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Abstract

This paper analyzes high-frequency intraday Bitcoin data from 2019 to 2022. The Bitcoin
market index exhibits two distinct periods, characterized by abrupt volatility shifts. Bitcoin
returns can be described by anomalous diffusion processes, transitioning from subdiffusion
for short intervals to weak superdiffusion at longer intervals. Heavy tails are captured well
by q-Gaussian distributions, and the autocorrelation of absolute returns shows power law
behavior. Both periods display multifractality, with Hurst exponents shifting toward 0.5
over time, indicating increased market efficiency. The time evolution of the empirical PDF
of price return allows us to connect these stylized facts to the mathematical framework of
multifractals and locally fractional porous medium equations.

Keywords: bitcoin; stylized facts; anomalous diffusion; q-Gaussian; Hurst exponent;
fractional porous media

1. Introduction
Fractals [1] and fractional calculus [2] provide powerful frameworks for analyzing

complex, irregular, and scale-invariant systems. Their mathematical structures and anoma-
lous scaling properties appear naturally in a wide range of phenomena, including price
dynamics in financial markets [3]. The irregular fluctuations and persistent volatility ob-
served in Bitcoin and other cryptocurrencies align with the traits of fractal geometry, such
as self-similarity, heavy tails, and long-term memory effects [4]. Fractional calculus, in turn,
offers a versatile extension of classical calculus, enabling models that capture memory
effects, which are essential for describing market processes that persist far from statistic
equilibrium [5].

Although cryptocurrencies have emerged as decentralized digital assets with disrup-
tive potential [6], their value dynamics cannot be fully understood within the conventional
frameworks of classical finance. Bitcoin, introduced by Nakamoto in 2008 [7], has become a
paradigmatic example of a system where nonlinearity, unpredictability, and fractal prop-
erties coexist. By 2025, Bitcoin’s market capitalization had surpassed a trillion dollars,
maintaining nearly half of the total crypto market share [8]. Its volatility and sensitivity to
global conditions make it a prime candidate for analysis through the lens of fractal time
series and fractional stochastic models.
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Instead of focusing exclusively on traditional economic correlations, our work empha-
sizes the robust patterns and fractal structures that underlie Bitcoin’s price fluctuations.
Previous studies in econophysics highlight the fact that, beyond market efficiency, crypto-
assets exhibit stylized facts such as fat-tailed distributions [9], volatility clustering [10],
and anomalous diffusion [11]. Fractional differential equations provide a natural mathemati-
cal toolkit to capture these features and extend beyond conventional stochastic models. Here,
we analyze intraday BTC/USD exchange data (2018–2022) at a 10 min frequency, with the
aim of unveiling fractal properties and time-scale-dependent structures. Our motivation
lies in comparing these findings with established stylized facts from stock markets, thus
bridging the fractal and fractional frameworks with the dynamics of the cryptocurrency.

Recent work consistently finds multifractality in Bitcoin returns and shows that its
strength varies over time. Early evidence using multifractal detrending fluctuation analysis
(MF-DFA) on 1 min data documented fat tails and multifractal scaling, with sources traced
to both long-range correlations and heavy-tailed marginals [4]. Follow-up studies report
time-varying multifractality and links to market efficiency: for example, rolling-window
MF-DFA detects were found to change the multifractal degree and asymmetric volatility
across regimes [12]. Other analyses show Bitcoin’s multifractal spectrum tightening or loos-
ening around shocks and across horizons (time scales), sometimes strengthening at short
horizons after COVID-19 while weakening at longer ones [13]. A dedicated MF-DFA study
focused on efficiency argues that Bitcoin retains long memory and predictable structure in
specific windows [14], while broader comparative work (MF-DFA with complementary
entropy measures) tends to rank Bitcoin as more complex than major foreign exchanges
or commodity markets, consistent with richer nonlinear correlations in high-frequency
returns [15]. Overall, the literature supports viewing Bitcoin as a multifractal, regime-
dependent process rather than viewing it as monofractal, which aligns well with fractal and
fractional modeling frameworks. MF-DFA has been effective in exposing long-term mem-
ory and multifractal properties in financial returns, highlighting structural inefficiencies
and regime shifts. However, translating these empirical findings into a formal framework
based on stochastic differential equations and partial differential equations for probability
of returns is necessary to enhance predictive capabilities and integrate them into stochastic
market models.

The paper is organized as follows. Section 2 recalls well-known stylized facts and
their connection with fractal geometry and fractional processes. Section 3 introduces the
governing equations that include fractional calculus approaches. Section 4 provides a
detailed fractal and fractional analysis of Bitcoin time series in different volatility regimes.
In Section 5, we summarize our findings and compare them with S&P500 price return;
in Section 6, we discuss the implications for future research in fractal-based models for
digital assets.

2. Stylized Facts of Financial Markets
Stylized facts are persistent statistical features of markets, originally introduced in

macroeconomics [16] and widely studied in finance [17]. They include fat-tailed return
distributions, short-memory in raw returns, volatility clustering, fractality, and anomalous
diffusion [18]. Cryptocurrencies show the same features [19,20].

1. Fat tails: Returns deviate from Gaussian and follow heavy-tailed laws [9,21]. A self-
similar PDF is P(x, t) ∼ t−H F(xt−H). Classical choices for F(x) are as follows. Lévy
stable Lα(x) with α = 1/H [22–24]; q-Gaussian gq(x), where q is given by the hyper-
scaling relation α = (3− q)/ξ [25–27]; and porous media solutions with variable
α(t) [3,5].
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2. Autocorrelation: The autocorrelation function of returns ACF(τ) decays rapidly so
that it is integrable; thus, the integrated correlation time τc = ACF(0)−1

∫ ∞
0 ACF(τ)dτ

is finite [28–30]. This finite memory is consistent with the market efficiency [31].
3. Volatility clustering: Large fluctuations follow further large fluctuations [21], imply-

ing long memory in σ2(t) and motivating stochastic and fractional volatility mod-
els [17,32–34].

