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Abstract: In this work, novel Ostrowski-type inequalities for dissimilar function classes and general-
ized fractional integrals (FITs) are presented. We provide a useful identity for differentiable functions
under FITs, which results in special expressions for functions whose derivatives have convex absolute
values. A new condition for bounded variation functions is examined, as well as expansions to
bounded and Lipschitzian derivatives. Our comprehension is improved by comparison with current
findings, and recommendations for future study areas are given.
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1. Introduction

From the beginning of calculus to its current state, integral inequalities have played a
crucial role in the theory of integral and differential equations. Different types of integral
inequalities have captivated many researchers in both pure and practical mathematics for
over a hundred years. One of the many important mathematical results claimed by A. M.
Ostrowski [1] is a classical integral inequality that is strongly related to differentiability.

Consider a differentiable function Q : [17,{] — R on the interval (1, {) whose deriva-
tive ' is bounded inside this interval. This boundary condition may be denoted as

| Q' |l = sup |QY(x)| < co. Under these circumstances, the following inequality exists:
x€(.0)
2
1 1 (x = er é)
0x) - — [000dx| < |7+ ~—— @l O | )
(= £ gy el

For any x € [57,{], the constant 1 is the best option.
The inequalities, proposed by Hermite and Hadamard for convex functions (CFs),
are very significant in the literature. These inequalities state that, for any convex function

Fractal Fract. 2024, 8, 534. https:/ /doi.org/10.3390/ fractalfract8090534

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract8090534
https://doi.org/10.3390/fractalfract8090534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-7041-3730
https://orcid.org/0000-0001-9273-9512
https://orcid.org/0000-0003-4036-6368
https://orcid.org/0000-0001-8843-955X
https://doi.org/10.3390/fractalfract8090534
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract8090534?type=check_update&version=2

Fractal Fract. 2024, 8, 534

2 0f 22

Q) : I = R defined on the real number interval I and any two variables # and ¢ from I
where 17 < 7, the next double inequality holds.

:
Q(U;g) < Cin WfQ(x)dx < w @)

Convex theory is a very successful approach for addressing significant challenges that
arise in several fields of both pure and practical sciences [2]. Furthermore, the notion of
convexity is essential to improving the concept of inequality. Multiple forms of convexity
are discussed in the scientific literature [3].

Several mathematicians have conducted substantial research on midpoint (MP)- and
trapezoid-type inequalities for numerous forms of CFs. Dragomir and Agarwal originally
studied a maximum bound for the right division of inequality (2) in their work [4]. Kirmac1
proposed a maximum bound for the left division of inequality (2) in his article [5]. In publi-
cations [6,7], the authors demonstrated MP-type and trapezoid-type fractional inequalities
using CFs. Many studies employ CFs to analyze Simpson-type inequalities. For example,
in article [8], Simpson-type inequalities are proven for s-convex differentiable functions.
In [9], differentiable CFs are used to analyze novel types of Simpson-type inequalities. For
further information, refer to [10,11], as well as the references therein.

In the context of CFs, Bullen [12] developed some inequalities known as Bullen-type
inequalities. The extended inequalities of Bullen-type on some fractal sets are given in [13].
The fractional Bullen-type inequalities were obtained by Du et al. [14] using the some
inclusive FITs. Furthermore, the study in [15] discovered numerous extensions for Bullen-
type integral inequalities with twice differentiable functions using the FITs of Riemann and
Liouville. Refer to [16,17] for more specifics.

Certain MP-type inequalities were derived in [18] by employing generalized FITs.
A novel extension of the Hermite-Hadamard inequality was established for fractional
generalized integrals [19]. The generalized derivative was enhanced in [20] by employing
the fundamental limit formulation of the derivative. The generalized derivative fulfils
numerous significant requirements that the Riemann-Liouville (Rm-Lu) and Caputo defini-
tions are incapable of accomplishing. In contrast to the Caputo definition, Abdelhakim [21]
demonstrated that the generalized approach described in Khalil cannot produce satisfactory
outcomes in the context of particular functions. Multiple extensions of the generalized
approach circumvent this shortcoming in the generalized definition [22,23]. For updated
information regarding the fractional integral inequalities mentioned above, please con-
sult [18,24,25] and the references cited therein.

