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Abstract

This paper investigates a class of uncertain fractional-order delayed cellular neural net-
works (UFODCNNs) with fuzzy operators and nonlinear activations. Both fuzzy AND
and fuzzy OR are considered, which help to improve the robustness of the model when
dealing with various uncertain problems. To achieve the finite-time (FT) synchronization
and Mittag–Leffler synchronization of the concerned neural networks (NNs), a nonlinear
adaptive controller consisting of three information feedback modules is devised, and each
submodule performs its function based on current or delayed historical information. Based
on the fractional-order comparison theorem, the Lyapunov function, and the adaptive
control scheme, new FT synchronization and Mittag–Leffler synchronization criteria for
the UFODCNNs are derived. Unlike previous feedback controllers, the control strategy
proposed in this article can adaptively adjust the strength of the information feedback, and
partial parameters only need to satisfy inequality constraints within a local time interval,
which shows our control mechanism has a significant advantage in conservatism. The
experimental results show that our mean synchronization time and variance are 11.397%
and 12.5% lower than the second-ranked controllers, respectively.

Keywords: adaptive parameter; synchronization pattern; fuzzy rule; neural network;
fractional-order

1. Introduction
In recent years, people’s work and lives have been inextricably linked to various

complex networks and NNs [1,2]. For example, urban public transportation networks,
energy and power systems, information transmission networks, online social networks,
and deep learning networks have dramatically changed all aspects of people [3,4]. NNs
of varying distinctiveness have been widely utilized in signal processing, cooperative
control, system stability, dynamics analysis, and other fields [5–8]. Synchronization, as
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an important aggregation behavior of NNs, inevitably becomes a cutting-edge direction
for researchers [9]. Synchronized neuronal firing plays an important role in cognitive
function by enhancing the processing of specific sensory information, thereby improving
concentration. Fireflies flashing in nature, birds flying in flocks, and crickets chirping in
unison show the importance of synchronized behavior to the life of biota [10,11]. Up to the
present, various synchronization patterns have emerged, including complete synchroniza-
tion [12], impulsive synchronization [13], exponential synchronization [14], Mittag–Leffler
synchronization [15], and finite-time synchronization [16].

Few NNs can achieve synchronization consistency without the aid of external control.
To finish various synchronization tasks for NNs, there exist many control strategies, such
as PID control [17–21], sampled-data control [22], event-triggered control [23], feedback
control [24], and adaptive control [25]. In [26], the global synchronization of NNs was
investigated through feedback control of a few key nodes. The authors of [27] conducted the
asymptotic synchronization of delayed networks with uncertainties under feedback control
at partial discrete instants. By concise control schemes and solution formulas, Hua et al. [28]
derived the sufficient synchronization conditions of NNs with multi-link frameworks and
multiple delays. In [29], Wan et al. studied the master–slave synchronization of delayed
network systems by using the Barbalat lemma and adaptive control. An adaptive feedback
controller was designed for the global synchronization of quaternion NNs in [30] to reduce
the control cost and conservatism.

Compared to integer-order calculus, fractional-order calculus can more accurately
describe the dynamic changes of actual systems due to its infinite memory and genetic
characterizations [31,32]. The advantages of fractional calculus make it successfully applied
in various engineering and biophysical fields [33]. For instance, the stress relaxation and
creep behavior of materials such as soil and asphalt can be more accurately captured by
fractional-order differential constitutive models, which are more concise and effective
than integer-order models [34]. Many scholars have introduced fractional calculus into
network modeling and studied the synchronization control of fractional NNs [35–37].
In [38], Xiao et al. solved the FT synchronization of fractional delayed BAM NNs by using
a linear feedback controller. In [39], Popa et al. analyzed the Mittag–Leffler master–slave
synchronization problem for fractional NNs with hybrid delays via state feedback schemes.
Using feedback control methods, the authors derived the flexible synchronization criteria
and the Mittag–Leffler synchronization of fractional fuzzy NNs [40,41].

The dynamic behavior of NNs often manifests as strong nonlinearity, time variation,
and inaccuracy measurements [42]. For a biological neural network, a neuron receives
input signals from thousands of synapses. It does not simply add up all the input values
linearly. The neuron’s state response is more akin to a nonlinear threshold decision-making
process [43]. Fuzzy logic operators provide just the right mathematical framework to
express this nonlinear integration [44]. For example, Li and Cao et al. [45] aimed to probe
a class of memristive NNs with different fuzzy operators. In [46], the synchronization of
discontinuous delayed neural networks with fuzzy AND and fuzzy OR was discussed
using adaptive control schemes. Based on nonlinear feedback control methods, the global
synchronization and the FT synchronization of fuzzy network systems with delays were
discussed in [47,48].

In addition to fuzziness, the dynamic behavior evolution of NNs is often accompanied
by uncertainties at the same time. In [49], Ansari et al. investigated the FT synchronization
for fractional quaternion-valued NNs by the desired sliding motion. In [50], Chen et al.
obtained the synchronization conditions of discontinuous T-S fuzzy NNs with system
uncertainties under a fuzzy feedback controller. The FT synchronization of fuzzy cellular
NNs with uncertainties and the FT Mittag–Leffler synchronization of Caputo fractional
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memristive systems were considered in [51,52]. However, few works have investigated
both FT synchronization and FT Mittag–Leffler synchronization of fractional fuzzy NNs
with time delays and system uncertainties through nonlinear adaptive control and feed-
back control schemes. Compared to the PID control [17,18] and the fixed gain feedback
control [16,50–52], we adopt adaptive gain feedback control, which reduces control time by
adjusting its control strength in real time, ensuring the robustness of the controller under
uncertain parameters. The design of the control law and parameter update law works
together to ensure the negative definiteness of the Lyapunov function. The experimental
results show that our controller saves at least 11.397% control time compared with the re-
lated controllers. The primary challenge of this paper is to design energy-efficient adaptive
controllers for synchronization tasks when parameters are only within a local time interval.