4. Fractality: A fractal time series has dimension D f = 2 − H [35] and scaling of
price return x and time t by

√
⟨x2⟩ ∝ tH . Here, x is a stochastic variable with time-

dependent probability P(x, t). Techniques such as DFA and MF-DFA estimate H and
multifractal spectra [36,37]. Fractality is documented across many markets [10,37–41].

5. Anomalous diffusion: Beyond Brownian motion [42,43], markets exhibit ⟨x2(t)⟩ ∼
t2H with H ̸= 1/2 and Pmax(t) ≡ P(0, t) ∼ t−1/α(t) [27,44]. Here, α = 2 is normal
diffusion, α < 2 is superdiffusion, α > 2 is subdiffusion, with H = 1/α(t) [3,34].
The Borland stochastic motion provides pathways to understand these effects [25].

We test these mathematical properties for Bitcoin and compare them with conventional
markets using a fractional porous media model, as outlined in the next section.

3. Mathematical Framework
A probabilistic route to model price returns is to track the time evolution of their

probability density function (PDF) via the Fokker–Planck Equation (FPE). We employ a
nonlinear porous media equation FPE that admits q-Gaussian solutions and their fractional
counterparts (via time stretching and the local Katugampola operator) to capture the
empirical hyperscaling relation of stock markets.

1. Definitions and notation: Let I(t) be a market index. The simple price return from t0

to t0 + t is
S(t, t0) = I(t0 + t)− I(t0). (1)

In predictive models, t0 is the current time and t > t0 is the time where the price
return Xt0(t) is estimated. To simplify the notation, we assume t0 = 0. We work
with detrended returns. Here, a deterministic trend means a smooth, low-frequency
component (e.g., a moving-average) removed before analysis; the remaining stochastic
noises are the zero-mean fluctuations captured by the stochastic dynamics introduced
below. We therefore do not define separate variables for trend and noise. Define the
simple price return as

Xt ≡ S(t, 0) = I(t)− I(0), (2)

where we take t0 = 0 in Equation (1).
2. Stochastic dynamics and FPE. The model Xt by the Itô SDE

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, (3)

with Wt a Wiener process. The PDF P(x, t) satisfies the Itô FPE

∂tP = −∂x(µP) + 1
2 ∂2

x(σ
2P). (4)

For detrended returns (µ ≡ 0),

∂tP(x, t) = 1
2 ∂2

x
(
σ2(x, t)P(x, t)

)
. (5)
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3. Nonlinear diffusion (q-Gaussian solution). Empirical evidence suggests volatility
depends on P [25]. A convenient closure is the following porous media form:

∂τ P(x, τ) = D0∂2
xP2−q(x, τ), τ = tξ , 0 < q < 3, (6)

whose solution for P(x, 0) = δ(x) is a q-Gaussian (Tsallis distribution) [17,27]:

P(x, t) =
1

(D0t)H gq

(
x

(D0t)H

)
, H =

1
3− q

, (7)

with the q-Gaussian

gq(x) =
1

Cq
[1− (1− q)x2]1/(1−q), Cq =

√
π

q− 1

Γ
(

3−q
2(q−1)

)
Γ
(

1
q−1

) . (8)

(For q→ 1, gq tends to the Gaussian distribution).
4. Fractional forms and equivalence: To capture the phenomenology of the stock mar-

kets, we must introduce a time stretch τ = tξ with 0 < ξ ≤ 1 [27]. Since

dτ = ξtξ−1dt ⇒ ∂tP = ξD0tξ−1∂2
xP2−q, (9)

we obtain the time-dependent-volatility FPE

∂tP(x, t) = ξD0tξ−1∂2
xP2−q(x, t). (10)

Comparing (5) and (10) yields

σ(x, t) =
√

2ξD0t(ξ−1)/2P(1−q)/2(x, t). (11)

Alternatively, using the local Katugampola fractional derivative for 0 < ξ ≤ 1 [3],

dξ f
dξ t

:= lim
ε→0

f
(

teεt−ξ
)
− f (t)

ε
,

dξ f
dξ t

= t1−ξ d f
dt

, (12)

Equation (6) is equivalent to the local-fractional form

∂
(ξ)
t P(x, t) = D0∂2

xP2−q(x, t), ∂
(ξ)
t := t1−ξ ∂t, (13)

which results from ∂t = tξ−1∂
(ξ)
t and (9). Empirical fitting of S&P500 price return

shows that price return fluctuations fit well with non-local fractional operators such as
Riemann–Liouville or Caputo [3]. The local operator is the first choice for simplicity.

5. Anomalous diffusion and PDF peak: If the PDF obeys the scaling ansatz [5]

P(x, t) =
1

ϕ(t)
F
(

x
ϕ(t)

)
, (14)

where F(x) and ϕ(t) are obtained by replacing this anzatz in (13), resulting in F(x) =
gq(x). Then, the second moment is ⟨x2⟩ ∝ ϕ(t)2 ∝ t2H , so√

⟨x2⟩ ∝ tH = t1/α. (15)
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For Gaussian diffusion, α = 2 (H = 1/2). At x = 0, P(0, t) = F(0)/ϕ(t), hence with a
symmetric peak at 0,√

⟨x2⟩ ∝
1

Pmax(t)
(with proportionality constant F(0)). (16)

The following hyperscaling relation is obtained for local operators [27].

α =
1
H

=
3− q

ξ
(17)

More general hyperscaling relations are derived using a non-local operator [3].
6. Autocorrelation Function (ACF)—discrete time. Let Xn := X(t0 + n, ∆t) be the

detrended (zero-mean) return sampled every ∆t. If Xn is weakly stationary, the auto-
covariance and autocorrelation depend only on the lag s ∈ Z

γ(s) = E[XnXn+s], C(s) =
γ(s)
γ(0)

. (18)

For a finite sample {x1, . . . , xN}, a mean-corrected estimator is

Ĉ(s) =
∑N−s

n=1 (xn − x)(xn+s − x)

∑N
n=1(xn − x)2

, x =
1
N

N

∑
n=1

xn. (19)

If the stationary marginals of Xn are q-Gaussian, the classical autocorrelation is well-
defined only when the variance is finite (q < 5/3) [27,45–47]. Knowing only the
marginals does not determine C(s); a dynamical model is required. In practice, C(s)
is computed numerically from data using the estimator above [28].