This study introduces novel Ostrowski-type inequalities for different kinds of functions
and generalized FITs. A major contribution is a new identity for differentiable functions
under FITs, which helps us understand functions with convex absolute value derivatives
better. We also propose a new condition for functions with bounded variation, and extend
our results to functions with bounded and Lipschitzian derivatives. These findings enhance
our understanding of fractional integration and suggest promising directions for future
research. In Section 3, we provide a new identity for differentiable functions that use
generalized FITs. In Section 4, we use this equivalence to show novel versions of Ostrowski-
type inequalities for functions with convex absolute value derivatives. Sections 5 and 6
demonstrate Ostrowski-type inequalities for functions with limited and Lipschitzian deriva-
tives, respectively. In Section 7, we introduce an Ostrowski-type condition for functions
with limited variation. We examine the relationship between new and previous findings.
Section 8 concludes and suggests further research directions.

2. Preliminaries

The FITs of Rm-Lu, the generalized FITs, and various kinds of FITs have been explored
regarding the kinds of inequalities that are referenced above. The essential definitions of
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CFs, the integrals of Rm-Lu, and the generalized integrals utilized during this work are
provided below:

Definition 1 (See [26]). Consider an interval I on the real line. A function () : I — R is termed
convex if it satisfies the inequality given below:

Q(xx+ (1-x)y) < xQx) + (1 - x)Q(y)
Vx,y € ILand Vx € [0,1].
Kilbas et al. [27] explored FITs, also known as Rm-Lu integrals, as detailed below:

Definition 2 (See [27]). Look at QO € Ly[n,{], 1, € R with y < {. The integrals of Rm-Lu
],‘;JFQ and ]270 of order § > 0 are described by

J$+Q(X)=r(15) / “w—xtlody, x> )
and . ;
00 = 5 [ -0 towd x<g 4)

Here, T refers to the Gamma function, specified by

r'(s) :/ e "u’Ydu.
0

Jarad et al. first identified fractional generalized integral operators in their publica-
tion [28]. Their work also examined the properties and interrelations of these operators
with different fractional operators discussed in documented studies. The following lists
these fractional generalized integral operators:

Definition 3 (See [28]). Assume that 5 > 0 and a € (0,1]. For Q) € Lq[y, ], the generalized
fractional Rm-Lu integrals ° o+ f and 0 J7_f are defined by

X AV 2 ey 6-1
ST () = /((x )"~ 11)) (Q(X) i x>n 6

F((S) Jn 14 X— ;7)17“
and . 1
5 7u _ 1 C-0"-C=0")  _ oW
jg_Q(x> - F((S) A < o ) (g_x)l_ad)(/ x < g/ (6)
respectively.

If we pick « = 1 in equalities (5) and (6), then the FITs in (5) and (6) become the Rm-Lu
FITs in (3) and (4), respectively.

Set et al. [25] first proved the Ostrowski-type inequality for generalized fractional
integrals as follows:
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Theorem 1 (See [29]). Suppose Q) : [17,{] — R is a differentiable function on (1,{) and Q) €

L[y, Z]. Suppose also that |(Y| is a convex function on [1,{] and |V (x)| < M forall x € [y,b].
Then, it follows

\rmw Q) + 474 Q)] - (“”(”))n()

< 0 H1 %(5 +1, ) [(g _ x)zxtS-H +(x— U)aﬁ-&-l} '

Here, the function B (-, -) is the Beta function characterized by

1
xy:/x x)Y tdx,
0

for x,y > 0.

3. An Identity for Differentiable Function
Within this work, we assume that « € (0,1],6 € R.

Lemma 1. Presume Q) : [5,{] — R is a differentiable mapping on (1, {). If Q) belongs to L[y, ],
then the following equality holds:

wd wd
(5+1){ 17+ (x)_|_ 5\751()(36)} _ ((g—x) ‘|'(x—77) )Q(x)

ad
1 N
=@m““/<;(1‘Q[X))>wuz+uxwwx o)
0
1 N
—w—w““!(;—(l‘Q[X)))wuw+a—xww4,

where I'(8) is a Euler Gamma function.

