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Abstract

A novel fractional-order repetitive control based on phase angle information interpolation
is proposed for single-phase LCL-type inverters in this paper. Conventional fractional-
order repetitive control typically relies on inaccurate grid frequency information detected
by a phase-locked loop or the frequency-locked loop, which may result in a potential
degradation in harmonics suppression capability. To address this issue, phase information
is investigated to implement the fractional order of the repetitive controller through the
linear interpolation method. A major advantage of the proposed scheme lies in that it avoids
explicit frequency calculation and reduces sensitivity to frequency estimation fluctuations
compared with conventional fractional-order repetitive control, enhancing its frequency
adaptability. The stability analysis and the design process for the proposed scheme based
on a plug-in-type repetitive control are given. Experimental results support the efficacy
and advantages of the proposed control strategy.

Keywords: grid-tied inverters; fractional-order repetitive control; harmonics suppression;
frequency adaptation; phase angle

1. Introduction
In recent decades, distributed power generation systems (DPGSs), such as solar energy

and wind energy, have experienced rapid growth and grid-tied inverters have emerged
as an important interface that connects DPGSs to the power grid [1]. To minimize grid
pollution, it is essential to maintain a minimal level of total harmonic distortion (THD)
while ensuring a significantly high power factor. Therefore, the quality of the injected
current is crucial.

Many current control schemes, such as proportional-integral (PI) control [2], reso-
nant control [3], sliding mode control [4,5], and model predictive control [6], have been
proposed for grid-tied inverters to deal with low-frequency harmonics stemming from
nonlinear elements, including dead-time in pulse width modulation (PWM) inverters and
nonlinear loads. Among these schemes, multi-resonant control for harmonic compensation
can eliminate the selected harmonic components in the injected current [7]. However,
it demands more design efforts and computational resources [8]. With a simple form,
repetitive control (RC) allows for precise tracking of periodic signals with zero steady-state
error or effective suppression of multiperiod disturbances due to its high gains at har-
monic frequencies [9–11]. By introducing a phase-lead compensator, the phase lag caused
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by the plant can be effectively mitigated, making the controlled plant closer to the ideal
characteristics required by RC, characterized by unity gain and zero phase shift within
the specified bandwidth [12]. Moreover, with a plug-in repetitive controller, additional
harmonics suppression performance can be achieved on the top of the base feedback con-
troller [13]. In addition, a high-order repetitive control (HORC) [14] strategy has been
explored for mitigating time-varying periodic disturbances.

For practical applications, RC is commonly employed in the discrete-time domain.
The conventional RC (CRC), represented by z−N/(1 − z−N), can achieve zero steady-state
error only when fs/ fg = N ∈ N, where fs refers to the sampling frequency, fg is the grid
frequency of the inverter system, and N is the RC order. However, variations in grid fre-
quency compromise the integer order of RC, thereby reducing open-loop gains at harmonic
frequencies. To address this issue, two common approaches are employed: adjusting the
sampling frequency and adopting frequency-based fractional-order filters. In particular,
the time-varying sampling frequency method changes the sampling frequency online in
response to fluctuations in grid frequency, thereby maintaining a consistent integer order
for RC [15]. In [16], a multi-rate repetitive control is employed, precisely synchronizing the
signal and control periods by adjusting the controller’s sampling time. In [17], a spatial
RC, which utilizes the phase sampling technique to sample the grid voltage’s phase angle,
has been proposed. Although it achieves a consistent number of samples in each cycle, it
faces similar challenges as the previously mentioned method involving varying sampling
rates. Ref. [18] implements a Gaussian process for the interpolation and extrapolation in
the spatial RC to maintain a fixed sampling rate even though the scheme is a bit complex.

Moreover, the fractional-order RC (FORC) strategy is adopted to approximate the
actual fractional order of RC. This method is especially pertinent when the grid frequency
experiences variations, as delineated in several works. In [19], Escobar et al. pointed
out that the order of RC could be a fraction when the grid frequency fluctuates and the
sampling frequency is limited. They presented a solution to compensate for fractional delay
with a finite impulse response (FIR) filter. In [20], a third-order FIR filter is used to approach
the fractional order of RC for a programmable ac source. In [21], an infinite impulse-
response (IIR) filter with a phase compensator can also achieve frequency adaptivity for
grid-tied inverters. In [22], Valdez-Fernández et al. proposed a 6 h ± 1 repetitive scheme
for a three-phase CHB seven-level converter in shunt APF applications, where a Farrow
structure was introduced to compensate the variable fractional delay (VFD) induced by
grid frequency deviations.