4. Stylized Facts of Bitcoin Market Index
In this analysis, it is assumed that the stock market index, I(t), can be decomposed

into a deterministic trend I(t) and a stochastic noise Î(t)

I(t) = I(t) + Î(t). (20)

Accordingly, the price return X(t) can also be divided into two parts: a deterministic
component X(t) and a stochastic q-Gaussian noise x(t)

X(t) = X(t) + x(t), (21)

where X(t) = I(t0 + t)− I(t0), and x(t) = Î(t0 + t)− Î(t0). The increment of the price
return is calculated by the difference between the consecutive points of the price return,
written as

X∗(t) = I(t + 1)− I(t)

x∗(t) = Î(t + 1)− Î(t)
. (22)

From here onward, t represents the normalized time obtained by t = time/∆t, where
time is the time in minutes and ∆t = 10 min is the frequency of the Bitcoin price index.

Financial time series often display stylized facts that evolve with time. To study
these patterns systematically, it is useful to divide the Bitcoin price index into distinct
periods. We used data from 9 March 2017 to 31 December 2022, sampled at 10-minute
intervals. From this dataset, we compute the simple price return X∗(t) (Equation (22)) and
the volatility σ(t), defined as the standard deviation of X∗(t) over a rolling window of
one hour. Figure 1a–c present the price index I(t), the simple return X∗(t), and the volatility
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σ(t), which serve as references for segmenting the sample. Data prior to 2 February 2019
were excluded after quality checks revealed spurious jumps of approximately USD 100
within a single 10-minute interval.

Figure 1a shows a pronounced increase in the level and volatility of Bitcoin beginning
in 2021. This timing coincides with high-profile institutional announcements, including
Tesla’s disclosure of a USD 1.5 billion Bitcoin purchase. Previous multivariate studies simi-
larly identify 2021 as the beginning of a different regime [48,49]. Consequently, observations
from 2 April 2019 to 31 December 2020 are grouped as Period 1 in this study.

A further regime shift occurred between January 2021 and May 2022, when cryp-
tocurrency prices rose sharply, followed by instability beginning in May 2022. The latter
period was marked by crises across several platforms, including the collapse of LUNA at
Terraform Labs, which erased more than USD 400 billion in market value. For this reason,
data after May 2022 are categorized separately. We therefore designate 1 January 2021–9
May 2022 as Period 2. Figure 1b and c show that Period 2 is characterized by markedly
higher returns and volatility relative to Period 1.

Segmenting the sample in this way is not only descriptive but also methodologi-
cal. Many fractal and fractional exponents, such as scaling exponents, Hurst coefficients,
and long-term memory measures, are sensitive to volatility regimes. Estimating these
properties separately over distinct periods where the statistics are stationary reduces bias
and highlights potential shifts in the underlying dynamics of Bitcoin returns.

2018 2019 2020 2021 2022 2023
0

5

104

(a)

2018 2019 2020 2021 2022 2023
-6000
-4000
-2000

0
2000
4000

(b)

2018 2019 2020 2021 2022 2023
0

2000

4000
(c)

Figure 1. (a) Bitcoin market index I(t) from 03/09/2017 to 31/12/2022. (b) Simple price return X∗(t)
obtained from Î(t) following Equation (22). (c) The standard deviation σ(t) of simple price return

calculated by using a 1 h moving window, where σ(t) =
√

1
N−1 ∑N

t=1(X∗(t)− µ)2, X∗i indicates a
specific segment of the price return, and µ is the mean value of that segment.

4.1. Anomalous Diffusion and Fat-Tailed Distribution

Our analysis begins with an examination of the empirical PDF of simple price return
X(t0, t) as shown in Equation (1). For both Period 1 and Period 2, we calculate the PDFs
across various time intervals t← t− t0, that is, we plot the relative diffusion time instead
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of the absolute time, ranging from the smallest diffusion interval time = 10 min t = 1 to the
diffusion period of a year (time = 326 days, t = 326 days/10 min = 46,944). The kernel density
estimator, known for its ability to provide a smooth and accurate PDF estimation [50], is
used with a kernel bandwidth set to 0.001. This ensures that the bandwidth is sufficiently
small to capture the detailed structures of the PDFs. To compute the PDFs, we calculate
the price return using Equation (1) for each time interval t and then use the price return to
calculate P(X, t).

In Figure 2a, we present the peak of the PDF Pmax for Periods 1 and 2, respectively, in re-
lation to time t. In particular, both time periods exhibit a power law relationship between
the peak of the PDF and time, expressed as Pmax ∼ t−H . Linear curve fitting is applied to
the data of Periods 1 and 2, respectively, to measure the power law slope (H = 1/α). We
note that a transition in the H values is observed for both datasets, signifying a shift in the
diffusion mode. For Period 1, the Hurst exponent H is 0.415± 0.006 at small time intervals
and 0.610± 0.007 at large time intervals, corresponding to the values of α = 2.41± 0.03
and α = 1.64± 0.02, respectively. For Period 2, the slope is H = 0.478± 0.004 at small time
intervals and H = 0.646± 0.004 at large time intervals, corresponding to the respective val-
ues of α = 2.09± 0.01 and α = 1.54± 0.01. The anomalous diffusion exponent α is used to
distinguish normal (Brownian, α = 2, H = 0.5) from anomalous diffusion (α ̸= 2, H ̸= 0.5).
The super and subdiffusion regimes correspond to α > 2, H < 0.5 and 0 < α < 2, H > 0.5,
respectively [44]. These results suggest that both periods of the Bitcoin time series undergo
a transition from a weak subdiffusion regime to a weak superdiffusion regime over an
extended period.

