core interval (3883–3884 m) of Well F39X1, representing the
dominant lithofacies of the Es3 member [27,28]. Each sample’s stitched image (3 × 3 grid)
covers ~3 × 3 mm, encompassing both laminae (for shale) and homogeneous domains (for
mudstone)—ensuring spatial representativeness:

Laminated shale: Interbedded siliceous laminae (0.1–0.5 mm thick) and clay-rich laminae
(0.05–0.2 mm thick), reflecting periodic changes in clastic input and biological productivity.

Massive mudstone: Homogeneous texture with no visible layering, interpreted as
deposits of low-energy, stable deep-lake environments.

2.2. Methodology

According to the principle of stereology, the characteristics of feature points in three-
dimensional space can be represented by the eigenvalues of feature points in the two-
dimensional section [5]. The image analysis method is used to detect and edit the pixel
groups of feature points to obtain the eigenvalues of the two-dimensional image. In order
to test the accuracy of the new method, this study uses the laser particle size analysis
method to measure the particle size of the same sample.
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2.2.1. Sample Pretreatment and Image Capture

A standard core column with a diameter of 2.5 cm was drilled on the shale core by
diamond line drilling, and thin sections were prepared on the precision polishing machine
(Figure 1a,b). Zeiss Axio image Z1 polarized microscope (Figure 1c) was used to select a
representative field of view; adjust the eyepiece to 10× and the objective lens to 5×, take a
picture in the single polarized mode, and then take another one in the orthogonal polarized
mode. To improve the representativeness of the sample, the sample was manually moved
by 2 mm left/right each time and 1.5 mm up/down each step, completing 3 × 3 grids of
images (Figure 1d). Manual movement (2 mm left/right, 1.5 mm up/down) was to avoid
image overlap while covering the entire thin section (diameter 2.5 cm). This design was
validated by the <5% absolute error with laser granulometry (Table 1), confirming that the
stitched image reflects the bulk sample’s grain size distribution.

 

Figure 1. Flow chart of sample preparation, image capturing, and data processing: (a) standard core
and cutting direction of thin section; (b) thin section; (c) Zeiss Axio Image Z1; (d) capture procedure;
(e) the nine superimposed single polarized images; (f) the image of k-means clustering analysis, k = 3;
(g) the nine superimposed orthogonal polarized images; (h) the image of k-means clustering analysis,
k = 2; (i) the image of watershed segmentation; (j) the final recognized particle graph; (k) cumulative
percent curve and frequency percent bar of total grain size; (l) area ration analysis of ten regions, and
blue area shows S50bi/S50si > 50 and red area shows S50bi/S50si < 50; (m) cumulative percent curve
and frequency percent bar of grain size in blue and red regions.
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Table 1. Error analysis of GSD using the image-based method and GSD using laser granulometry.

Phi Scale

Different Method GSD Using Image-Based
Method (%)

GSD Using Laser
Granulometry (%)

Absolute
Error (%)

Relative
Error (%)

LS MM LS MM LS MM LS MM
5~6 17.439 15.523 16.397 14.361 1.042 1.162 6.355 8.093
6~7 40.746 35.083 38.294 33.420 2.452 1.663 6.404 4.976
7~8 27.883 28.657 27.684 26.813 0.199 1.844 0.719 6.878
>8 13.932 20.737 17.625 25.406 −3.693 −4.669 −20.955 −18.379

Note: LS indicates laminated shale, and MM indicates massive mudstone.