The grid frequency of the power grid from a phase-locked loop (PLL) or frequency-
locked loop (FLL) is used to calculate the order of RC in the above-mentioned conventional
FORC (CFORC). However, the detected frequency of the power grid may exhibit fluctu-
ations in single-phase inverters. For instance, the output frequency of the PLL based on
the second-order generalized integrator (SOGI) varies, even though these fluctuations can
be mitigated to some extent with more advanced numerical techniques [23]. The voltage
distortions at the point of common coupling (PCC) further exacerbate the situation. While
more advanced PLL schemes are available to detect the grid frequency in three-phase
inverters, single-phase inverters face greater challenges and increased complexity because
of the limited availability of the grid voltage information. The undesired fluctuation of
the estimated grid frequency leads to an imperfect order of RC, thus deteriorating the
harmonics rejection performance of the CFORC schemes [24].

To tackle this challenge, the angle information from the PLL can be used to ascertain
the grid frequency, and then deriving the order of RC. The contributions presented in this
paper are as follows.
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(1) The output frequency of the second-order generalized integrator (SOGI)-based PLL
naturally fluctuates, resulting in an inaccurate order of RC in a single-phase inverter,
and then affecting the performance of RC. To solve this challenge, a novel phase-based
fractional-order repetitive control (PFORC) scheme is developed in this paper.

(2) Based on the linear interpolation method, the different weights are employed for the
phase angles from PLL to determine the order of RC, which enhances the frequency
adaptability of the PFORC scheme by mitigating the impact of fluctuations in the
estimated grid frequency.

(3) A detailed PFORC design procedure and the real-time comparative experimental
validation on the single-phase LCL-type grid-tied inverters are presented, in which
both performance and robustness are considered.

2. Conventional Frequency-Based Fractional-Order Repetitive Control
The structure of a plug-in RC system is shown in Figure 1. In Figure 1, C(z) is the

base controller, P(z) is the plant. r(z) and y(z) are the reference and feedback signals,
respectively. e(z) is the error and uRC(z) is the control output of RC, kRC is the gain of RC,
Q(z) is a constant within (0, 1) or a zero-phase low-pass filter in the form of d1z+ d0 + d1z−1

satisfying 2d1 + d0 = 1, aimed at boosting the system’s stability margin, and G f (z) is a
compensation filter written as

G f (z) = Gi(z)zm (1)

where Gi(z) is typically a low-pass filter, and zm is a phase lead compensator with
m lead steps.

The transfer function of CRC is

GCRC(z) =
uRC(z)

e(z)
= kRC

z−NQ(z)
1 − z−NQ(z)

G f (z). (2)

( )r z ( )e z
( )RCu z

( )C z ( )P z
( )y z

( )fG z( )Q z-NzRCk

Figure 1. Block diagram of the plug-in RC system.

When N ∈ N, GRC(z) has high gains at harmonic frequencies, and therefore, it can
effectively attenuate harmonic signals.

However, the open-loop gains at harmonic frequencies will decay when the fundamen-
tal frequency fluctuates, resulting in a deteriorated harmonics suppression performance of
CRC. In [20], a CFORC is proposed to solve this problem. The order of RC (N), which is
calculated by fs/ fg, can be segmented into two components: an integer portion Ni and a
fractional portion NF, as shown in Figure 2. Then, an FIR filter is employed to approximate
the fractional part z−NF as follows:

z−NF ≈ GFIR(z) =
n

∑
k=0

Akz−k (3)

where n is the order of FIR filter, k = 0, 1, ..., n, and Ak can be calculated by

Ak =
n

∏
i=0,i ̸=k

NF − i
k − i

. (4)
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Typically, a larger n leads to less magnitude attenuation at low frequencies, which
better approximates the unit gain. However, a high-order FIR fractional filter will increase
the implementation complexity and change the closed-loop zeros of the system, and,
the zeros may affect the dynamic response speed as well as the harmonic rejection ability.
Therefore, in practice, the order of the adopted FIR fractional filter in the CFORC system is
within the third order [24,25]. When a plug-in CFORC is employed, the stability conditions
are of the same form as those of CRC [26]:

1. The closed-loop transfer function without RC, T(z) = C(z)P(z)
(1+C(z)P(z)) , is stable;

2. |Q(z)GFIR(z)[1 − kRCG f (z)T(z)]| < 1 .

frequency 

detector

coefficients

calculation

coefficients

calculation

...