101 102 103 104
10-4

10-3

10-2

10-1
(a)

slope= -0.415 ± 0.006

slope= -0.610 ± 0.007
slope= -0.478 ± 0.004

slope= -0.646 ± 0.004Period 1
Period 2

10-7

1

10-5

102

10-3

104
0

(b)
10-1

104 -1

Figure 2. (a) Time evolution of the peak of the PDF for Periods 1 and 2 in the log–log scale shown
in black markers; the time is given in minutes. Two well-defined slopes can be observed for each
period. The colored lines show the fitted slope of the power law relation. Both periods experience a
transition from a weak subdiffusion regimen to a weak superdiffusion regime over time. (b) Time
evolution of the PDF for Period 2 from 10 min to 1000 min. The PDFs present distinctive peaks and
heavy tails at small time intervals and become flat as the time interval increases.

Figure 2b illustrates the time evolution of the PDF from 10 min to 1000 min (approx-
imately 16.5 h) of trading time. The PDF at the minimal time interval t = 1 exhibits
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a heavy-tailed non-Gaussian distribution, gradually flattening and broadening as time
progresses. To further explore the fat-tailed distribution of the PDF, it is essential to de-
termine the tail slope of the PDF at the minimum time interval, P(X∗, t = 1). This slope,
denoted as α, is crucial for characterizing the type of distribution. The tail exponent for
Lévy distribution is calculated as P(x, t) ∼ x−(1+α), where 0 < α < 2 [22,23]. The exponent
for the q-Gaussian distribution is P(x, t) ∼ xα, where α = 2

1−q , and 1 < q < 3 [27]. In
Figure 3, we present the calculated tail slopes of the PDF for each period. The slopes of
the tails for Period 1 and Period 2 are α = 3.95± 0.18 and α = 4.04± 0.12, respectively.
By comparing these values with the corresponding exponents of Lévy and q-Gaussian
distributions, we find that the slopes fall outside the Lévy regime and instead fit well into
the q-Gaussian regime. The values of q calculated based on the tail slopes derived using
the aforementioned relation are q = 1.51± 0.02 and q = 1.50± 0.02 for Periods 1 and
2, respectively.

Upon examining the fat-tailed distribution, we found that the PDF in the minimum
time interval (t = 1) can be characterized by a q-Gaussian distribution. To substantiate
this observation, we conducted a calibration to the q-Gaussian distribution for the PDFs
corresponding to both Period 1 and Period 2. The results of this calibration process are
shown in Figure 4. This calibration procedure was conducted on a semi-logarithmic scale
by applying the relationship described in Equation (7). This method involved taking
the natural logarithm of the PDF and fitting it to the simple price return using a linear
scale. Figure 4a plots the right branch of the PDF using a logarithmic scale, and Figure 4b
illustrates both branches of the PDF in a semi-logarithmic scale. In these figures, the gray
dotted curves represent the PDF of the simple price return, while the black curves represent
the fitted q-Gaussian distribution. In particular, the fitted distribution captures both the
central and tail portions of the PDFs. The q values derived from the semi-logarithmic fitting
were determined as q = 1.53 for Period 1 and q = 1.57 for Period 2. Importantly, these
values align with the q values fitted from the power law tail slope, affirming the consistency
of the results and showing that the diffusion is q-Gaussian.

100 101 102 103 104
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Period 1

Period 2

P(X*)
slope=-3.95 0.18
slope=-4.04 0.12

Figure 3. Tail slope of PDF at the minimum time interval t0 for Period 1 and 2, respectively, in log–log
scale. The dotted gray lines are the PDFs of price return, and the colored lines show the fitted slope
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of the tail for each time period. The fitted slopes show that the tail slope is outside the Lévy regime,
and fits to a q-Gaussian distribution.

100 101 102 103 104
10-7

10-5

10-3

10-1

Period 1, q=1.53

Period 2, q=1.57

(a) BTC
q-Gauss

-4000 -2000 0 2000 4000
10-7

10-5

10-3

10-1
(b)

Figure 4. q-Gaussian fitting conducted in semi-log scale for PDFs of simple price return at t0 for both
Period 1 and 2. The gray dotted curves are the PDFs and the black curves are the fitted q-Gaussian
distribution. (a) The right branches of the PDFs for Periods 1 and 2 are plotted in log–log scale,
respectively. (b) The full PDF and the fitted distribution are plotted on a semi-log scale.

4.2. Volatility Clustering

We used the autocorrelation function of the absolute returns (|ACF|) to quantify
volatility clustering in time series. Note that the autocorrelation function of the raw returns
(ACF) is calculated on the incremental price return X∗(t) using two methods: sample
autocorrelation and ensemble autocorrelation. The same calculations apply for |ACF|.
The detailed definitions for each method are presented in the following.

The time lag of the autocorrelation is denoted as s, representing real-time intervals in
minutes for this study. For each s, the sample autocorrelation is defined as

C(s) =
∑n−s

t=1 (X∗t+s − X∗)(X∗t − X∗)

∑n
t=1(X∗t − X∗)2

, (23)

where X∗ is the simple price return, X∗t+s is the price return shifted by s minutes, and X∗ is
the mean value of the price return, calculated as

X∗ =
1
n

n

∑
t=1

X∗t .

We also computed the autocorrelation of the price return for both periods, follow-
ing the concept of calculating the ensemble autocorrelation. In the context of stochastic
processes, the ensemble represents the statistical population of the process, where each
member of the ensemble is a possible realization of the process [51,52]. For finance data,
where only a singular historical time series exists, constructing this ensemble involves
decomposing the time series into an ensemble of subintervals of the data. Here, each
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trading day effectively constitutes one realization of the dataset, given the recurring nature
of market statistics on a daily basis [53]. To build the ensemble in our study, we partitioned
the data into discrete segments, where each segment serves as an independent realization of
the time series. The total length of the time series for the price return is denoted as N, while
the length of each segment is represented as S, so the number of segments is Ns = N/S.
The ensemble autocorrelation is formulated as

⟨Cs⟩ =
∑Ns

i=1 Ci
s

Ns
, (24)

where Ci
s corresponds to the ith segment within the ensemble. In the typical practice of

establishing the ensemble, each segment is often delineated based on individual trading
days. However, due to the continuous nature of the Bitcoin market, we chose to employ
calendar weeks as partitioning markers for our dataset. Our data are recorded at 10 min
intervals, resulting in 6 data points recorded per hour and 1008 data points accumulated
each week. We rounded this value to 1000 data points for the length of each segment.
Subsequently, we computed the autocorrelation for each segment and averaged it over the
ensemble. The error associated with the ensemble autocorrelation was calculated as the
standard error within the ensemble.