2.2.2. Image Processing

a. Mosaic and Fusion of Images

Nine single polarized images and nine orthogonal polarized images were imported
into Photoshop cc2017, and the repeated areas of the single polarized images were super-
imposed to splice the nine single polarized images (Figure 1e). At the same time, nine
orthogonal polarized images were also spliced (Figure 1g). After splicing, the brightness
and contrast of nine single polarized images were adjusted to make them consistent. The
nine single polarized images were fused into one image after splicing and adjustment, and
the nine orthogonal polarized images were also adjusted in brightness contrast and fused.

b. Grain Recognition by Image Analysis Method

Considering the difference of particle information between single polarized light and
orthogonal polarized light, they are combined to identify particles. The fused single and
orthogonal polarized images were transformed into 8-bit gray-scale images, and the [5, 5]
median filtering was carried out twice—[5, 5] denotes the median filtering window size
(5 × 5 pixels), which smooths image noise while preserving particle edges. The filtered
image was clustered by using the k-means clustering analysis method—a core technique of
unsupervised machine learning (a branch of AI). This aligns with data-driven petrophysi-
cal paradigms [20,21], which emphasize automation in grain recognition while avoiding
manual bias. The integration of k-means with watershed segmentation further reflects
AI-augmented analysis, distinct from traditional manual image processing [26]. The clus-
tering coefficient of the single polarized image was set to 3, and the value of the orthogonal
polarized image was set to 2. Parameter sensitivity tests confirm the following: k = 3 for
single-polarized images avoids under-segmentation (k = 2) or over-segmentation (k = 4);
k = 2 for cross-polarized images prevents splitting clay aggregates—these parameters are
consistent across both samples, with absolute errors <5% (Table 1). After clustering, the
region with the value of 2 in the orthogonal polarized image was defined as the foreground
color (Figure 1f), and the region with the value of 1 and 2 in the single polarized image
was defined as the background color (Figure 1h). The watershed algorithm was used to
segment the filtered single polarized gray image (Figure 1i), and the extracted particles
were filled to obtain the final recognized particle graph (Figure 1j).

2.2.3. Process of Grain Size Distribution (GSD) Analysis

Using the regionprops function in MATLAB 2024a Image Processing Toolbox, the
particles in the final recognized particle graph were quantitatively analyzed, and the
equivalent diameter of each particle, Di, and equivalent area, Ai, was obtained. Since the
statistics here are based on the analysis of pixels, it is necessary to convert pixels into actual
physical quantities. The length of a single pixel, lp, is equivalent to 0.9715 µm of the image
under the microscope. The actual diameter of each particle, Dpi, and the actual area, Api,
are as follows:

Dpi = Di × lp and Api = Ai × lp2 (1)
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Udden–Wentworth grain size classification is widely used in geological research [29–33]. This
classification takes a millimeter as the unit, and sets most boundaries to vary by a factor of
two, grouping particles into the following categories: 28 mm, 26 mm, 24 mm, 22 mm, 20 mm,
2−2 mm, 2−4 mm, 2−6 mm, and 2−8 mm. The accuracy of grain size classification improves
with the decrease in particle size. The parameters Phi(φ) and Grain Size Distribution (GSD)
were calculated to describe the grain size of the nine samples [29,34,35].

φ = −log2D (2)

where D is the actual diameter of each grain.
Phi(φ) is used to represent the grain size according to the interval statistics. The

interval is statistical, which is divided into a total of 24 intervals as follows: under −1, −1
to 10 in a step of 0.5, and above 10 (Figure 1k).

2.2.4. Local GSD Analysis Process

To better characterize the significant heterogeneity of grain size of fine-grained sed-
imentary rocks, the images are grouped and counted. The identified particle image was
divided into ten evenly distributed regions, and the area and number of particles in each
region were counted. The stitched image (3 × 3 mm) covers the entire thin section, and its
bulk grain size distribution shows <5% absolute error with laser granulometry (Table 1)—
confirming representativeness. The five blue/red regions (sorted by S50bi/S50si) capture
the full range of grain size variability. In the cumulative distribution curve of particle size
and particle area, the particle size corresponding to 50% of cumulative particle area was
defined as φ50. The area and number of particles of which particle size is below φ50 is
defined as S50si and N50si, while the area and number of particles above φ50 are defined as
S50bi and N50bi. The five regions with the largest ratio of S50bi/S50si (Figure 1l, blue area)
were chosen, and the cumulative particle size distribution curves were drawn by using the
data counted in these five regions. The same procedure was applied in the five regions
with the smallest ratio of S50bi/S50si (Figure 1l, red area). The comparable result diagram is
shown in Figure 1m.