0A

1A

iN
z
−

PCCu

( )e z
 RCk

nz−nA

1z− ( )Q z ( )fG z
( )RCu z

/s i Ff f N N= +

Figure 2. Block diagram of CFORC.

In practice, even if a narrow bandwidth of PLL or FLL is selected, the detected
frequency from a typical SOGI-based PLL can fluctuate [27]. And then, the order of CFORC
based on the frequency information will fluctuate, resulting in a degradation in harmonics
suppression when the grid frequency remains fixed and a fixed order of RC is expected.

3. Proposed Phase-Based Fractional-Order Repetitive Control
3.1. Principle

The underlying principle of PFORC is to implement a repetitive controller based on
phase angle information. In short, the order of RC can be determined by the number of
interval samples of the same phase angle value. However, in practice, it is not possible to
find the exact same phase angle in an adjacent fundamental wave period. Therefore, a linear
interpolation method is needed for approximating the order of RC, with the interpolation
coefficient calculated from the phase angle values. At time step k, it is appropriate to get a
phase angle closest to the output current phase angle from the previous cycle. It is sufficient
for the difference between these two phase angles to be less than 2π ∗ fmin/ fs, where fmin

is the lower limit frequency of the varying grid frequency.
The order of RC can be categorized into two parts: the integer part N(α) and the

fractional part N f . Notably, the order of RC can be calculated by identifying the two time
steps k̄ and k̄ − 1, where k̄ and k̄ − 1 are the sampling time steps of the last repetitive period
in which corresponding the phase angles αk̄ and αk̄−1 are closest to the current phase angle
αk, which is typically the adjacent sampling point of the same phase angle N(α) of last
repetitive period. αk lies between αk̄ and αk̄−1, as shown in Figure 3a. Therefore, the integer
part can be formulated as

N(αk) = k − k̄. (5)
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k
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k
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
−
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(c)
Figure 3. Phase angle versus sampling time step: (a) αk̄−1 < αk < αk̄, (b) αk < αk̄ < αk̄−1, and
(c) αk̄ < αk̄−1 < αk.

Based on the Lagrange interpolating method with the first order, the fractional part of
the order can be derived from the weighting of phase angle differences between αk̄, αk, αk̄−1.
The linear interpolation of PFORC is shown in Figure 4a, where w1 and w2 represent the
linear interpolation weights to approximate the ideal RC order. As a consequence, the delay
line of RC can be written as

z−N = z−(N(αk)+N f ) = z−N(αk) · (w1 + w2z−1). (6)

( )e z
RCk ( )Q z ( )fG z

( )RCu z

PLL
buffer for 

phase angle and

find

update

( )kN α

2w
1w

PCCu

( )kN
z

− fN
z
−

( )kN  1

1 2w w z−+

(a)
Figure 4. Cont.
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( )e z
 RCk

1w

2w

− ( )kN α
z

( ) 1kN
z

− −

( )Q z ( )fG z
( )RCu z

(b)
Figure 4. Diagram of PFORC: (a) PFORC with linear interpolation, (b) simplified diagram.

In practice, the phase angle of the reference current is restricted within [0, 2π). Figure 4
illustrates the correlation between the phase angle of the phase around 2π and the sampling
time step in all three cases. In the case of Figure 3a, where αk̄−1 < αk < αk̄, the weights w1

and w2 can be expressed as follows:
w1 =

αk − αk̄−1
αk̄ − αk̄−1

w2 = 1 − w1

. (7)

In the case of Figure 3b, where αk < αk̄ < αk̄−1, the weights w1 and w2 can be given
as follows: 

w1 =
αk + 2π − αk̄−1
αk̄ + 2π − αk̄−1

w2 = 1 − w1

. (8)

In the case of Figure 3c, where αk̄ < αk̄−1 < αk, the weights w1 and w2 can be given
as follows: 

w1 =
αk − αk̄−1

αk̄ + 2π − αk̄−1

w2 = 1 − w1.
(9)

As shown in Figure 5a shows, when a SOGI-based PLL is used for frequency detection,
the order of CFORC fluctuates, leading to the fluctuation of weight A1, as illustrated in
Figure 5b when n = 1. The fluctuation in the calculated order of RC can deteriorate the
performance of harmonics suppression when the grid frequency remains stable and a
integral order of RC is expected. However, the fluctuation of the weights is mitigated,
as depicted in Figure 5b, where w2 remains almost constant at a steady state.