The results of the ACF calculated with both methods are presented in Figure 5 for
Periods 1 and 2, respectively. The sample autocorrelation is plotted in yellow, while the
ensemble autocorrelation is in blue.

The autocorrelation function of the absolute price returns (|ACF|) is calculated as:

C|X∗ |(s) =
∑n−s

t=1 (|X∗t+s| − |X∗|)(|X∗t | − |X∗|)
∑n

t=1(|X∗t | − |X∗|)2
, (25)
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Figure 5. Sample and ensemble autocorrelation with fitting for Periods 1 and 2. For both periods,
anti-correlation is observed for short times, and weak long-term autocorrelation is presented. (a) For
Period 1, ensemble ACF is plotted in blue, and sample ACF is plotted in yellow. Anti-correlation is
observed in short times with periodicity. The decay of anti-correlation of the raw return are fitted to
the law C(s) ∼ s2H∗−2 cos(bs). (b) Absolute sample and ensemble ACF of Period 1 plotted in log–log
scale, representing a power law relation. A linear fitting in the log–log scale measures the slope
of the power law relation as −1.17. (c) For Period 2, ensemble ACF is plotted in blue, and sample
ACF is plotted in yellow. Anti-correlation is also observed in short times with periodicity fitted by
C(s) ∼ s2H∗−2 cos(bs). (d) Absolute sample and ensemble ACF of Period 2 plotted in log–log scale,
with a power law relation at initial times. A linear fitting in the log–log scale measures the slope of
the power law relation as −1.07.

The absolute sample autocorrelation functions are illustrated in Figure 5b,d using
a log–log scale, corresponding to Periods 1 and 2, respectively. In both time periods,
a noticeable power law relationship emerges, particularly evident at short time intervals
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(below 100 min). Over the longer term, the absolute autocorrelation exhibits a modest yet
non-negligible value, persisting notably beyond the 200 min mark (C(s) = 0.002 for larger
s). To quantitatively assess this power law behavior, we performed linear fitting, obtaining
slope values of−1.17 for Period 1 and−1.07 for Period 2. For a fractional Brownian motion,
this slope of absolute autocorrelation is related to the Hurst exponent (H), a relationship
established as C(s) ∼ s−2−2H [54]. By calculating the Hurst exponent from the power law
slope of the absolute autocorrelation, we obtain the respective values of the Hurst exponent
for Periods 1 and 2 as H = 0.415 and H = 0.486. Notably, these values align with the
findings detailed in Section 4.1. To further examine the behavior of the short-time autocor-
relation, we plotted the ACF for the first 200 min in Figure 5a,c. Both sample and ensemble
autocorrelation show negative values at short time lags, indicating an anti-correlated re-
lationship in short time frames. Additionally, ACFs manifest oscillations around 0 from
30 min to 200 min (approximately 2.5 h). Although both the sample autocorrelation and
the ensemble autocorrelation exhibit similar characteristics in general, they differ in terms
of magnitude. Although there are disparities between the two, these differences are not
substantial enough to definitively conclude whether they indicate non-ergodic behavior in
the time series or are simply a result of statistical noise.

4.3. Self-Similarity of Detrended PDF of Price Return

While the previous section focused on stylized facts within trended time series, it
is important to note that the underlying trend inherent in financial data can potentially
influence these characteristics. To address this, we now redirect our attention to exploring
the stylized facts in the detrended time series. In previous sections, we found that the Bitcoin
market index in Periods 1 and 2 exhibits similar values for the stylized fact quantifiers,
despite the differences in the volatility ranges of the two regimes shown in Figure 1.
Therefore, in what follows, we focus the analysis on Period 2 only.

Self-similarity in the evolution of the PDF of price return is another important stylized
fact in the stock market. We first tested the self-similarity of the trended time series, yet
it does not present clear self-similar behavior. Thus, the detrending process is required
following the relation described in Equation (21).

4.3.1. Detrending Time Series

The detrending process was carried out using the moving average (MA) method.
In MA, a time window is shifted from the start to the end of the time series, and the
arithmetic average is used for each time window to record the trend. The two parameters
that are vital for MA are the size of the time window tw and the step in which each time
window is shifted forward. In this analysis, we used a continuous sliding window with
overlaps, and thus the step is 1. These time windows extend from a segment of [t, t + tw]

to the consecutive window of [t + 1, t + tw + 1]. To achieve an effective detrending result,
it is necessary to select an optimal time window tw for detrending. In this study, the criteria
for choosing the optimal time window are set so that the PDFs of the detrended price return
P(x∗, t) show the best convergence to a Gaussian distribution at large time intervals t and
the goodness of fit (R2) indicates a valid fitting (R2 ≥ 0.95) for all PDFs.