Sparked by the above discussions, we study the adaptive FT synchronization and
Mittag–Leffler synchronization for fuzzy UFODCNNs. The main contributions of this arti-
cle lie in three points. First, we give a general fractional-order fuzzy model, which includes
uncertainties and delays, and nonlinear activation functions. Second, neuroendocrine
PID controllers [20] and BELBIC PID controllers [21] focus on set-point regulation or non-
delayed systems, lacking direct compensation mechanisms for time-delayed systems. The
fixed-gain feedback controllers in [16,50–52] do not have adaptive adjustment mechanisms.
Compared with these existing control schemes, we design an adaptive nonlinear feedback
controller consisting of three information feedback modules, and each submodule per-
forms its function based on current and delayed historical information. Third, novel FT
synchronization and FT Mittag–Leffler synchronization conditions for fuzzy UFODCNNs
can be achieved based on the fractional comparison theorem and the adaptive controller.
Different from the parameters in [44–47] satisfying inequality constraints from the initial
moment to the current moment, the partial system parameters of our work only need to
satisfy inequality constraints within a local time interval [t, t̄ ]. Our control method can be
used for synchronization analysis of fractional-order delayed memristive NNs and can also
be applied to the FT consistency control of multi-agent systems. The FT synchronization
results obtained in this article can be considered for the image information encryption and
decryption within the scheduled time.

We use the following notations. Nk
1 = {1, 2, · · · , k}. R is the set of real numbers.

C1([t0,+∞),R) is the set of continuous differential functions from [t0,+∞) into R. c
t0
𝒟 α

t η(t)
and t0 Iα

t η(t) denote the α-order Caputo derivative and the α-order integral for a function
η(t), respectively. Γ(·) denotes the gamma function. sign(·) is the signum function.
Eϕq(t) and Eϕ(t) denote the double-parameter and single-parameter Mittag–Leffler
functions, respectively.

2. Fundamental Knowledge and Network Models
This section introduces the relevant definitions, assumptions, and lemmas. Then, we give

fractional-order drive-response NNs that include multiple uncertainties and fuzzy operators.

Definition 1 ([31]). The α-order Caputo derivative of η(t) is

c
t0
𝒟 α

t η(t) =
1

Γ(1 − α)

∫ t

t0

(t − ϖ)−αη′(ϖ)dϖ, t ≥ t0, (1)

where 0 < α < 1, and Γ(·) denotes the gamma function.

Definition 2 ([31]). The α-order integral of η(t) is

t0 Iα
t η(t) =

1
Γ(α)

∫ t

t0

(t − ϖ)α−1η(ϖ)dϖ, t ≥ t0, (2)
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where α > 0.

Consider nonlinear UFODCNNs with two types of fuzzy operators as below:

c
t0
𝒟 α

t ϱm(t) = −(bm + ∆bm(t))ϱm(t) +
k
∑

n=1
(cmn + ∆cmn(t))hn(ϱn(t))

+
k
∑

n=1
amnxn +

k∧
n=1

umngn(ϱn(t − τ)) +
k∨

n=1
vmngn(ϱn(t − τ))

+
k∧

n=1
P̂mnxn +

k∨
n=1

Q̂mnxn + Im,

ϱm(t) = βm(t), t ∈ [−τ, t0],

(3)

where 0 < α < 1, and m ∈ Nk
1. ϱm(t) represents the m-th neuron state. hn(·) and gn(·)

represent the activation functions of the n-th neuron. τ > 0 signifies the constant delay. bm

denotes the self-regulating coefficient. ∆bm(t) and ∆cmn(t) are the bounded uncertainties
satisfying the constraints |∆bm(t)| ≤ Ξm and |∆cmn(t)| ≤ Πmn. xm and Im represent the
input and bias.

∧
and

∨
signify the fuzzy operators AND and OR. cmn and amn characterize

elements of feedback and feed-forward templates. umn and vmn signify elements of feedback
MIN and MAX templates. P̂mn and Q̂mn signify feed-forward MIN and MAX templates.

Take fractional-order NNs (3) as the drive system, and one can get the response
system as

c
t0
𝒟 α

t ρm(t) = −(bm + ∆bm(t))ρm(t) +
k
∑

n=1
(cmn + ∆cmn(t))hn(ρn(t))

+
k
∑

n=1
amnxn +

k∧
n=1

umngn(ρn(t − τ)) +
k∨

n=1
vmngn(ρn(t − τ))

+
k∧

n=1
P̂mnxn +

k∨
n=1

Q̂mnxn + Im + Θm(t),

ρm(t) = γm(t), t ∈ [−τ, t0],

(4)

where 0 < α < 1, and m ∈ Nk
1. ρm(t) represents the m-th response neuron state. Θm(t)

signifies the feedback controller with appropriate adaptive laws. γm(t) is the initial value of
system (4). The meanings of the remaining parameters can be inferred from the fractional-
order NNs (3).

We define the m-th neuron error as ϵm(t) = ρm(t)− ϱm(t). Based on drive-response
NNs (3) and (4), one can deduce that the error variable satisfies

c
t0
𝒟 α

t ϵm(t) = −(bm + ∆bm(t))ϵm(t) +
k
∑

n=1
(cmn + ∆cmn(t))

[
hn(ρn(t))− hn(ϱn(t))

]
+

k∧
n=1

umngn(ρn(t − τ))−
k∧

n=1
umngn(ϱn(t − τ))

+
k∨

n=1
vmngn(ρn(t − τ))−

k∨
n=1

vmngn(ϱn(t − τ)) + Θm(t)

ϵm(t) = φm(t), t ∈ [−τ, t0],

(5)

where 0 < α < 1, and m ∈ Nk
1.