Time(5ms/div)
407.5

408

408.5

409
ideal orderactual order ideal orderactual order

(a)
Figure 5. Cont.
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Time(5ms/div)
0

0.2
0.4
0.6
0.8
1.0 of FORC of PFORC

1A 2wof FORC of PFORC
1A 2w

Time(5ms/div)
0

0.2
0.4
0.6
0.8
1.0 of FORC of PFORC

1A 2wof FORC of PFORC
1A 2w

(b)

Figure 5. Simulation results under 49 Hz sinusoidal grid voltage at a steady state: (a) order N of
CFORC, (b) value of weight coefficients: A1 and w2.

Remark 1. The phase information of PLL can be used in the design of RC to circumvent the
fluctuation problem in frequency detection. Compared to frequency-based CFORC, PFORC in the
angular domain is more advantageous when the repetitive features of the reference or disturbance
signals are reflected in the distribution of angular positions.

3.2. Implementation

At each sampling step, the updated phase angle is used to calculate the interpolation
weights and stored in a memory buffer for subsequent period calculations. The buffer size
for phase angle α should hold at least the maximum number of points per period, denoted
as Nmax. Thus, Nmax = max [N(αk)] + 1. For example, if the grid frequency varies in the
range of 49 Hz to 51 Hz while the system samples and updates at a frequency of 20 kHz,
then max [N(αk)] = f loor(20, 000/49) = 408, Nmax = max [N(αk)] + 1 = 409.

The simplified diagram of PFORC is presented in Figure 4b, where ω1 + ω2 serves as
an online mechanism for updating the RC order. Actually, PFORC exhibits an equivalent
structure to CFORC during steady-state operations when the detected grid frequency
remains constant, and the order of the fractional delay filter in CFORC is set to 1, (indicating
the use of a linear interpolation polynomial). Thanks to the delay internal model, the
structure of RC in Figure 4b can be implemented, as shown in Figure 6, where W(z) = w1 +

w2z−1. In the transformed structure, z−1Q(z) = d1 + d0z−1 + d1z−2 is physically realizable.

RCk
( )e z

−N(αk )+m+1
z ( )W z

−mz

( )iG z
( )RCu z

1 2

1 0 1d d z d z− −+ +

Figure 6. Structure for implementation.

3.3. Stability Conditions

In the implementation of PFORC, the phase angle of PLL is directly used for inter-
polation. An SOGI-based PLL is employed in this paper. High-order discretization of
integrators leads to less ripple but more implementation efforts and computational bur-
den [23]. Thus, integrators are discretized by feed-forward and backward Euler methods
for simplicity. Phase from other types of PLL can also be used to calculate the weights w1

and w2. It is noted that a narrow bandwidth of PLL is preferred for system stability [28].
Actually, considering that the maximum fluctuation rate of A is constrained [25], and the
bandwidth of PLL is narrow, the online updating weights w1 and w2 only change slightly.
So even though strict and conservative stability conditions have been proposed in [29], the
stability conditions of the PFORC system are consistent with CFORC [20]:
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1⃝ The system without RC is stable: T(z) is stable;
2⃝ |Q(z)W(z)[1 − kRCG f (z)T(z)]| < 1.

4. Application to a Single-Phase LCL-Type Grid-Tied Inverter
4.1. Modeling of the Single-Phase LCL-Type Grid-Tied Inverter

Figure 7 shows a single-phase LCL-type grid-tied inverter controlled by a plug-in RC,
in which L1, L2, and C refer to the inverter-side filter inductor, grid-side filter inductor,
and filter capacitor, respectively; Ire f is the amplitude of the reference current ire f ; i2 is the
current of L2, respectively; ic is the capacitor current; ug is the grid voltage; uPCC is the
voltage of the PCC; udc is the dc bus voltage; Lg is the grid inductor. A PLL is employed to
synchronize ire f with the phase angle of the grid. The phase angle from PLL α is fed into
GRC for buffering. The capacitor current plays a role in actively damping the resonance
peak, where Kd is the active damping gain.