We tested the time window for detrending from 1 h to 26 weeks to find the best time
window that meets the criteria. The optimal time window tw of 1 week is chosen for
the detrending, and for each time window, the arithmetic average of the index I(t) from
[t, t + tw] is used as the trend at time t. Considering at the beginning and the end of the
time series where t < tw

2 and t > N− tw
2 (N is the total length of the time series), the size of

the time window is truncated, we define the sliding window with three pieces:
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• For t < tw
2

Î(t) =
2

tw + 2t

⌈(tw−1)/2⌉

∑
k=−t+1

I(t + k), (26)

• For tw
2 < t < N − tw

2

Î(t) =
1
tw

⌈(tw−1)/2⌉

∑
k=−⌊(tw−1)/2⌋

I(t + k), (27)

• For t > N − tw
2

Î(t) =
2

2N − 2t + tw

⌈N−t⌉

∑
k=−⌊(tw−1)/2⌋

I(t + k), (28)

with the time step of t = 1, 2, 3 . . . N for the index fluctuations.
The results of the detrending are shown in Figure 6. Figure 6a presents the trended

market index I(t) as the blue curve and the trend I(t) in red after applying MA analysis
using the optimal time window of 1 week. Figure 6b shows the detrended price as a
result of subtracting the trend, following Equation (20). Figure 6c shows the detrended
price return by taking the difference of the adjacent terms in the detrended price, using
Equation (22).

x∗(t) = Î(t + 1)− Î(t).
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104

(a)
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1
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-6000
-4000
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Figure 6. Results from detrending analysis for Period 2. (a) Trended price index I(t) is shown as the
blue curve, and the trend I(t) obtained from the MA is shown as the red curve. (b) The detrended
price index Î(t) was obtained by subtracting the trend from the price index. (c) Detrended price
return x∗(t) calculated from the detrended price index.

4.3.2. Self-Similarity in PDF of Detrended Price Return

We then test the self-similarity in the detrended price return. Recall the expression of
the PDF to be:

P(x, t) =
1

(Dt)H

[
gq

(
x

(Dt)H

)]
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where (Dt)H is the scaling factor, and H = 1/α is the Hurst exponent, and is related to
the parameter characterizing the anomalous diffusion. Taking the result of H = 0.478 in
Section 4.1 for time series Period 2, we performed the q-Gaussian fitting to the detrended
PDFs at each time t of price return on a semi-log scale, with two fitting parameters q and
β = (Dt)1/α to find the scaling factor. The PDFs are rescaled using these factors, and the
resulting PDFs were collapsed onto each other, as shown in the gray curves in Figure 7.
The collapsed PDF shows good agreement with the q-Gaussian distribution with q = 1.51,
shown as the blue curve.

-20 -15 -10 -5 0 5 10 15 20
10-5

10-4

10-3

10-2

10-1

100

101

q-Gaussian

Figure 7. The gray curves show the collapse of the PDF of the detrended price return for Bitcoin
Period 2. The collapsed PDFs are fitted with a q-Gaussian distribution (blue curve) with q = 1.51.

4.4. Scaling Analysis on the Fractality of Price Return

In the preceding sections, we demonstrated the presence of self-similarity in Bitcoin
price returns, suggesting the fractal nature of the time series. In this section, our aim is to
determine whether the time series is monofractal or multifractal by performing a scaling
analysis. In the latter scenario, self-similarity is preserved, but the Hurst exponent is not
unique. Instead, it exhibits a range of values that form a Hurst exponent profile.

Various methods can demonstrate the fractality of a time series, with commonly used
approaches including rescaled range analysis (R/S) and detrended fluctuation analysis
(DFA). Currently, DFA is becoming a more favored method because of its effectiveness in
handling nonstationary time series. In our study, we applied DFA to Bitcoin Period 2 to
determine fractality and calculate the Hurst exponent. DFA was performed on trended
time series. The first step of DFA involves removing the trend of the original time series by
assuming that the trend is the linear fit of each non-overlapping segment.

• Step 1: For the trended price return with length N, the process of the DFA starts with
defining the ‘profile’ of the time series by calculating the mean-centered cumulative
sum of the simple price return (X):

I∗(t) =
i

∑
k=1

[
Xk − X

]
, i = 1, . . . , N. (29)
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where X is the mean value of the time series.

The second part of DFA aims to calculate the scaling function Fw(s) as a function of
the time segment s, and w is the order of the mathematical moment. This is achieved by
applying the following steps:

• Step 2: Divide the profile I∗(t) into non-overlapping segments with the same length s.
The number of segments Ns is calculated as Ns = ⌊N/s⌋.

• Step 3: Calculate the local trend for each segment by a linear least-square fitting of the
time series. Then the variance of each segment v from 1, 2, 3 . . . Ns is calculated using
the following equation:

F2(v, s) =
1
s

s

∑
i=1

(I∗[(v− 1)s + i]− I∗(v, s))2, (30)

where I∗(v, s) is the mean of each segment of I∗(t).

• Step 4: The statistical moments are calculated utilizing different values of order w:

Fw(s) =

{
1

Ns

Ns

∑
i=1

[F2(v, s)]w/2

}1/w

(31)

This moment analysis identifies the spectrum of the time series. For (monofractal or
multifractal) scale-free time series, the following power law is expected:

Fw(s) ∼ sh(w), (32)

where the Hurst exponent is H = h(2). For monofractal time series, the slope of h(w) in
terms of w is constant (independent of w), and the fractal dimension of the time series
satisfies D f = 2− H. Furthermore, the exponent of the autocorrelation function γ satisfies
γ = 2− 2H [28]. A multifractal time series is characterized by the spectrum of local slopes
that depend on w. The above functions are related to the general wth moment defined
as follows

Gw(s) ≡
N/s

∑
v=1
|I∗[vs]− I∗[(v− 1)s]|w (33)

which defines the generalized scaling exponent τ(w) via the scaling relation

Gw(s) ∼ sτ(w). (34)

τ(w) is shown to be related to h(w) via the relation

τ(w) = wh(w)− 1. (35)