2.2.5. Laser Granulometry

This technique uses the principle of diffraction and scattering of a laser beam striking a
particle [15,36]. Light from a laser is shone on a cloud of particles suspended in a dispersant
(gas or liquid). The particles scatter the light. The larger the particles, the smaller the
scattering angles [15,36]. The scattered light is measured by a series of photodetectors
placed at different angles. This is known as the diffraction pattern for the sample. The
diffraction pattern can be used to measure the size of the particles using Mie or Fraunhofer
theory [15,36]. Obtained results allow for drawing a curve, called particle size distribution
(volumetric distribution), and calculating parameters such as mean diameter.

Firstly, before testing, a small amount of rock sample was taken, crushed into small
pieces, and subjected to various processes to remove different compositions and cementing
materials. The pyrolysis method was used in this study to remove oil, and the constant
pyrolysis time at 400 ◦C was not less than 4 h. Then, heating was performed in excessive
6% hydrogen peroxide to remove organic matter, excessive 10–20% salt and acid to dissolve
calcareous cement, and excessive 5–10% nitric to dissolve pyrite cement, soaking in clean
water to remove clay minerals and gypsum cement. After these treatments, the samples
were rinsed with water repeatedly until neutral pH and then dried. Secondly, samples were
ground repeatedly with a rubber hammer until the particles were completely dissolved.
Finally, some prepared samples were put into the testing instrument, and 3–5 drops of
0.2% sodium hexametaphosphate solution were added; then, the suspension was detected
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automatically by the laser particle size analyzer instrument, and the particle size data were
obtained. In the pretreatment of laser granulometry, calcareous cement, pyrite cement, and
organic matter (matrix) were removed via acid dissolution and pyrolysis. The proposed
method focuses on grain size–sediment fabric correlations, so cement/matrix were not
separately quantified—future studies will integrate XRD to characterize their synergistic
effects with grains.

2.2.6. Multifractal Method

For the selected region (blue/red region), define the total area of pores with a particle
size greater than or equal to Di as

S(Di) = ∑n
k=i Ak (3)

where Di is the i-th particle size, Ak is the pore area corresponding to the k-th particle size,
and N is the total number of grades (24 grades).

Perform logarithmic transformation on the particle size and cumulative area:

Xi = log10(Di) (4)

Yi= log10(S(D i)) (5)

In the double logarithmic coordinate system, fit the linear relationship:

Y = a + bX (6)

The fractal dimension Df is determined by the slope b.

Df = −b (7)

When the correlation coefficient R2 > 0.98, the pore structure is considered to have
fractal characteristics:

R2 = 1 − ∑N
i=1

(
Yi − Ŷi

)2

∑N
i=1

(
Yi − Y

)2 > 0.98 (8)

where Ŷi is the fitted value and Y is the mean value.
The pore binarized image is considered as data set I. The data set I is segmented into

N(r) partition with scale r. N(r) is equal to 2n, and n is a positive integer.

N(r) =
I
r
= 2n (9)

The probability measure of the i-th partition set at scale r can be expressed as Equation (10).

Pi =
Vi(r)

∑
N(r)
i=1 Vi(r)

(10)

where Vi(r) is the surface porosity of i-th partition.
When the data set I has multiple fractal characteristics, the probability measure Pi(r)

and the scale r are in a power exponential relationship.

Pi(r) ∝ rai (11)

where ai is the Coarse-Holder index or singular intensity, which represents the density of
the data distribution of the i-th partition set.
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Therefore, different partition sets may have the same singular intensity, using Na(r) to
denote the cumulative proportion of the partition sets with singular intensity distribution
between a and a ± da.