Figure 8 illustrates the system’s control diagram. The gain of the inverter bridge
is represented by Kpwm, and Gh(s) symbolizes the zero-order-hold of PWM. This can be
closely represented approximately as a time delay, specifically 0.5Ts, as suggested in [30].
Taking into account the digital control delay, the discrete transfer function of the open-loop
gain without GRC is derived (see Appendix A) as follows:

H(z) =
GPI(z)

ωr(L1 + L2)(z − 1)
×

ωrTs(z2 − 2z cos ωrTs + 1)− (z − 1)2 sin ωrTs[
z(z2 − 2z cos ωrTs + 1) + (z − 1)Kd sin ωrTs

ωr L1

] (10)

where ωr denotes the resonant angular frequency of the LCL filter, which is formalized as

ωr =

√
L1 + L2

L1L2C
. (11)

The corresponding closed-loop transfer function with kRC = 0 is

T(z) =
H(z)

1 + H(z)
. (12)

PLL

sinPWM
RCG

PIG

dK

refI

PCCu

2i

1L 2L gL
gu

Cci
invu

dcu





Figure 7. Plug-in RC of LCL-type single-phase grid-tied inverter.
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1

1

(s)L

invu 1i ci 1

(s)C

2 (s) + s

1

( )gL L

2i

cu

gu

1

pwmK
(s)pwm hK Grefi

dKdK

Controller Plant

( )RCG z ( )PIG z −1z

Figure 8. Control diagram of the single-phase LCL-type grid-tied inverter with grid inductance.

4.2. Controller Design

As depicted in Figure 8, GPI(z) is in the inner loop while GRC(z) is in the outer loop.
Therefore, the PI controller, along with the active damping gain, should be tuned first
considering system parameters. Then RC parameters can be determined based on the
pre-tuned inner closed-loop.

4.2.1. PI Controller and Active Damping Gain

The base controller is used to ensure that the closed-loop function, T(z), is stabilized.
In this paper, a PI controller served as the base controller. The mathematical representation
of a PI controller in discrete form is given by

GPI(z) = kp +
kiTs

z − 1
(13)

where Ts is the sampling period. Table 1 enumerates the system parameters utilized
throughout this study. The selection of PI parameters and the active damping gain Kd

should ensure a flat magnitude frequency response of T(z) at the low frequency. Compared
with unit gain, a flat closed-loop magnitude frequency response can reduce errors and be
easily compensated by G f (z) (cf. the stability condition 2⃝ of PFORC). The selection of the
system crossover frequency fc is actually affected by the resonant frequency fr. In instances
where the resonant frequency fr falls under one-sixth of the sampling frequency, the loop
gain crosses −180◦ at fr [31]. In this case, the crossover frequency fc must be set lower than
the resonant frequency fr for system stability. The resonant frequency decreases as the grid
inductance increases so that frmin = 1

2π

√
1/L1C ≈ 1.2 kHz. An fc of 650 Hz is selected,

nearly half of frmin. Then kp is calculated by [2]:

kp ≈ 2π fc(L1 + L2) ≈ 20. (14)

Thus, kp = 20 is selected.

Table 1. System parameters.

Symbol Quantity Nominal Value

udc DC-link voltage 380 V
ug Grid voltage (RMS) 220 V
Po Output power 2 kW
Cdc DC bus capacitor 1360 uF
L1 Inverter side inductance 2.9 mH
C Filter Capacitor 6 µF
L2 Grid side inductance 2 mH
fsw Switching frequency 10 kHz
fs Sampling frequency 20 kHz
fbw PLL bandwidth 15 Hz
ζPLL PLL damping ratio 0.707
KPWM PWM Gain 1
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The integral term kiTs/(z − 1) is found to have a negligible impact on system stabil-
ity [32], which allows for the subsequent determination of the active damping gain, Kd.
Let GPI = kp, the magnitude frequency responses of closed-loop transfer function T(z)
with different damping coefficients Kd are illustrated in Figure 9. It can be seen that when
Kd = 25, T(z) exhibits the smoothest magnitude frequency response, which means T(z) is
nearly a unit gain at low frequency and provides a greater stability margin for RC. Hence,
Kd = 25 is selected. As ki increases, the gain of H(z) at the low frequency rises while the
phase margin of H(z) decreases. To balance between phase margin and dynamic response,
ki = 15,000 is selected. The final phase margin and the gain margin of H(z) are 50◦ and
4.7 dB, respectively.