Remark 1. Integer-order calculus has been widely used in network system modeling and various
synchronous behavior research, such as the bipartite synchronization [26], the asymptotic syn-
chronization [27], the complete synchronization [28], and the master–slave synchronization [29].
However, these feedback control or adaptive control schemes cannot be directly utilized for fractional-
order NNs because of the significant difference in properties between the two types of calculus.
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Remark 2. The FT synchronization of fractional-order NNs has attracted the attention of scholars.
Refs. [38,40] considered the FT Mittag–Leffler synchronization of fractional NNs, but they ignored
fuzzy characteristics and uncertainties. Refs. [34,41] studied the FT synchronization of fractional
fuzzy NNs, but the model did not consider uncertainties. This article considers both uncertainties
and fuzziness in the network model and simultaneously studies the FT synchronization and FT
Mittag–Leffler synchronization of the network. Accordingly, the model and synchronization type in
this article are more generalized than those in the literature mentioned above.

Definition 3 ([31]). A double-parameter Mittag–Leffler function can be defined by

Eαq(t) =
∞

∑
µ=0

tµ

Γ(µα + q)
, (6)

where α, q > 0. For q = 1, the simplified single-parameter version is given by

Eα(t) =
∞

∑
µ=0

tµ

Γ(µα + 1)
. (7)

Definition 4 ([41]). For ∥φ∥ = sups∈[−τ,t0]
∥φ(s)∥, UFODCNNs (3) and (4) are FT synchronized

with respect to {σ, ε, t, t̄ } if ∥φ∥ ≤ σ signifies ∥ϵ(t)∥ ≤ ε for t ∈ [t, t̄ ], where 0 < σ < ε.

Definition 5 ([40]). UFODCNNs (3) and (4) are FT Mittag–Leffler synchronized with respect
to {σ, ε, t, t̄ } if ∥φ∥ ≤ σ signifies ∥ϵ(t)∥ ≤ ι(σ)Eα(−ϕ(t − t0)

α) ≤ ε for t ∈ [t, t̄ ], where
t0 < t < t̄, 0 < σ < ε, ϕ > 0, 0 < α < 1, and ι(σ) denotes a nonnegative function.

Remark 3. Currently, there exist two types of FT synchronization. The first one is where the
synchronization error of the system tends to zero in a finite time. The second is where the synchro-
nization error is not above the desired threshold during the transients. In this article, we mainly
focus on the second type (Definitions 4 and 5).

Lemma 1 ([32]). For a function Φ(t) ∈ C1([t0,+∞),R), we obtain

c
t0
𝒟 α

t |Φ(t)| ≤ sign(Φ(t))c
t0
𝒟 α

t Φ(t), 0 < α < 1. (8)

Assumption 1 ([51]). For ∀ϑ1, ϑ2 ∈ R, there exist constants Lh
n > 0 and Lg

n > 0 satisfying

|hn(ϑ2)− hn(ϑ1)| ≤ Lh
n|ϑ2 − ϑ1|, (9)

and

|gn(ϑ2)− gn(ϑ1)| ≤ Lg
n|ϑ2 − ϑ1|, (10)

where n ∈ Nk
1.

Lemma 2 ([15]). If ρn and ϱn signify different states of UFODCNNs (3) and (4), then we can obtain

∣∣∣ k∧
n=1

umngn(ρn(t − τ))−
k∧

n=1

umngn(ϱn(t − τ))
∣∣∣ ≤ k

∑
n=1

|umn||gn(ρn(t − τ))− gn(ϱn(t − τ))|, (11)

and∣∣∣ k∨
n=1

vmngn(ρn(t − τ))−
k∨

n=1

vmngn(ϱn(t − τ))
∣∣∣ ≤ k

∑
n=1

|vmn||gn(ρn(t − τ))− gn(ϱn(t − τ))|, (12)

where m, n ∈ Nk
1.
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Lemma 3 ([41]). Let 0 < α < 1, ϕ > 0, ψ ≤ 0, and W1(t) and W2(t) be nonnegative functions
satisfying

c
t0
𝒟 α

t (W1(t) + W2(t)) ≤ −ϕW1(t) + ψ, t ≥ t0. (13)

Then, for ∀λ > 0, there is a constant t̄ such that

W1(t) ≤
(

W1(t0) + W2(t0) + λ − ψ

ϕ

)
Eα(−ϕ(t − t0)

α) +
ψ

ϕ
, (14)

where t ∈ [t0, t̄ ], and t̄ signifies the solution of Eα(−ϕ(t − t0)
α)− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0.

3. New Synchronization Results of UFODCNNs
To accomplish the FT synchronization mission between UFODCNNs (3) and (4), we

consider an information feedback controller with adaptive laws as follows:

Θm(t) =

−χ
ϵm(t)
|ϵm(t)| |ϵm(t − τ)| − ςm(t)ϵm(t)− δ

ϵm(t)
|ϵm(t)| , |ϵm(t)| ̸= 0,

0, |ϵm(t)| = 0,
(15)

where ςm(t) represents the variable feedback strength satisfying c
t0
𝒟 α

t ςm(t) = κm|ϵm(t)|,
m ∈ Nk

1. χ, δ, and κm signify positive control parameters.

Remark 4. Figure 1 shows the control block diagram between drive system (3) and response
system (4). When the error norm does not conform to the synchronization definition, the nonlinear
adaptive controller (15) composed of three stacked submodules is applied to the response system. The
systems stop external control input when the synchronization goal is achieved.

Drive system (3) 

                               

Response system (4) 

                               

Error system (5) 

                               

Adaptive controller (15) 

Figure 1. The control block diagram between drive system (3) and response system (4).
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Remark 5. Different from the nonadaptive feedback control schemes in [16,50–52], this article
devises an adaptive nonlinear feedback controller including two situations, i.e., ϵm(t) = 0 and
ϵm(t) ̸= 0. The information feedback with three feedback modules is activated only under the
situation ϵm(t) ̸= 0. Particularly, the first module −χ

ϵm(t)
|ϵm(t)| |ϵm(t − τ)| can deal with the impact

of delays on system stability. The second module −ςm(t)ϵm(t) can adaptively remove quasi-linear
growth errors. The adaptive law reflects that the feedback strength automatically adjusts its size as
the error changes. The rest module −δ

ϵm(t)
|ϵm(t)| has the function of reducing the synchronization error

between the drive–response NNs. These three functional modules have distinct functions and are
indispensable for handling network synchronization problems that involve uncertainties and delays.

