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1. Introduction
Fractional calculus shares its historical roots with classical calculus and has lately be-

come a powerful mathematical tool for modeling complex systems. The concept dates back
to 1695, when L’Hôpital posed a question to Leibniz about the possibility of a derivative of
non-integer order, later developed by Liouville, Riemann, Caputo, Grünwald, Letnikov,
Hadamard, and others [1–3]. These contributions have led to the establishment of multiple
definitions of fractional-order operators, each with distinct advantages and limitations [4].
By extending classical calculus through fractional operators, it captures memory, hereditary
effects, and nonlocal interactions [5,6]. Unlike integer-order models, fractional formula-
tions are uniquely capable of describing processes with long-term memory and anomalous
diffusion. Its wide-ranging applications in physics, engineering, biology, medicine and
health sciences, finance, and the social sciences [7–10] make it an indispensable tool for
analyzing complex processes. In recent years, the field has gained remarkable momentum,
supported by the introduction of new operators, improvements in numerical schemes, and
diverse real-world applications [11,12]. These advances have strengthened its theoretical
foundations while expanding its practical relevance, positioning fractional calculus as a
unifying framework that bridges mathematics with diverse applications.

Building on this broad relevance, the aim of this Reprint is to showcase recent advances
in fractional calculus across theory, methodology, and applications. Out of 51 submissions
received, 12 high-quality papers were accepted for publication, giving an acceptance rate of
23.5%. The selected contributions highlight new operator formulations, analytical results,
numerical techniques, and interdisciplinary applications ranging from control theory and
fuzzy systems to engineering devices, materials science, and biomedical systems. The rapid
pace of progress in the field, particularly with the emergence of novel operator definitions,
advanced numerical techniques, and diverse real-world applications, motivated the launch
of this Reprint. By bringing together contributions from different perspectives, it provides
a concise snapshot of current developments in fractional calculus and serves as a resource
to foster further collaboration across diverse disciplines.

2. Overview of the Contributions in the Reprint
The contributions in this Reprint are grouped into three main themes, in line with the

Special Issue: theoretical developments, methodological advances, and applications.
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2.1. Theoretical Developments

Theoretical developments are illustrated in two contributions. Albidah (1.) investi-
gated two forms of the Riemann–Liouville derivative for second-order fractional differential
equations, showing that the choice of lower bound yields either implicit solutions in terms
of Mittag-Leffler functions or explicit solutions involving trigonometric and hyperbolic
functions. Alkandari et al. (2.) developed anomalous diffusion models using regularized
general fractional derivatives with Sonin kernels, linking them to continuous-time ran-
dom walks and deriving explicit expressions for waiting-time densities, mean squared
displacement, and conditions ensuring non-negativity and maximum principles.

2.2. Methodological Advances

Methodological advances are demonstrated in several papers. Sengül et al. (3.)
employed the optimal q-Homotopy Analysis Method to study Abel-type equations, demon-
strating improved convergence and accuracy over classical approaches. AlBaidani (4.)
compared the homotopy perturbation transform method with a new iterative method for
the time-fractional Burger-Fisher equation, showing that both approaches yield reliable
and computationally efficient solutions, further validated against techniques such as Haar
wavelets, OHAM, and q-HATM. Abdelfattah et al. (5.) extended the fractional differential
quadrature method (FDQM) to nonlinear Riccati and Lorenz systems using generalized
Caputo derivatives, demonstrating superior accuracy and convergence compared with
existing methods.

2.3. Applications

Applications are explored across fuzzy systems, engineering models, materials science,
and biomedical systems. Muhammad et al. (6.) analyzed fuzzy fractional two-dimensional
continuous-time linear systems based on Roesser and Fornasini-Marchesini models, using
granular Laplace transforms to address parameter uncertainty and validating their ap-
proach with applications in signal processing and wireless sensor networks. Al-Dosari (7.)
examined Hilfer fuzzy fractional inclusions with infinite delay, proving controllability
of mild solutions through nonlinear functional analytic techniques and establishing new
results supported by the properties of Mittag-Leffler functions.

Engineering and materials science applications include Yu et al. (8.), who pro-
posed a Caputo-Fabrizio-based model of a fractional-order boost converter with induc-
tive loads, constructing both large- and small-signal models and confirming their ac-
curacy through simulations. Xu et al. (9.) introduced a fractional-order Zener model
incorporating temperature-order equivalence for viscoelastic dampers, validated ex-
perimentally and optimized using a chaotic fractional-order particle swarm algorithm.
García-de-los-Ríos et al. (10.) applied fractional models to ZnO micro- and nanostructures,
explaining photoconduction and nonlinear optical effects relevant for optoelectronic de-
vices. Abdelfattah et al. (11.) applied FDQM to simulate charge dynamics in polymer solar
cells, achieving high accuracy and efficiency.

In the biomedical field, Mihai et al. (12.) proposed a personalized fractional-order
autotuner for the maintenance phase of anaesthesia. Using small-amplitude sine tests
to non-invasively estimate patient parameters, they designed a fractional-order PID con-
troller to regulate the Bispectral Index during Propofol infusion. Closed-loop simulations
confirmed the effectiveness of this approach, highlighting its potential for clinical practice.

3. Concluding Remarks
The contributions gathered in this Reprint reflect the richness and vitality of fractional

calculus research today. They bring together rigorous theoretical work, efficient numerical
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methods, and impactful applications spanning engineering, materials science, physics,
and medicine. As guest editors, we are grateful to the authors for their contributions, the
reviewers for their careful evaluations, and the editorial team of Fractal and Fractional for
their support. We hope this collection will serve as a valuable reference for the research
community and stimulate further studies at the intersection of mathematics, engineer-
ing, and applied sciences, reinforcing the role of fractional calculus as a unifying tool
across disciplines.
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