The DFA results are shown in Figure 8 for the positive and negative range of w,
showing a power law behavior. The exponents of the scaling behaviors are extracted by
using power law fitting (dashed black lines), which is carried out for each order of w.
The insets show h(w) in terms of w. It is clear that the slope of h(w) varies for different w,
indicating that the time series is multifractal. Figure 9 shows more clearly the resultant
generalized Hurst exponent h(w). Figure 10 presents the relationship between τ(w) in
terms of h(w), provided that the detrended price return is self-similar and multifractal,
since the slope depends on the scale w.
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Figure 8. Calculation of the statistical function Fw on Bitcoin price return for Period 2 using
Equation (31). The function of Fw vs. s display power laws Fw(s) ∼ sh(w), where h(w) depends
on w. This feature demonstrates that the time series is multifractal. (a) Calculated Fw(s) function
with a negative range of w; each w value presents a power law relationship. (b) Profile of h(w) for
negative w values. (c) Calculated Fw(s) function with a positive range of w; each w value presents a
power law relationship. (d) Profile of h(w) for positive w values.
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Figure 9. Evaluation of the scale exponents h(w) of detrended Bitcoin price return for Period 2. This
profile of scale exponent can be described using linear relationships for positive and negative w,
with the slope being −0.047± 0.001 for negative w, and −0.041± 0.002 for positive w, respectively.
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Figure 10. Generalized scaling exponent τ(w) of the detrended price return for Period 2, showing the
relation τ(w) = wh(w)− 1.

To obtain the spectrum of the Hurst exponent, we have to use a Legendre transfor-
mation after performing the detrended fluctuation analysis. In the standard theory of
multifractal analysis, one performs the Legendre transformation of the generalized scaling
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exponent τ(w) as a function of h(w), which is based on the linear relation Equation (35).
The Legendre transformation of τ(w) is then given by

f (γ) = γw− τ(w) (36)

where γ is defined as

γ =
∂τ(w)

∂w
= h(w)− w

∂h
∂w

. (37)

By substituting Equation (35) in Equation (36), the Legendre transformation of τ(w) is
found to be

f (γ) = w(γ− h(w)) + 1. (38)

For the case h(w) is linear with respect to w, γ is found to be constant, making the
Legendre transformation ill-defined. This indicates that γ is not a one-to-one function of w;
therefore, it is not invertible to calculate f (γ). To avoid this problem, we add a nonlinear
auxiliary term to the function of h(w). More precisely, one adds a nonlinear term to h(w),
performs the calculations, and sends the amplitude of the linear term to zero at the end.
A similar scenario applies here since the deviations from linearity for h(w) are small, i.e., the
Legendre transformation results in a constant γ with some fluctuations around. To proceed,
we add the following nonlinear term:

hβ(w) = βw3 + h(w), (39)

where β is an amplitude. We considered w3 to make the Legendre transformation one-
to-one, that is, fβ(γ) (obtained using Equation (38) with h(w) replaced by hβ(w)) is a
one-to-one function of γ. This makes Equation (37) invertible, so that γ is easily obtained
as a function of w to be used in the other equations. In the end, we should take the limit
β→ 0, i.e.,

f (γ) = lim
β→0

fβ(γ). (40)

As a simple example to see how this scenario works, consider the simple linear case
h(w) = aw + b, so that hβ(w) = βw3 + ax + b, which gives

γ = −2βw3 + b. (41)

or w = ( b−γ
2β )1/3, and fβ(γ) is calculated as:

fβ(γ) = w(γ− hβ(w)) + 1

=

(
b− γ

2β

)1/2(
γ− β

(
b− γ

2β

)
− a

(
b− γ

2β

)
− b

)
+ 1

(42)

This relation allows us to track and monitor how f (γ) approaches fβ(γ) as β goes
to zero. Figure 11 shows the result of fβ(γ) with different values of β. The results show
that as β approaches the limit of 0, two peaks appear, which are shown in the figure. The
two peaks represent the two-fractal behavior of the time series. As we already observed in
Figure 9, the slopes for positive and negative values of w are slightly different, so one may
expect two different classes of exponents, which is consistent with the result that we found
based on the nonlinear analysis of Figure 11. Therefore, we conclude that the time series
studied here is multifractal.
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Figure 11. Result for fβ(γ) with varying β values from 1 to 0.001. As β decreases, fβ(γ) becomes
narrower. When β = 0.001, two peaks are presented as shown in the red curve.

5. Discussion
We investigated the stylized facts of the Bitcoin time series from 2019 to 2022. The Bit-

coin price index was divided into two periods based on volatility changes. Table 1 sum-
marizes the stylized facts observed for Bitcoin and compares them with the well-studied
S&P500 (January 1996–May 2018). The S&P500 results are divided into two regimes iden-
tified in [27]. Regime 1 corresponds to the superdiffusion regime at very short times and
small fluctuations (marked as regime A in [27]), which we traced to small fluctuations
about 30 min before the market close. Regime 2 dominates during the official S&P500
trading hours (9:30 a.m.–4:00 p.m. Eastern time) and can be considered stationary after
detrending [55]. This daily schedule is important, as market opening and closing times
produce characteristic intraday patterns, including the short-lived superdiffusion observed
before market close.

Table 1. Summary of stylized facts. The exponent ξ for the fractional derivative is calculated from
the exponent q of the fat-tailed distribution and the Hurst exponent H of the short-time anomalous
diffusion using the hyperscaling relation ξ = H(3 − q). The values presented for the S&P500
correspond to the analyzed period from 1996 to 2018 per minute [27,55].

Stylized Fact Equation BTC 1 BTC 2 S&P500 1 S&P500 2

Fat-tailed Distribution P(x, t) ∼ x
2

1−q q = 1.51 q = 1.50 q ≈ 1.70 N/A

Anomalous Diffusion
(Short time-intervals)

P(0, t) ∼ t−H , H = 1/α H = 0.42
α = 2.41

H = 0.48
α = 2.09

H = 0.56
α = 1.79

H = 0.79
α = 1.26

q-Gaussian Diffusion P(x, t) = 1
(Dt)H gq(

x
(Dt)H ) q = 1.53 q = 1.57 q = 1.71 q = 2.73

Volatility Clustering C|x|(s) ∼ s2H−2 H = 0.42 H = 0.47 N/A N/A

Multiscaling Analysis Fw(s) ∼ sh(w) N/A H = 0.461 H = 0.48 H = 0.48

Fractional derivative ξ = H(3− q) ξ = 0.62 ξ = 0.72 ξ = 0.72 ξ = 0.21
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The presence of heavy-tailed distributions is a well-known property of financial
markets such as the S&P500. Consistently, we found fat-tailed distributions for both Bitcoin
periods. This result agrees with those of previous studies on cryptocurrencies [56]. Our
analysis further shows that Bitcoin returns are best described by a q-Gaussian distribution,
directly comparable to the S&P500. Specifically, we estimate q = 1.51± 0.02 for Period 1
and q = 1.50± 0.02 for Period 2.