Remark 6. Various conventional PID controllers [17,18] and improved versions [19–21] have
demonstrated excellent performance in handling integer-order linear and nonlinear systems. Com-
pared to these PID controllers, our adaptive nonlinear controller is designed for the specific structure
of fractional-order UFODCNNs with fuzzy operators. First, the network model in this article
is a fractional-order nonlinear delayed system. Our controller features a dedicated time-delayed
feedback module that enables direct compensation of the system’s time-delayed state. In contrast,
the neuroendocrine PID controller [20] and the BELBIC PID controller [21] focus on set-point
regulation or non-delayed systems, lacking direct compensation mechanisms for historical states
(time-delayed states). Second, the network model in this article has uncertain factors caused by
parameter uncertainties and fuzzy rules. Our controller includes an adaptive feedback module,
and the feedback strength is adaptively adjusted by the real-time system error, which can better
address the impact of uncertain factors on the system’s stability. However, the feedback gains of the
conventional PID controller [17,18] and the Sigmoid PID controller [19] are often predefined and
do not have a real-time adaptive processing mechanism for uncertain information.

3.1. FT Synchronization Criteria

Theorem 1. Under Assumption 1 and adaptive feedback controller (15), UFODCNNs (3) are FT
synchronized with UFODCNNs (4) with respect to {σ, ε, t, t̄} if(

σ + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
+

ψ

ϕ
≤ ε, t ∈ [t, t̄ ], (16)

ς∗ > max1≤m≤k

[
− bm + Ξm +

k

∑
n=1

(
|cnm|+ Πnm

)
Lh

m

]
, (17)

χ > max1≤m≤k

[
k

∑
n=1

(
|unm|+ |vnm|

)
Lg

m

]
, (18)

where ϕ = min1≤m≤k

[
bm − Ξm −

k
∑

n=1

(
|cnm| + Πnm

)
Lh

m + ς∗
]

> 0 and ψ = −kδ. t̄ and

t denote the solutions of Eα

(
− ϕ(t − t0)

α
)
− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0 and Eα

(
− ϕ(t − t0)

α
)
−

ε− ψ
ϕ

σ+W2(t0)+λ− ψ
ϕ

= 0, respectively. W1(t0) =
k
∑

m=1
|ϵm(t0)| and W2(t0) =

k
∑

m=1

(ςm(t0)−ς∗)2

2κm
.
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Proof. Consider an auxiliary function

W(t) =

W1(t)︷ ︸︸ ︷
k

∑
m=1

|ϵm(t)|+

W2(t)︷ ︸︸ ︷
k

∑
m=1

(ςm(t)− ς∗)2

2κm
. (19)

Based on Lemma 1, computing the α-order derivative of W(t) gives
c
t0
𝒟 α

t W(t)

=c
t0
𝒟 α

t

[
∑k

m=1 |ϵm(t)|+
k
∑

m=1

(ςm(t)−ς∗)2

2κm

]
≤ ∑k

m=1 sign(ϵm(t))c
t0
𝒟 α

t ϵm(t) +
k
∑

m=1

ςm(t)−ς∗

κm
c
t0
𝒟 α

t ςm(t)

= ∑k
m=1 sign(ϵm(t))

{
− (bm + ∆bm(t))ϵm(t) +

k
∑

n=1
(cmn + ∆cmn(t))

[
hn(ρn(t))− hn(ϱn(t))

]
+

k∧
n=1

umngn(ρn(t − τ))−
k∧

n=1
umngn(ϱn(t − τ)) +

k∨
n=1

vmngn(ρn(t − τ))

−
k∨

n=1
vmngn(ϱn(t − τ))− χ

ϵm(t)|ϵm(t−τ)|
|ϵm(t)| − ςm(t)ϵm(t)− δ

ϵm(t)
|ϵm(t)|

}
+ ∑k

m=1(ςm(t)− ς∗)|ϵm(t)|.

(20)

Considering the boundedness of uncertainties and the Lipschitz condition of the
function h(·), one can get

k

∑
m=1

sign(ϵm(t))
[
− (bm + ∆bm(t))

]
ϵm(t) ≤

k

∑
m=1

(−bm + Ξm)|ϵm(t)|, (21)

and

k

∑
m=1

sign(ϵm(t))
k

∑
n=1

(cmn + ∆cmn(t))
[

hn(ρn(t))− hn(ϱn(t))
]

≤
k

∑
m=1

k

∑
n=1

(|cmn|+ Πmn)|hn(ρn(t))− hn(ϱn(t))|

≤
k

∑
m=1

k

∑
n=1

(|cmn|+ Πmn)Lh
n|ϵn(t)|. (22)

Based on Lemma 2 and Assumption 1, one can obtain

k

∑
m=1

sign(ϵm(t))
[ k∧

n=1

umngn(ρn(t − τ))−
k∧

n=1

umngn(ϱn(t − τ))
]

≤
k

∑
m=1

k

∑
n=1

|umn||gn(ρn(t − τ))− gn(ϱn(t − τ))| (23)

≤
k

∑
m=1

k

∑
n=1

|umn|Lg
n|ϵn(t − τ)|,
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and

k

∑
m=1

sign(ϵm(t))
[ k∨

n=1

vmngn(ρn(t − τ))−
k∨

n=1

vmngn(ϱn(t − τ))
]

≤
k

∑
m=1

k

∑
n=1

|vmn||gn(ρn(t − τ))− gn(ϱn(t − τ))| (24)

≤
k

∑
m=1

k

∑
n=1

|vmn|Lg
n|ϵn(t − τ)|.