Proof. With the help of integrating by parts, we obtain

L= /1<“15 - (1_(1&_)()“>5> O'(xC+ (1= x)x)dx

aN O
=€ix<;—(1‘gjx>)>owc+m—mw

1

0
+€ix /1<1 - (1(X— X)“)Jl(l P0G + (1= p)x)dx ®
0
et (7 )m%/< ”)flw?%Lﬂn

WF((S—H)[‘SJ@”‘_Q(@]
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Similar to the foregoing process, we obtain
1 (1—(1—p)*Y
1220/<“5 (‘XX) )Q/(X77+(1X)x)d7(
aN o 1
——xir,(;—(l e >o<xn+<1—x>x>o
1 a~ 0—1
5 1—(1—y) a—1 9
_x"70/< =LY -0 0G0+ (- 0 ©)
1 A U A N ¢ ()
= Q(x) — )
(x —n)a’ ) ( ) /( ) (p—m)'
1 1
= G )~ re+1)[° ,7+Q(x)]

By the equalities (8) and (9), we can write

(é— _ x)a5+lll o (x _ 17)0(54-112

((5+1)[ & Q(x) + Jjgga(x)} - (W)Q(x)

Thus, the demonstration of Lemma 1 is concluded. O

Remark 1. If we assign x = '7+§ in (7), then (7) is equal to

e[ ama(tE) + a4 -a(15)
- o) 0/1<a16_<1_(104_X)a)5>0’(x€+(1—x)’7+ >dx

0/1< < 1—)() >5>Q’<Xﬂ+(1—X)77;_€>dX]/

as demonstrated by Hyder et al. in their paper ([30], Lemma 1).

Remark 2. If we choose « = 1 in (7), then we gain the next identity for Rm-Lu FITs:

TO+1) ]300 + 10| = (€ ="+ (x—1)°) Q)

x)° Q’ (XC+ (1= x)x)dx

7)ot Q’ (xn+ (1= x)x)dx |,

o
o fl
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4. Ostrowski-Type Inequalities by Convexity

Theorem 2. Assume that all conditions of Lemma 1 are met. Assume additionally that |(Y| is a
convex mapping on [, {]. Consequently, we deduce

P+ D[ 7.00) + 7 0(x)] - (“"‘)m (x"’)w)mx)

20
(10)
< (§— %) [Bi(a,8)| Q' Q)] + Ar(w,0) |0 (x)]
+(x = )" [By(a, 8)[Q ()] + Ar(w,6)| QY (x)]].
Here,
1 (1 — )%\ O
Aq(a,6) = gl;_(l (la X))](l—)()dx
171 1 2
- wlzma2(d)]
and
1 1-a-p"
Bi(«,0) = b[wé—< " ) xdx
A ta(5e12) - dm(oen )]
Proof. By Lemma 1, we obtain
1xo _\&d
06 +1)[ 2700 + T R )mx)
1 1 B lx 5
<(¢ X)“‘SH/E ( ) Q' (XC + (1= x)x)|dx (11)

(xn+ (1= x)x)|dx.

Since the function |()'| is convex, we have

I6+1)[ 770 + *T¢ 0 ( —2) Msx_’”é)ﬂ()
oc i 1 17(177()“ ’

<(C— (SHO/[,X& ( " )
1 (1 EN O
+(x—77)a§+10/[0¢16_ (1 (106 s )

= (0 — )" [B1(w,0) | ()| + A1, 8)| Q' (x)]]
H(x =) By (,8)| QY ()] + Ax(w,8) | (x)[].

XIY@)|+ (1= x) | (x)]]dx

X|Q@)] + (1 —x) | (x)|]dx

This ends the proof of Theorem 2. []
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Corollary 1. Based on the conditions of Theorem 2, if Q' is bounded, i.e., || ' ||, := sup |Q(x)]

xe(mg)
< oo, then we obtain the next Ostrowski-type inequality for generalized FITs:

’ 6+ 1] 078,00 + 272.0(x)] - (W)mx)

<Y [(“)W*("’”M} [1-t8(s+1,1)].

w0

Remark 3. Picking « = 1 in Corollary 1 gives the upcoming Ostrowski-type inequality with the
FITs of Rm-Lu:

T+ D500 + 10| = (€ -2+ (x =) )|
<N o (55) [ =07+ (e =)
Particularly, for 6 = 1, we obtain the classical Ostrowski inequality (1).