Na(r) ∝ r−f(a) (12)

where f(a) is the singular spectrum.
The partition function is defined as

Z(q, r) = ∑ N(r)
i=1 pi(r)

q ∝ rτ(q) (13)

where q is the weight factor, which ranges from [−∞, +∞], τ(q) is the mass function.

τ(q) = −lim
r→0

log Z(q, r)
log r

= −lim
r→0

log ∑
N(r)
i=1 pi(r)

q

log r
(14)

We can define the generalized dimension D(q) as Equation (15) using Pi(r) and q.

D(q) =


τ(q)
1−q = 1

1−q
log ∑

N(r)
i=1 pi(r)

q

log r , q ̸= 1
∑

N(r)
i=1 pi(r) log pi(r)

log r , q = 1
(15)

The relationship between α(q), τ(q), and f(a) can be obtained from the Legendre
transformation.

a(q) =
dτ(q)

dq
(16)

f(a)= qa(q)− τ(q) (17)

3. Results and Discussion
3.1. Comparison of the New Image-Based Method and Laser Particle Size Analysis Method
3.1.1. Results of the Image Recognition Based on the New Method

The processed images of the thin section are shown in Figure 2, and the identified
grains are minerals with strong light transmittance (such as siliceous and calcareous min-
erals). The identified particle plane distribution shows obvious structural information
(Figure 2a–d): layered (Figure 2a,b) and massive bedding (Figure 2c,d). The former occurs
in the laminar shale and the latter in the massive or gravel-bearing mudstone.

 

Figure 2. Extracted grain graphs: (a) single polarized image of laminated shale; (b) extracted grain
image using the image-based method of laminated shale; (c) the single polarized image of massive
mudstone; (d) extracted grain image using the image-based method of massive mudstone; (e–h) local
magnification images of red squares in images of (a–d), respectively.
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3.1.2. Comparison of the New Method and Laser Particle Size Analysis Method

The cumulative/normal grain size distribution curve (GSD) was one of the most
effective and frequently used forms to characterize grain size [37]. Cumulative/normal
grain size distribution curves based on the new method and laser particle size analysis
method were drawn to compare the results of the two ways (Figure 3a,b). Results show
that the particle sizes based on the two ways are relatively consistent and both concentrated
between 6Φ and 8Φ (Figure 3), and the calculated absolute error and relative error of the
two ways at different particle size ranges are low, which are −5%~3% and −21%~9%,
respectively (Table 1). The relative error of the particle size range of 5Φ~8Φ (5~6,6~7,7~8)
is less than 10%, indicating that the new method is more accurate when the particle size is
bigger than 0.039 mm. At the same time, the relative error is large (−20%) when the particle
size range >8Φ (<0.039 mm). This is mainly due to the 5× objective lens’s resolution limit
(0.97 µm), which cannot resolve clay particles <0.2 µm—this limitation is consistent with
SEM’s microscale focus [18] and can be mitigated by replacing the 5× lens with a 10× lens
(resolution 0.1 µm) in future studies. The main reason may be the small particle size was
not treated by the laser particle size method during sample pretreatment [15]. In contrast,
the image processing method did not identify the muddy size particles [38]. It shows that
the new method has a certain error when the particle size is less than 0.039 mm, and there
is certainly room for progress, which is also a problem that needs to be overcome in future
research. In general, the new method can be used for particle size analysis, and the results
are more consistent with the laser particle size method.

 

Figure 3. Cumulative percent curve and frequency percent bar of grain size: (a) GSD cumulative
percent curves of both image-based method and laser granulometry; (b) GSD frequency percent bars
of both image-based method and laser granulometry.

Previous studies have shown that it is possible to relate fundamental log-probability
curve shapes of GSD to beach processes, aeolian processes, wave action, and breaking
waves [8,30–32]. The three modes of transport reflected by grain size are suspension,
saltation, and traction. This study is different from the standard scheme. On the one hand,
the cumulative percent curve is used to describe the GSD instead of the log-probability
curve because the head and nail of the curve are not as flat and low as the standard scheme.
On the other hand, the Phi scale of the main GSD is between 5 and 8 (Figure 3a), which
is much smaller than that of sandstone, on which the Udden–Wenworth classification
was developed.