Substituting inequalities (21)–(24) into (20), one derives

c
t0
𝒟 α

t W(t)

≤
k

∑
m=1

[
(−bm + Ξm)|ϵm(t)|+

k

∑
n=1

(|cmn|+ Πmn)Lh
n|ϵn(t)|+

k

∑
n=1

|umn|Lg
n|ϵn(t − τ)|

+
k

∑
n=1

|vmn|Lg
n|ϵn(t − τ)| − χ|ϵm(t − τ)| − ςm(t)|ϵm(t)| − δ

]
+

k

∑
m=1

(ςm(t)− ς∗)|ϵm(t)| (25)

≤
k

∑
m=1

[
− bm + Ξm +

k

∑
n=1

(|cnm|+ Πnm)Lh
m − ς∗

]
|ϵm(t)|

+
k

∑
m=1

[
− χ +

k

∑
n=1

(|unm|+ |vnm|)Lg
m

]
|ϵm(t − τ)| −

k

∑
m=1

δ.

Let ϕ = min1≤m≤k

[
bm − Ξm −

k
∑

n=1

(
|cnm|+ Πnm

)
Lh

m + ς∗
]
> 0 and ψ = −kδ. Then,

one can get

c
t0
𝒟 α

t (W1(t) + W2(t)) ≤ −ϕW1(t) + ψ. (26)

By Lemma 3, for ∀λ > 0, there exists an instant t̄ such that

∥ϵ(t)∥ = W1(t) ≤
(

W1(t0) + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
+

ψ

ϕ
, (27)

where t ∈ [t0, t̄ ], and t̄ denotes the solution of Eα

(
− ϕ(t − t0)

α
)
− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0.

According to Definition 4 and condition (16), one can obtain

∥ϵ(t)∥ ≤
(

σ + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
+

ψ

ϕ
≤ ε, (28)

where t ∈ [t, t̄ ], and t is the solution of Eα

(
− ϕ(t − t0)

α
)
−

ε− ψ
ϕ

σ+W2(t0)+λ− ψ
ϕ

= 0.

Remark 7. Combining the relevant mathematical formulas, lemmas, and assumptions, Figure 2
shows a schematic diagram of the proof of Theorem 1. It describes the logical derivation relationship
of the mathematical expressions (16)–(28). The proof idea is to first construct a positive auxiliary
function (19) based on stability theory and solve for the fractional derivative of the function to obtain
(20). Using the Lipschitz condition, one can obtain inequalities (21) and (22) and obtain inequalities
(23) and (24) based on Lemma 2 and Assumption 1. Then, we substitute (21)–(24) into (20) for
simplification and use conditions (16)–(18) and Definition 4 to obtain inequalities (26)–(28).
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Computing the derivative of   

Constructing the auxiliary function  

                               (19)

Obtaining (21) and (22) by the 

Lipschitz condition 

Simplifying (20) to obtain (25)

Substituting (21) 

and (22) into (20)

Obtaining (23) and (24) by 

Lemma 2 and Assumption 1 

Substituting (23) 

and (24) into (20)

Simplifying (25) to obtain 

(26)–(27)

Obtaining (28) by the 

Definition (4) and (16) 

Figure 2. The schematic derivation of the proof process for Theorem 1.

In view of ϕ > 0 and ψ ≤ 0, we get ψ
ϕ ≤ 0. Based on the proof of Theorem 1, one can

obtain the following FT Mittag–Leffler synchronization results.

3.2. FT Mittag–Leffler Synchronization Criteria

Theorem 2. Under Assumption 1 and adaptive feedback controller (15), UFODCNNs (3) are FT
Mittag–Leffler synchronized with UFODCNNs (4) with respect to {σ, ε, t, t̄ } if(

σ + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
≤ ε, t ∈ [t, t̄ ], (29)

ς∗ > max1≤m≤k

[
− bm + Ξm +

k

∑
n=1

(
|cnm|+ Πnm

)
Lh

m

]
, (30)

χ > max1≤m≤k

[
k

∑
n=1

(
|unm|+ |vnm|

)
Lg

m

]
, (31)
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where ϕ = min1≤m≤k

[
bm − Ξm −

k
∑

n=1

(
|cnm| + Πnm

)
Lh

m + ς∗
]
> 0, and ψ = −kδ. t̄ and

t denote the solutions of Eα

(
− ϕ(t − t0)

α
)
− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0 and Eα

(
− ϕ(t − t0)

α
)
−

ε

σ+W2(t0)+λ− ψ
ϕ

= 0, respectively. W1(t0) =
k
∑

m=1
|ϵm(t0)|, and W2(t0) =

k
∑

m=1

(ςm(t0)−ς∗)2

2κm
.

Proof. Using the similar proof steps with Theorem 1, for ∀λ > 0, there exists an instant t̄
such that

∥ϵ(t)∥ = W1(t) ≤
(

W1(t0) + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
+

ψ

ϕ
, (32)

where t ∈ [t0, t̄ ], and t̄ denotes the solution of Eα

(
− ϕ(t − t0)

α
)
− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0.

According to Definition 5 and condition (29) as well as ψ
ϕ ≤ 0, one can get

∥ϵ(t)∥ ≤
(

σ + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
≤ ε, (33)

where t ∈ [t, t̄ ], and t is the solution of Eα

(
− ϕ(t − t0)

α
)
− ε

σ+W2(t0)+λ− ψ
ϕ

= 0.

3.3. FT Synchronization Corollary

If uncertainties are not taken into account, then fractional-order NNs (3) and (4) are
simplified by

c
t0
𝒟 α

t ϱm(t) = −bmϱm(t) +
k
∑

n=1
cmnhn(ϱn(t)) +

k
∑

n=1
amnxn

+
k∧

n=1
umngn(ϱn(t − τ)) +

k∨
n=1

vmngn(ϱn(t − τ))

+
k∧

n=1
P̂mnxn +

k∨
n=1

Q̂mnxn + Im,

ϱm(t) = βm(t), t ∈ [−τ, t0],

(34)

and 

c
t0
𝒟 α

t ρm(t) = −bmρm(t) +
k
∑

n=1
cmnhn(ρn(t)) +

k
∑

n=1
amnxn

+
k∧

n=1
umngn(ρn(t − τ)) +

k∨
n=1

vmngn(ρn(t − τ))

+
k∧

n=1
P̂mnxn +

k∨
n=1

Q̂mnxn + Im + Θm(t),

ρm(t) = γm(t), t ∈ [−τ, t0],

(35)

where 0 < α < 1, and m ∈ Nk
1. By the adaptive feedback controller (15), we obtain the

following corollary utilizing a similar proof to that of Theorem 1.