The anomalous diffusion in Bitcoin differs from the S&P500. Although both markets
exhibit changes in diffusion behavior, the S&P500 displays a strong superdiffusion regime
(α = 1.26± 0.04, H = 0.79) in Regime 1 and a weaker regime (α = 1.79± 0.01, H = 0.56)
in Regime 2 [27]. In contrast, Bitcoin changes from sub-diffusion to weak super-diffusion.
For Period 1, short intervals yield α = 2.41 ± 0.02 (H = 0.415) and longer intervals
α = 1.64± 0.02 (H = 0.610). For Period 2, short intervals give α = 2.09± 0.01 (H = 0.478)
and longer intervals α = 1.54± 0.01 (H = 0.646). This indicates antipersistence at short
horizons and persistence at longer scales. The q-Gaussian diffusion process also describes
Bitcoin, but with lower q values (q ≈ 1.55) compared to the S&P500 (q = 1.71, q = 2.73).
This suggests that extreme returns are more frequent in the S&P500.

The autocorrelation function of the raw returns (ACF) and absolute returns (|ACF|)
was computed from the Bitcoin returns. The |ACF| shows power law decay, with Hurst
exponents moving from below 0.5 in Period 1 (H = 0.415) to closer to 0.5 in Period 2
(H = 0.465, Table 1). Both periods show a short-term negative autocorrelation in the ACF,
consistent with the feedback trading behavior [57]. For the S&P500, the ACF shows an
exponential decay at short times (Regime 1) and a power law at longer times (Regime 2) [55].

At long aggregation horizons, we expect q→ 1 and H → 1
2 . Intuitively, returns over

large windows are sums of many 10 min increments; since these increments have finite
variance, the classical central limit theorem (CLT) would drive the aggregated distribution
toward Gaussian. However, Bitcoin increments are strictly not independent—they exhibit
long-range dependence ( power law decay in the autocorrelation of absolute returns)—so
the standard CLT assumptions may be violated. In dependent settings, generalized limit
theorems govern the asymptotics and can imply slower convergence to normality, modified
scaling, or even non-Gaussian attractors. Consequently, the time evolution of q(t) and H(t)
is better analyzed within a generalized CLT framework that accommodates long memory,
for example, through variable-order time-dependent diffusion coefficients [58].

From the scaling analysis, both Bitcoin periods are multifractal, consistent with pre-
vious work on Bitcoin [4,14] and with evidence from traditional markets [10,37–40]. Mul-
tifractality in Bitcoin probably arises from the clustering of volatility across scales and
fat-tailed distributions [36]. The discrepancies of the values of Hurst exponents in the ACF
can be attributed to the fact that the time series are not fractal like the fractional Brownian
noise, but are instead multifractal. Finally, the fractional derivative parameter ξ calculated
from q and H differs between regimes: ξ = 0.62 in Period 1 and ξ = 0.72 in Period 2 for
Bitcoin, compared to ξ = 0.72 for the S&P500. These values highlight structural differences
in memory and scaling between the crypto and traditional markets.

6. Conclusions
In this work, we analyzed high-frequency Bitcoin returns between 2019 and 2022,

focusing on stylized facts such as fat tails, anomalous diffusion, volatility clustering, mul-
tifractality, and scaling relations. Our results show that Bitcoin price dynamics exhibit
persistent deviations from Gaussian behavior, with q-Gaussian distributions, transitions
from subdiffusion to weak superdiffusion, and multifractal scaling properties. These
findings align with and extend empirical evidence from traditional equity markets.
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Several stylized facts become apparent only after detrending. In particular, we
observe approximate self-similarity in the return distribution when detrended with a
centered moving average, with an empirically optimal window of about one week.
Multifractality is assessed using standard MF-DFA, which removes local trends across
scales to recover the scale-dependent Hurst exponent. Looking forward, a unified de-
trending framework—treating MF-DFA and moving-average filters as interchangeable
smoothers—and principled criteria for selecting window lengths and filter parameters
(e.g., Wiener–Khintchine consistency and variance–stationarity) should improve robustness
and reproducibility. A promising extension is to refine detrending by combining two
moving averages: one for the underlying trend and another for local volatility. By ad-
justing these windows so that residual fluctuations remain spectrally and variance-stable,
and by identifying persistent joint shifts in trend and volatility, it may become possible
to detect historical regime changes more objectively. Such an approach would provide a
reproducible way to separate long-run movements from short-term noise, and deserves
further exploration in the context of fractal and fractional modeling.

Beyond documenting stylized facts, our analysis connects directly with the math-
ematical formulations of fractional porous medium equations. We demonstrated that
the nonlinear Fokker–Planck (porous media) equation provides a natural framework to
unify fat-tailed distributions, anomalous diffusion, and scaling laws. The introduction of a
fractional time parameter ξ through time-stretching or local fractional derivatives bridges
empirical fractal properties with fractional porous media dynamics. The hyperscaling
relation ξ = H(3− q) shows how fractal geometry, nonlinearity, and fractional calculus
jointly govern the observed dynamics.

Thus, Bitcoin time series provide a concrete application where concepts from frac-
tals and fractional porous media equations are not only theoretically consistent but also
empirically necessary. This cross-disciplinary connection illustrates how tools originally
developed for complex transport in porous media can be applied fruitfully to financial
data, highlighting the unifying power of fractal and fractional methodologies. Future
research should explore these links further, particularly in relation to generalized central
limit theorems and the plausible non-ergodic dynamics of fractional, nonlinear stochastic
differential equations.
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