-40

-20

0

20

101 102 103 104

Frequency(Hz)

M
ag

n
it

u
d
e(

d
B

) Kd =10

Kd =40

10dK =
17.5dK =
25dK =
32.5dK =
40dK =

10dK =
17.5dK =
25dK =
32.5dK =
40dK =

Figure 9. Magnitude frequency responses of T(z) with different Kd.

4.2.2. Q(z)

Q(z) is to ensure a safe margin with respect to stability condition 2⃝. A low-pass
filter with zero-phase characteristics significantly enhances the stability margin in the
high-frequency range. Hence, Q(z) = 0.05z + 0.9 + 0.05z−1 is chosen to provide enough
gain in the low-frequency range.

4.2.3. Gf(z)

G f (z) functions as a compensation filter and approximates the inverse of T(z) at low
frequencies. As Equation (1) shows that the design of G f (z) can be categorized into two
parts, Gi(z) for high-frequency attenuation and zm for phase compensation. For simplicity,
a Butterworth low-pass filter with a second-order configuration is employed for its flat
frequency response in the passband. The main harmonics are below the 20th harmonic, so a
cutoff frequency of 1000 Hz is selected for the filter. Gi(s) is then discretized with bi-linear
transformation:

Gi(z) =
0.01979z2 + 0.03958z + 0.01979

z2 − 1.565z + 0.6437
. (15)

After the filter Gi(z) has been designed, the lead step m should be selected to com-
pensate for the phase lag of the system at the low frequency. Figure 10 displays the phase–
frequency responses of T(z)Gi(z)zm with different m. As shown in Figure 10, increasing
m enhances the maximum phase lead but narrows the effective bandwidth. Specifically,
m = 8 provides only limited phase improvement, whereas m = 13 yields a larger phase
lead at the expense of a significantly narrower bandwidth. The phase–frequency curves
indicate that m = 11 achieves a phase of T(z)G f (z) closest to 0◦. Thus, m = 11 is selected
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in conjunction with the designed Gi(z) to compensate T(z) and approximate unit gain in
the low-frequency range.

101 102 103

Frequency(Hz)

0

-90

90

P
h
as
e(
d
eg
)

m=8

m=13

m=8 m=9
m=10

m=12

m=11

m=13

Figure 10. Phase frequency responses of T(z)G f (z) with different m.

4.2.4. kRC

It is revealed that the larger the value of kRC, the better the steady-state response and
dynamic performance. But it can also deteriorate the stability of the system. Let

M = max(|1 − kRCT(z)Gi(z)zm|). (16)

If 20 lg(M) < 0 dB, system stability is ensured. System stability is assessed while
varying Lg up to 0.1 PU, corresponding to a short-circuit ratio of about 10 [32], and

Lgmax =
u2

g

2π fg10Po
≈ 7.7 mH. (17)

Thus, 8 mH is selected as the upper bound of Lg. Figure 11 shows the distribution of
20 lg(M) concerning kRC and Lg. As grid inductance Lg increases, the stability region for
kRC decreases. When Lg = 8 mH, the stability region for kRC is about (0, 1.5). Therefore,
kRC = 1 is selected as a compromise between dynamic performance and system stability.
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Figure 11. Amplitude of M versus 0 dB plane with different kRC and Lg.

5. Experimental Verification
To substantiate the validity of the proposed scheme, a 2 kW single-phase LCL-type

grid-tied inverter has been established in the laboratory. The experimental setup is depicted
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in Figure 12. A TMS320F28335 digital signal controller (Texas Instruments, Dallas, TX,
USA) is employed in the setup and the PM50RLA060 intelligent power module (Mitsubishi
Electric, Tokyo, Japan) is adopted. A Chroma 62100H-1000 programmable DC power
supply (Chroma ATE Inc., Taoyuan, Taiwan) provides the necessary DC bus voltage.
System parameters are listed in Table 1. It is worth mentioning that a double-sampling
double-load mode was employed to reduce the time delay [33]. The PI controller, RCs and
PLL all update twice within a switching period.