Corollary 1. Under Assumption 1 and adaptive feedback controller (15), UFODCNNs (34) are FT
synchronized with UFODCNNs (35) with respect to {σ, ε, t, t̄ } if(

σ + W2(t0) + λ − ψ

ϕ

)
Eα

(
− ϕ(t − t0)

α
)
+

ψ

ϕ
≤ ε, t ∈ [t, t̄ ], (36)
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ς∗ > max1≤m≤k

[
− bm +

k

∑
n=1

|cnm|Lh
m

]
, (37)

χ > max1≤m≤k

[
k

∑
n=1

(
|unm|+ |vnm|

)
Lg

m

]
, (38)

where ϕ = min1≤m≤k

[
bm −

k
∑

n=1
|cnm|Lh

m + ς∗
]
> 0, and ψ = −kδ. t̄ and t denote the solutions

of Eα

(
− ϕ(t − t0)

α
)
− W1(t0)+W2(t0)

W1(t0)+W2(t0)+λ
= 0 and Eα

(
− ϕ(t − t0)

α
)
−

ε− ψ
ϕ

σ+W2(t0)+λ− ψ
ϕ

= 0,

respectively. W1(t0) =
k
∑

m=1
|ϵm(t0)|, and W2(t0) =

k
∑

m=1

(ςm(t0)−ς∗)2

2κm
.

Proof. The overall proof approach and steps are the same as Theorem 1; so, we omit
them here.

Remark 8. According to (34) and (35) and Corollary 1, if we replace
(

σ+W2(t0)+λ− ψ
ϕ

)
Eα

(
−

ϕ(t − t0)
α
)
+ ψ

ϕ ≤ ε, t ∈ [t, t̄ ] with
(

σ + W2(t0) + λ − ψ
ϕ

)
Eα

(
− ϕ(t − t0)

α
)
≤ ε, t ∈ [t, t̄ ],

and replace Eα

(
−ϕ(t− t0)

α
)
−

ε− ψ
ϕ

σ+W2(t0)+λ− ψ
ϕ

= 0 with Eα

(
−ϕ(t− t0)

α
)
− ε

σ+W2(t0)+λ− ψ
ϕ

=

0, a similar FT Mittag–Leffler synchronization Corollary can be obtained,

Remark 9. For the FT interval [t0, t0 + T] in [38,40], the left end point is unchanged, and the
right end point T is updated with σ and ε. However, for the FT interval [t, t̄ ] in this article, the
right end point is unchanged, and the left end point is updated with σ and ε.

4. Simulation Examples
This section presents numerical examples to verify the applicability of our theorem

results.

Example 1. Consider two-dimensional nonlinear UFODCNNs with fuzzy operators as the mas-
ter system:

c
t0
𝒟 0.8

t ϱm(t) = −(bm + ∆bm(t))ϱm(t) +
2
∑

n=1
(cmn + ∆cmn(t))hn(ϱn(t))

+
2
∑

n=1
amnxn +

2∧
n=1

umngn(ϱn(t − τ)) +
2∨

n=1
vmngn(ϱn(t − τ))

+
2∧

n=1
P̂mnxn +

2∨
n=1

Q̂mnxn + Im,

ϱm(t) = βm(t), t ∈ [−τ, t0],

(39)

where b1 = 0.6, b2 = 0.5, ∆b1(t) = ∆c1n(t) = 0.1sint, ∆b2(t) = ∆c2n(t) =

0.1cost, hn(ϱ) = gn(ϱ) = tanh(ϱ), (cmn)2×2 =

[
−1.4 −3.0
0.9 −1.5

]
, (amn)2×2 =

[
0.3 0.4
0.2 0.5

]
,

(P̂mn)2×2 =

[
0.2 0.4
0.4 0.2

]
, (Q̂mn)2×2 =

[
0.4 0.3
0.5 0.2

]
, (umn)2×2 =

[
−1.6 −0.2
−0.4 −2.6

]
, (vmn)2×2 =[

−0.9 −0.2
−0.3 −1.6

]
, (xn) =

[
0.3
0.3

]
, and I =

[
0
0

]
.



Fractal Fract. 2025, 9, 634 13 of 21

According to the form of the activation functions, one can see that Assumption 1
holds for Lh

n = Lg
n = 1. According to fractional-order master system (39), one can get the

following fractional-order slave system

c
t0
𝒟 0.8

t ρm(t) = −(bm + ∆bm(t))ρm(t) +
2
∑

n=1
(cmn + ∆cmn(t))hn(ρn(t))

+
2
∑

n=1
amnxn +

2∧
n=1

umngn(ρn(t − τ)) +
2∨

n=1
vmngn(ρn(t − τ))

+
2∧

n=1
P̂mnxn +

2∨
n=1

Q̂mnxn + Im + Θm(t),

ρm(t) = γm(t), t ∈ [−τ, t0],

(40)

where the network parameters are the same as (39).
Let parameters t0 = 0, τ = 0.3, κ1 = κ2 = 1, σ = 0.13, δ = 0.01, ς∗ = 4.4, and

χ = 4.7. Simple calculations indicate that ς∗ > max1≤m≤k

[
− bm + Ξm +

k
∑

n=1

(
|cnm| +

Πnm

)
Lh

m

]
= 4.3, χ > max1≤m≤k

[
k
∑

n=1

(
|unm| + |vnm|

)
Lg

m

]
= 4.6, ϕ = min1≤m≤k

[
bm −

Ξm −
k
∑

n=1

(
|cnm|+ Πnm

)
Lh

m + ς∗
]
= 0.1, ψ = −0.02, t = 2.155, and t̄ = 33.11. Hence, all

the inequality constraints in Theorem 1 are satisfied for the above parameters.
The time evolution of the adaptive control strength ςm(t) of the nonlinear controller