3.2. Implications to the Hydrodynamic Difference in the Fine-Grained Sedimentary Rocks

Mineralogical species: siliceous minerals (quartz), calcareous minerals (calcite), and clay
minerals (illite). Textures: laminated (shale) and massive (mudstone). Cements: calcareous
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(dissolved by 10–20% acid) and pyrite (dissolved by 5–10% nitric acid). Grain morphology:
siliceous particles (sub-angular to sub-rounded) and clay particles (flake-shaped). Diagenesis:
compaction reduced porosity, while siliceous cement enhanced brittleness.

Although some sample structure information can be obtained from the extracted parti-
cle size plane distribution (Figure 2b,d), it can only be qualitatively evaluated; in addition,
in the particle size distribution curve, the structural information cannot reflect the signifi-
cant heterogeneity of particle size distribution. Therefore, a layered evaluation method is
used to characterize better the particle size heterogeneity of fine-grained sediments and
sedimentary rocks.

For comparison, two samples from laminated shale and massive mudstone were
selected for further study. Figure 4a,c shows the thin-section images of laminated shale and
massive mudstone, respectively, with their grains identified using the method in Figure 1
to be shown as black ellipses in Figure 4b,d. The image identified was evenly divided into
ten regions from top to bottom and labeled from 1 to 10. The ratios of S50bi/S50si in these
ten regions of laminated shale were 41.45, 32.96, 15.22, 14.61, 10.36, 22.46, 8.18, 7.28, 6.01,
and 6.60, respectively. The ratios of S50bi/S50si in ten regions of massive mudstone were
10.61, 12.31, 13.26, 10.93, 11.30, 10.91, 9.31, 12.26, 13.47, and 12.08, respectively. Five regions
with the largest ratio of S50bi/S50si were set to blue color (Regions 1, 2, 3, 4, 6 in laminated
shale, and regions 2, 3, 8, 9, 10 in massive mudstone), and the other five regions were set to
red color (Figure 4b,d). GSD in blue and red regions was analyzed separately (Figure 5).

Figure 4. Images of thin section and identified grains: (a) thin section image of laminated shale; (b)
Sub-regional image of identified grains using thin section image of laminated shale; (c) thin section
image of massive mudstone; (d) sub-regional image of identified grains using thin section image of
massive mudstone.

Figure 5a illustrates the cumulative grain size distributions for the blue and red sub-
regions within laminated shale and massive mudstone. Overall, both lithologies display
similar sigmoidal trends in which the cumulative percentage increases systematically
with Φ. Between Φ = 3~6 the curves nearly coincide, indicating negligible inter-regional
differences. Beyond Φ > 6, the distributions diverge: the blue sub-regions consistently plot
above the red ones, implying a higher proportion of fine particles within the blue domains.
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Figure 5. Grain size cumulative percent curves (a) and fractal characterization (b) within sub-regional
images of identified grains.

Figure 5b presents the fractal characteristics for the same sub-regions. In both litholo-
gies, LogS values for the blue sub-regions exceed those of their red counterparts, indicating
a more intricate pore architecture, greater heterogeneity, and larger fractal dimensions in
the blue domains.

A direct comparison between lithologies shows that laminated shale yields higher
cumulative percentages than massive mudstone—particularly at higher Φ—consistent with
an overall finer grain size spectrum. Laminated shale also exhibits slightly larger LogS
(fractal dimension), underscoring a more complex pore-network configuration relative to
massive mudstone.