Figure 12. Grid-tied inverter hardware built for experiments.

5.1. Steady State Response

The reference current amplitude is 10 A, which is synchronized to the grid voltage
via an SOGI-based PLL. When fg is 50 Hz, the waveforms of the injected current i2 with
varying RCs are shown in Figure 13. The THD results of i2 under CRC, CFORC and PFORC
are almost identical, measuring 1.28%, 1.38% and 1.31%, respectively. The THD results
under different RCs and grid frequencies are summarized in Figure 14. When fg is set to
49.6 Hz, CRC still maintains the order of RC as N = 400, and the THD of i2 rises to 1.77%.
However, the THDs of i2 with CFORC and PFORC are 1.42% and 1.29%, respectively. when
fg is set to 50.4 Hz, CRC achieves a THD of 3.09%, while CFORC and PFORC achieve 1.47%
and 1.27%, respectively.

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.28%

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.28%

(a)

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.38%

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.38%

(b)

Figure 13. Cont.
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Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.31%

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.31%

(c) (d)

Figure 13. Experimental results (continued): (a) CRC, (b) CFORC, (c) PFORC, (d) the spectrum
analysis of grid current of the proposed PFORC.

49.6 49.8 50 50.2 50.4
1

2

3

CRC

CFORC

PFORC

Figure 14. THD of i2 of different schemes under grid frequency variation.

Obviously, when the grid frequency varies, the THD results of CRC deteriorate while
the THD results of CFORC and PFORC remain stable thanks to their frequency adaptivity.
Moreover, PFORC achieves lower THD results than CFORC, which validates PFORC’s
adaptivity to frequency fluctuations.

5.2. Transient Response

The injected current’s response regarding the current amplitude step change is il-
lustrated to test the proposed approach’s transient response. Figure 15 presents the
response of injected current i2 and uPCC while the reference current steps up and down
at the peak of the sine wave, which corresponds to a phase angle of π

2 . The step change
in the reference current at the peak position causes glitches of i2 starting from the same
position in the following periods. However, the steady state is reached within 5 cycles.
Therefore, the proposed approach can remain stable even with a step change in the
reference current.
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Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div)

Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div)

(a)

Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div)

Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div)

(b)

Figure 15. Experimental transient waveform of reference step change. (a) Reference steps up.
(b) Reference steps down.

To substantiate the adaptability of PFORC to different frequencies, a programmable
power grid simulator Chroma 61512 (Chroma ATE Inc., Taoyuan, Taiwan) is employed to
simulate the grid. The transient responses of the system under grid frequency step changes
are shown in Figure 16. The detection of grid frequency step changes takes approximately
30 ms. With a fluctuating PLL output frequency fPLL, PFORC maintains a sinusoidal
injected current i2.

Time(10ms/div)

)P (1Hz / diLL output vPLL f

PCC (100V / div)u

2 (5A / div)i
1(5A / div)i

(a)

Time(10ms/div)

)P (1Hz / diLL output vPLL f
PCC (100V / div)u

2 (5A / div)i
1(5A / div)i

(b)

Figure 16. Responses to step changes in grid frequency. (a) From 49.5 Hz to 50.5 Hz. (b) From 50.5 Hz
to 49.5 Hz.

The current tracking error with respect to the PLL output frequency under CRC, FORC,
and PFORC control schemes is shown in Figure 17. Before fPLL step change happens,
PFORC has the smallest current tracking error. After the step change, the current tracking
errors of PFORC rises to almost the same amplitude of FORC and CRC but soon converges
after about 3 periods (0.06 s). It is concluded that during grid frequency change, the current
tracking error of PFORC, FORC and CRC have almost the same amplitude. However,
PFORC can achieve better tracking accuracy under steady-state conditions.
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Figure 17. Current tracking error with stepping grid frequency (49.5 Hz to 50.5 Hz). (a) CRC.
(b) FORC. (c) PFORC.

As shown in Figure 17, accurate frequency information is critical for the performance
of the CRC and FORC. Frequency measurement errors can degrade the robustness of
these controllers under frequency variations, thereby reducing harmonics suppression
and increasing current deviations. The proposed PFORC achieves fractional delay by
interpolating PLL phase-angle samples. Compared with the CRC and FORC, this approach
is less sensitive to frequency estimation errors, allowing it to maintain small current
deviations even under frequency fluctuations.