(15) is given in Figure 3. The system errors of different states are shown in Figure 4. The
norm of the system error can be seen in Figure 5. To quantify the variation in the error
norm, the time evolution of ∥ϵ(t)∥ between systems (39) and (40) is given in Table 1.
Clearly, as the control advances, the master networks (39) and slave networks (40) can reach
FT synchronization.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t  [second]

4.2

4.22

4.24

4.26

4.28

4.3

4.32

4.34

4.36

4.38

1
(t

),
2
(t

)

1
(t)

2
(t)

Figure 3. The time evolution of control strengths ςm(t) in Example 1.
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(t

),
2
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1
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Figure 4. System errors ϵm(t) between fuzzy UFODCNNs (39) and (40) under adaptive controller
(15) in Example 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

||
(t

)|
|

|| (t)||

Figure 5. The norm of the system error between fuzzy UFODCNNs (39) and (40) under adaptive
controller (15) in Example 1.

Table 1. The time evolution of the error norm ∥ϵ(t)∥ between UFODCNNs (39) and (40).

Time t 0.1 0.2 0.4 0.6 0.8 1.0 1.2

Error norm 0.0793 0.0418 0.0186 0.0052 0.0025 0.0010 0

To investigate the sensitivity of important parameters in this article, initial values were
randomly selected [−1, 1] for each experiment. First, we scanned the uncertain parameters
from 0.15sint to 0.40sint with a step size of 0.05sint. Under the same conditions, we
performed independent experiments on each parameter 10 times and calculated the mean
and variance of the synchronization time. As shown in Table 2, the greater the uncertainty
∆b1(t), the larger the mean time and variance for the network to reach synchronization.
Second, we scanned the time delays from 0.05 to 0.5, and the results in Table 3 indicate that
as the time delay increases, the network takes longer to achieve synchronization, and the
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variance of the synchronization time also increases. Third, we selected different control
strengths δ and χ and observed their impact on the synchronization time. As shown in
Tables 4 and 5, increasing the control strengths is beneficial for reducing the synchronization
time and decreasing the time variance. Regardless of how the parameters change, as long as
the theorem conditions are met, the controller proposed in this paper can achieve network
synchronization under small variance. This indicates that the control method proposed in
this article has good robustness.

Table 2. Comparisons of mean time and variance with different uncertainties.

∆b1(t) 0.15 sint 0.20 sint 0.25 sint 0.30 sint 0.35 sint 0.40 sint

Mean time 1.246 1.424 1.713 2.178 2.559 2.959
Variance 0.023 0.024 0.028 0.028 0.029 0.032

Table 3. Comparisons of mean time and variance with different delays.

Delays τ 0.05 0.1 0.2 0.3 0.4 0.5

Mean time 0.236 0.616 0.827 1.153 1.962 3.248
Variance 0.012 0.013 0.014 0.022 0.026 0.031

Table 4. Comparisons of mean time and variance with different strengths δ.

Strengths δ 0.01 0.02 0.03 0.04 0.05 0.06

Mean time 1.152 0.993 0.784 0.635 0.493 0.346
Variance 0.021 0.019 0.018 0.018 0.017 0.016

Table 5. Comparisons of mean time and variance with different strengths χ.

Strengths χ 4.8 4.9 5.0 5.1 5.2 5.3

Mean time 1.143 1.092 1.014 0.957 0.865 0.732
Variance 0.020 0.019 0.019 0.018 0.018 0.017

Example 2. Consider the following two-dimensional nonlinear UFODCNNs with fuzzy operators
as the master system:

c
t0
𝒟 0.92

t ϱm(t) = −(bm + ∆bm(t))ϱm(t) +
2
∑

n=1
(cmn + ∆cmn(t))hn(ϱn(t))

+
2
∑

n=1
amnxn +

2∧
n=1

umngn(ϱn(t − τ)) +
2∨

n=1
vmngn(ϱn(t − τ))

+
2∧

n=1
P̂mnxn +

2∨
n=1

Q̂mnxn + Im,

ϱm(t) = βm(t), t ∈ [−τ, t0],

(41)

where b1 = 0.2, b2 = 0.1, ∆b1(t) = ∆c1n(t) = 0.1cost, ∆b2(t) = ∆c2n(t) = 0.1sint,

hn(ϱ) = gn(ϱ) = tanh(ϱ), (cmn)2×2 =

[
−1.2 −2.0
0.8 −1.4

]
, (amn)2×2 =

[
0.2 0.3
0.1 0.4

]
, (P̂mn)2×2 =[

0.1 0.3
0.3 0.1

]
, (Q̂mn)2×2 =

[
0.3 0.2
0.4 0.1

]
, (umn)2×2 =

[
−1.5 −0.1
−0.3 −2.5

]
, (vmn)2×2 =

[
−0.8 −0.1
−0.2 −1.5

]
,

(xn) =

[
0.2
0.2

]
, and I =

[
0
0

]
. It is clear that Assumption 1 holds for Lh

n = Lg
n = 1. Based on

master system (41), one can get the following slave system
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

c
t0
𝒟 0.92

t ρm(t) = −(bm + ∆bm(t))ρm(t) +
2
∑

n=1
(cmn + ∆cmn(t))hn(ρn(t))

+
2
∑

n=1
amnxn +

2∧
n=1

umngn(ρn(t − τ)) +
2∨

n=1
vmngn(ρn(t − τ))

+
2∧

n=1
P̂mnxn +

2∨
n=1

Q̂mnxn + Im + Θm(t),

ρm(t) = γm(t), t ∈ [−τ, t0],

(42)

where the network parameters are the same as (41).