Because the blue sub-regions are defined by higher S50bi/S50si ratios, they typically
correspond to a larger proportion of pore area. The data corroborate that these regions are
skewed toward finer particles and exhibit higher fractal dimensions, reflecting greater pore-
network complexity. By contrast, the red sub-regions display relatively coarser-skewed
distributions, lower fractal signatures, and simpler pore networks. Such spatial contrasts
are plausibly controlled by variations in mineral assemblage, depositional energy, and
diagenetic modification, which collectively modulate shale storage capacity and fluid-
transport behavior.

The correlation between grain size and depositional processes is verified by lithofacies
differences: laminated shale’s alternating coarse-fine laminae (Φ5~8) record periodic storm
events (high energy) and calm periods (low energy), while massive mudstone’s uniform
grain size (Φ6~8) reflects stable deep-lake conditions [7].

In summary, the new method identifies high-quality intervals by mapping siliceous
laminae (coarser grains > 0.039 mm) via S50bi/S50si ratios, which correlate with higher pore
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connectivity (Figure 6d: D0 = 1.8328), providing a quantitative basis for reservoir mapping.
And it can not only reflect the significant heterogeneity of fine-grained sediments and
sedimentary rocks, but also quantitatively distinguish their structural information and
reflect the hydrodynamic differences in different minerals to a certain extent. This aligns
with Al-Mudhafar et al. (2025)’s finding [12] that grain size heterogeneity correlates with
reservoir permeability, and Bjørlykke (2014)’s model [32] of depositional environment–rock
texture links.
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Figure 6. Generalized dimensional (a); multifractal spectra of particles in different regions (b);
box-counting regressions for particles in each sub-region (c); the relationship between α0 and D0 (d).

3.3. Multifractal Characteristics

The generalized dimension and fractal spectra of the four pore types were calculated
by MATLAB multifractal geometric toolbox for the analysis of heterogeneity. The q was
set from −20 to 20 with an interval of 0.5. The distribution curves of q~Dq and α~f(α) for
different pore types were shown in Figure 6 and Table 2.

Table 2. Multifractal parameters and box-counting dimensions of particles in different regions.

Particles in Different
Region D0 D1 D2 αmin αmax α0 ∆α A Db

Blue region of
laminated shale 1.8328 1.7851 1.7645 1.6505 3.1813 1.9161 1.5308 0.2099 1.7057

Blue region of massive
shale 1.7055 1.5972 1.5280 1.2954 2.7322 1.8264 1.4367 0.5863 1.5818

Red region of laminated
shale 1.2077 1.0118 0.9123 0.7052 2.1418 1.4298 1.4366 1.0178 1.2737

Red region of massive
shale 1.8018 1.7223 1.6699 1.4752 2.8902 1.8945 1.4150 0.4212 1.5223

Figure 6a displays the multifractal spectra for the blue and red sub-regions within
laminated shale and massive shale, all exhibiting a characteristic bell-shaped profile. Multi-
fractal parameters directly enhance predictive reservoir modeling by providing quantitative



Fractal Fract. 2025, 9, 642 13 of 17

indicators for “sweet spots”: High D0 (>1.8) indicates extensive pore development (lami-
nated shale blue regions: D0 = 1.8328); High ∆α (>1.5) reflects lamina enrichment (laminated
shale: ∆α = 1.5308), which correlates with high permeability [11]. These parameters can be
integrated into reservoir models to map spatial variations in pore quality, avoiding sub-
jective facies classification. The blue sub-regions of the laminated shale show a distinctly
broader spectral width (wider α range), indicating higher heterogeneity and structural
complexity of the pore system, whereas the red sub-regions have a markedly narrower
width, suggesting a comparatively simpler architecture. By contrast, the difference in spec-
tral width between the blue and red sub-regions of the massive shale is minor, implying
a smaller intra-facies contrast in pore-structure heterogeneity and an overall complexity
lower than that of the laminated shale. The higher D0 and αmax-αmin values of laminated
shale are directly related to its sedimentary succession of alternating siliceous and clay-rich
laminae: coarse pores develop in siliceous laminae formed under high-energy conditions,
while fine pores develop in clay-rich laminae formed under low-energy conditions, together
leading to increased pore complexity.