5.3. Robustness Experiments

The inverter works when the grid impedance sudden changes to test the robustness of
the proposed scheme under the weak grid. Figure 18a shows the waveform of i2 and uPCC

while the grid impedance suddenly changes to an inductor in parallel with a resistor. In this
case, a 3.8 mH inductor is selected to simulate the grid inductance Lg. A resistor of 18 Ω
and a breaker are in parallel with Lg. The breaker is initially closed-up, short-circuiting
Lg and the resistor. The red dashed line in Figure 18a indicates the moment when the
breaker is turned off, leading to the sudden change of the grid impedance. It can be seen
from Figure 18a that the distortion of i2 recovers within two periods. Thus, the proposed
PFORC scheme demonstrates robust resilience to abrupt changes in grid impedance. To
further validate the designed control parameters against grid inductance variation, an
8 mH inductor is used to simulate the grid inductance Lg. As Figure 18b shows, the system
remains stable and the THD of i2 is 1.12%. That is, the proposed scheme with designed
system parameters performs well under grid inductance variation.
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Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div) impedance sudden change

Times(25ms/div)

uPCC(100V/div)i2 (5A/div)

ierror (5A/div) impedance sudden change

(a)

Times(10ms/div)

uPCC(100V/div)

i2 (5A/div)

THD=1.12%

(b)

Figure 18. Robustness experiments (a) Transient waveform of uPCC and i2 under sudden change of
grid impedance. (b) Injected curent i2 under PFORC with fg = 50 Hz, Lg = 8 mH.

6. Conclusions
In this paper, a straightforward and effective PFORC based on the phase information

is proposed to achieve frequency adaptation, which overcomes the problem of frequency
fluctuations captured from the PLL faced by CFORC. The linear interpolation method
that leverages the difference of phase angle serves to enhance the frequency adaptation
capability of RC. An extra memory buffer for phase angles is needed for the practical
implementation of this scheme. Insensitive to detected frequency fluctuations, PFORC
demonstrates superior harmonics suppression performance at the cost of extra mem-
ory buffer usage for phase angle. Furthermore, the proposed scheme exhibits enhanced
tracking accuracy in a steady state. Comparative experimental results demonstrate the pro-
posed scheme’s benefits and the robustness of the designed parameters in the face of grid
inductance fluctuations.
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Appendix A
The derivation of Equation (10) proceeds as follows. First, the transfer function from

the inverter output voltage uinv to the inverter-side current i1 can be expressed as

G1(s) =
i1(s)

uinv(s)
=

1
L1 + L2

· 1
s
+

L2

L1(L1 + L2)
· s

s2 + ω2
r

(A1)



Fractal Fract. 2025, 9, 626 17 of 18

The transfer function is subsequently discretized via a zero-order hold (ZOH) and can
be written as

G1(z) =
Ts

(L1 + L2)(z − 1)
+

L2

L1(L1 + L2)
· z − 1

z2 − 2z cos(ωrTs) + 1
· sin(ωrTs)

ωr

=
1

L1 + L2
·

Ts(z2 − 2z cos(ωrTs) + 1) + L2
L1
(z − 1)2 sin(ωrTs)

ωr

(z − 1)(z2 − 2z cos(ωrTs) + 1)
.

(A2)

There exists a small equivalent phase delay in the inverter during modulation and driv-
ing. After linearization, this delay manifests in the discrete domain as an additional term in
the system denominator, proportional to (z − 1). This additional term can be parameterized

α =
Kd sin(ωrTs)

ωrL1
(A3)

The delay block M(z) represents the equivalent time delay in a discrete-time system
caused by sampling, holding, or signal transmission. Its expression can be given by

M(z) =
1

Kpwm
· z−1

1 + α · z−1
z

=
1

Kpwm
· 1

z + α(z − 1)
. (A4)

Based on the above analysis and Figure 8, the discrete transfer function of the open-
loop gain without GRC is as follows:

H(z) = GPI(z)M(z)G1(z)

=
GPI(z)

ωr(L1 + L2)(z − 1)
×

ωrTs(z2 − 2z cos ωrTs + 1)− (z − 1)2 sin ωrTs[
z(z2 − 2z cos ωrTs + 1) + (z − 1)Kd sin ωrTs

ωr L1

]
(A5)
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