Let parameters t0 = 0, τ = 0.2, κ1 = κ2 = 1, σ = 0.12, δ = 0.01, ς∗ = 3.7, and

χ = 4.3. Simple calculations indicate that ς∗ > max1≤m≤k

[
− bm + Ξm +

k
∑

n=1

(
|cnm| +

Πnm

)
Lh

m

]
= 3.6, χ > max1≤m≤k

[
k
∑

n=1

(
|unm| + |vnm|

)
Lg

m

]
= 4.2, ϕ = min1≤m≤k

[
bm −

Ξm −
k
∑

n=1

(
|cnm|+ Πnm

)
Lh

m + ς∗
]
= 0.1, ψ = −0.02, t = 1.9384, and t̄ = 19.9698. It is not

difficult to find that all the inequality constraints in Theorem 2 are satisfied for the above
parameters.

By the nonlinear controller (15), the time evolution of the adaptive control strength
ςm(t) is given in Figure 6. Figure 7 shows the system errors of different states under
adaptive control schemes, and Figure 8 presents the corresponding norm of the system error.
To quantify the variation in the error norm, the time evolution of ∥ϵ(t)∥ between systems
(41) and (42) is given in Table 6. Obviously, with the advances in control, the controlled
master and slave networks (41) and (42) can achieve FT Mittag–Leffler synchronization.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t  [second]

3.48

3.5

3.52

3.54

3.56

3.58

3.6

3.62

3.64

3.66

1
2
(t

)

1
(t)

2
(t)

Figure 6. The time evolution of the control strength ςm(t) in Example 2.

Table 6. The time evolution of the error norm ∥ϵ(t)∥ between UFODCNNs (41) and (42).

Time t 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Error norm 0.0372 0.0243 0.0068 0.0037 0.0018 0.0005 0
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Figure 7. System errors ϵm(t) between fuzzy UFODCNNs (41) and (42) under adaptive controller
(15) in Example 2.
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Figure 8. The norm of the system error between fuzzy UFODCNNs (41) and (42) under adaptive
controller (15) in Example 2.

To evaluate the performance of our adaptive feedback controller, we compare the dif-
ferences in the mean synchronization time and variance with nonlinear feedback controllers
from the existing literature [16,51,52]. To ensure fairness in comparison, four feedback
controllers are compared under the same system parameters. We randomly select the
initial values [−1, 1], and each control method is executed 10 times under the same initial
conditions. As shown in Table 7, the performance of our adaptive controller in terms of the
synchronization time and variance is superior to other controllers. From the perspective of
the mean time, the cost time of our controller is 11.397% less than that of the second-ranked
controller, and the variance of our controller is 12.5% less than that of the nonlinear feedback
control in [51].
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Table 7. Comparisons of mean time and variance with different control schemes.

Control Schemes Mean Time Variance

Nonlinear feedback control in [16] 0.857 0.021
Nonlinear feedback control in [51] 0.816 0.016
Simplified feedback control in [52] 0.945 0.018
Our adaptive feedback controller 0.723 0.014

Remark 10. Noting the memory characteristics of fractional-order systems, this paper applies the
Adams–Bashforth–Moulton approach in [33] to model the error evolution of delayed fractional-order
nonlinear systems by MATLAB R2020b. The approach mainly consists of two phases: prediction
and correction. First, the time intervals are divided using an equally spaced grid. The product
rectangular rule and the series expansion are utilized to evaluate the prediction items. Second, the
product trapezoidal quadrature rule is utilized to obtain the correction term. By combining the
prediction and correction, the simulation examples can be realized.

Remark 11. In particular, the three modules in (15) show that limϵm(t)→0 Θm(t) = ∞. In actual
application, a bounded and smooth controller significantly reduces the control energy consump-
tion. To avoid singularity, one can replace the −χ

ϵm(t)
|ϵm(t)| |ϵm(t − τ)| − ςm(t)ϵm(t) − δ

ϵm(t)
|ϵm(t)|

with −χ
ϵm(t)

|ϵm(t)|+ϵ⋆
|ϵm(t − τ)| − ςm(t)ϵm(t)− δ

ϵm(t)
|ϵm(t)|+ϵ⋆

, where ϵ⋆ > 0 indicates a sufficiently
small constant.

Remark 12. The synchronization results derived in this article have potential applications in the
real world. In secure communication, the drive system hides encrypted information in chaotic
signals for transmission, and the response system must accurately synchronize the chaotic dynamics
of the transmission end to extract the original information. The FT synchronization control of neural
networks can ensure that the receiving end completes synchronization within strict time constraints,
greatly improving the real-time performance and anti-interception ability of communication. In
multi-robot collaborative control, one robot (leader) serves as the driving system, while other robots
(followers) serve as the responding systems, requiring consistent posture, speed, or trajectory with it.
FT synchronization control can ensure that all robots reach a consistent state within a finite time,
thereby improving the system’s response speed and overall coordination to sudden instructions. In
the smart grid distributed optimization process, FT synchronization control can force the output
frequency and phase of all power nodes to achieve synchronization in a very short time. This can
effectively prevent frequency fluctuations caused by slow synchronization and significantly improve
the stability of the power grid in response to sudden load changes.

5. Conclusions
The FT synchronization and FT Mittag–Leffler synchronization issues have been

studied for the nonlinear UFODCNNs with multiple fuzzy operators. By combining the
adaptive control mechanism, the fractional comparison theorem, and the fractional stability
theory, novel synchronization conditions in finite time for the UFODCNNs were obtained.
All conditions were in simple scalar inequality form, eliminating the need for the linear
matrix inequality toolbox and reducing the computational burden. Two experiments
validated the effectiveness of the synchronization results in this article. A future direction is
to study the synchronized control of fractional-order neural networks under time-varying
topologies or switching connection weights to improve the model’s adaptability to real
network dynamics. Another research direction is to explore the effect of variable-order
derivatives on neural network dynamics to reveal the synchronization mechanism of
adaptive regulation order.
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