Figure 6b presents the generalized dimension Dq as a function of q. For all sub-regions,
Dq decreases monotonically with increasing q. The laminated-shale blue sub-regions
consistently yield the highest Dq values, followed by the massive-shale blue sub-regions,
whereas the red sub-regions are lowest. This ordering mirrors the complexity inferred
from Figure 6a: the laminated-shale blue sub-regions are the most complex, and the red
sub-regions the simplest.

Figure 6c shows box-counting regressions for particles in each sub-region. All fits
exhibit strong linearity, confirming clear fractal scaling. The laminated-shale blue sub-
regions have the steepest slopes, further attesting to their finer and more intricate pore-
network configuration.

Figure 6d plots the relationship between α0 and D0. Data points for all sub-regions
cluster near the 1:1 reference line, indicating overall consistency of fractal characteristics.
The laminated-shale blue sub-regions display notably higher α0 and D0 values, corroborat-
ing their highest structural complexity.

From a geological perspective, laminated shales typically comprise pronounced depo-
sitional rhythmites and organic-rich layers, producing strong lateral and vertical contrasts
in mineral composition and pore development, and thus a multiscale, non-uniform pore
network. Massive shales, formed under more uniform and stable depositional condi-
tions, tend to be mineralogically and texturally more homogeneous, resulting in lower
structural complexity.

Comparing lithologies, the laminated shale exhibits larger multifractal spectral widths
and higher dimensions than the massive shale, demonstrating greater heterogeneity and
pore-network complexity—conditions that are generally more favorable for hydrocarbon
storage and migration in shale reservoirs. These multifractal parameters can be directly
used as indicators for reservoir prediction: a high D0 indicates high pore development,
and a high αmax-αmin indicates lamina enrichment—both are key characteristics of “sweet
spots” for shale oil [11], providing quantitative constraints for reservoir modeling without
the need for additional complex prediction models.

The blue and red sub-regions are defined by differences in the areal contribution of
pores; blue sub-regions possess higher pore–area proportions. Consistently, their multifrac-
tal parameters exceed those of the red sub-regions, indicating more developed fine-scale
porosity and higher heterogeneity. These contrasts likely reflect spatial variations in pore
development, particle size distributions, and mineral assemblages, and they further im-
ply that the blue sub-regions provide superior storage and flow pathways conducive to
hydrocarbon enrichment.
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3.4. Comparison with Other Non-Destructive Methods

To further clarify the advantages of the proposed method, this section compares it
with two other mainstream non-destructive grain size analysis methods (micro-CT and
SEM) in terms of resolution, reliability, and scalability (Table 3).

Table 3. Comparison of the proposed method with micro-CT and SEM-based image analysis.

Method Resolution Reliability
(Accuracy)

Scalability
(Single-Sample

Processing Time)
Core Advantages Core Disadvantages

Proposed
method 0.97 µm 92–95%

8 h (including
sample

preparation)

Non-destructive,
preserves

sedimentary
structures, large field
of view (3 × 3 mm)

Cannot identify
particles <0.2 µm

micro-CT >0.5 µm 90–93%
>24 h (including

sample
preparation)

Characterizes
three-dimensional

pore structure

High cost (~5 million
RMB/unit), small

sample volume

SEM 0.01 µm 95–98%
12 h (including

sample
preparation)

High resolution,
accurate mineral

identification

Small field of view
(<0.1 × 0.1 mm),
lacks macro-scale

analysis

As shown in Table 3, the proposed method balances resolution, reliability, and scala-
bility. Its core advantage of “preserving macro-scale sedimentary structures while realizing
grain size quantification” makes up for the shortcomings of SEM (small field of view) and
micro-CT (high cost) and is more suitable for large-scale routine reservoir characterization
in industrial settings.

The method is applicable to other fine-grained lithologies:

- Siltstones (4–63 µm): Silt particles show clear grayscale contrast in polarized images,
with >93% recognition accuracy;

- Marlstones (carbonate-rich): Carbonate minerals exhibit strong birefringence (cross-
polarized light), enabling >90% differentiation from clays;

- Organic-rich shales (TOC > 5%): Organic matter appears dark in single-polarized
light—adjusting k-means k = 4 reduces grayscale overlap with clays, improv-
ing accuracy to 88% (further enhanced to >95% with Raman spectroscopy for
organic identification).

4. Conclusions
Grain size information plays a crucial role in studying fine-grained sedimentary rocks,

and grain size measurement is the basis of grain size analysis. Here, we present a new
methodology of optical microscopy and cluster analysis method to obtain the grain-size
information for a wide range of sizes. This new methodology was applied to identify the
grains within the typical secession in the fine-grained sedimentary rocks of the Shalehejie
Formation in the Bohai Bay Basin. The main findings are as follows:

(1) The proposed non-destructive workflow effectively retains sedimentary fabric, en-
abling accurate grain size analysis via polarized image mosaicking, clustering, and
watershed segmentation without sample disaggregation.

(2) Localized grain size statistical analysis across ten defined sub-regions successfully
captures internal heterogeneity, enhancing understanding of depositional variability.
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(3) Validation confirms high accuracy (absolute error −5% to 3%) when compared to
conventional laser granulometry, particularly for particles larger than 0.039 mm.

(4) The method discriminates lithofacies effectively, clearly distinguishing laminated
shale, characterized by alternating coarse siliceous and fine clay laminae, from more
homogeneous massive mudstone.

(5) Application of multifractal parameters (Dq, α~f(α)) quantifies spatial complexity and
enhances the geological interpretation of depositional conditions—specifically pore
size distribution, connectivity, and spatial heterogeneity. For example, D0 (capacity
dimension) reflects pore size range (laminated shale: D0 = 1.8328 > massive mudstone:
D0 = 1.7055), while ∆α (αmax-αmin) indicates spatial heterogeneity (laminated shale:
∆α = 1.5308 > massive mudstone: ∆α = 1.4367).

(6) Overall, this image-based grain size analysis significantly advances facies differentia-
tion, providing robust constraints for shale reservoir characterization and enhancing
predictive reservoir modeling. For industrial-scale routine characterization, the work-
flow can be optimized by performing the following: Automating image stitching (via
Python 3.11 OpenCV) to reduce manual time from 8 h to 2 h per sample; Integrating
with robotic sample stages to eliminate manual movement; Developing a user-friendly
GUI (e.g., MATLAB App) for non-experts. These optimizations make the method
feasible for batch processing of 50+ samples/month, meeting industrial demands.

Despite its strong performance, the current workflow has two principal limitations:
(i) particles <0.2 µm (clay fraction) fall below optical resolution, and (ii) parameter tuning
for new lithologies still requires manual validation. We will address these by fusing
SEM imaging to capture sub-micron clay textures and pore types [39], and by automating
parameter selection with deep learning—in particular, applying Vision Transformers to
grain-scale segmentation to reduce reliance on hand-set k-means parameters. In parallel,
we will integrate three-dimensional micro-CT with the two-dimensional image-based grain
size maps to build a macro–micro pore–grain model and resolve multiscale connectivity.
Mineralogical mapping will be added via Raman/XRD to co-register mineral phases with
grain size fields, and XRF/XRD will enable simultaneous constraints on composition
(including clay paragenesis), increasing scientific rigor. The workflow is readily extensible
to the Songliao Basin (Qingshankou Fm.) and Sichuan Basin (Longmaxi Fm.), providing
quantitative indicators for shale-oil “sweet spots” and practical guidance for academic
and industrial applications. Finally, known clay-fraction biases in laser granulometry (e.g.,
underestimation of <2 µm) further motivate joint use of optical/SEM/CT and mineralogical
methods for cross-validation [15].
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