Remark 4. If we set x = '7+é in Theorem 2, we obtain the next inequality of MP-type:

(2§ 1)“"r(5+1)[ 1 0(5E) + 7 0(5E)] _Q(@C)‘

<o (52) [Ba(a &) 10/ @)1 + 10 ()] + 241 (w 8)| 0 (152

< S[1-1m(s+1, 1) |10@)+ 1 ()],
as presented by Hyder et al. in ([30], Theorem 2).

Corollary 2. In the case where we select & = 1 in Theorem 2, we acquire the next inequality of
Ostrowski-type with Rm-Lu FITs:

T+ 1) [0 +1_0@] - (€ ="+ (= —n)’)0wE)

< -0 7m0 @+ |4~ gt |10 ()]

()] + 3 — ey | 1))

)™

Corollary 3. If we pick 6 = 1 in Corollary 2, we acquire the next inequality of Ostrowski-type:

Q(x)dx — Q(x)

L
-1

==y

<(g_x)z[lﬂ’(C)lJ;ZIQ’(x)I] +(x—;7)2[|0/(’7>|22|0/<x)| '
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Theorem 3. Presume that all conditions of Lemma 1 are fulfilled. Further, presume that |Q'|" is
convex over [n, ], where % + % = 1 with p,q > 1. Then we deduce

P+ D[ 7.000) + 7 0(x)] - (“"‘)m ““’”MS)o(x)

af

|o'<a>|Q+|0'<x>|">5

< A (a,6,p) [(é - x)"“m( > (12)

+(x —1n)

w1 ( ()| + |0'<x>|q> 3]
' .

Here,

1 1 1
Az(ﬂé,(S,P) = W |:1 — a%<P5+1,D‘):|.

Proof. We now examine the integrals on the right part of (11). By applying the convexity
of |(¥'|7 and the well-known Hoélder inequality, we obtain

aN o
- (FEE) Jlovee + a - omlan

1 1
= (/1 %_ (1_(1“_70“)6 pdx) ’ (/1|Q/(XC+ (1 —x)x)|qu) o
0 0
1 1
AP (a0 p ) PQ’(@)W t |0'(x>|"}q
and similarly )
/ %* (1(10470)0 | Cen + (1= x)x)|dx
" (14)

1
- / q / q7
< af w p [ LV

Here, we use the fact that

Az, 0,p) =

and the well-known inequality

(m—n)*<m°—7r°, form>n>0ands>1.
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If we consider (13) and (14) in (11), then we have

wd wd
1—'((5+1)[5 ,7"‘+Q(x) + 5‘7510(30} _ <(€_x) +(x_77) )Q(x)

\0'<¢>|q+|o'<x>|"r
2

CIER T ’

< (€ - A (a,6,p, ) [

1
51 L
=04 (0,0, [ DL
This finalizes the proof. [J

Corollary 4. Picking « = 1 in Theorem 3 gives the subsequent inequality of Ostrowski-type with
Rm-Lu fractional integrals:

‘F((s +1) {]%Q(x) + ]g_Q(x)} — ((g _ x)zs +(x— 77)6)0(36)’
: (P;)frl> <6—x>‘5*1(0'@'q+Q’<x>q)q

2
+<x_,7)(s+1(|n’<n>|q;|0'<x>|q>” .

Corollary 5. Assuming 6 = 1 in Corollary 4 yields the next Ostrowski-type inequality:

4
1
‘H [toix-a)
U
1 X 1
P \p | @0 (1@ + 1001\ g
S<P+1) C—1 ( 2 )
1

+

(=) (1m]" +1Q'(x)]"\ q
C—W( 2 > '
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Remark 5. If we place x = r;+§ in Theorem 3, we acquire the following inequality of MP-type with
the generalized FITs:

e (139 o139 )

<E -t (poen, 1)} |0'<@>ﬂ+yzof(n;z),q ;

+
{r\l —

q
|q+‘Q/ ‘”2 ‘ ]
1
P

Q\H

I
< 1 [1 %(p(H—

(e o’(v)")q - (AL “'@'q)}’],

4 4

which is proved by Hyder et al. ([30], Theorem 3).

Remark 6. In the case where we opt for &« = 1 in Remark 5, we obtain the following inequality of
MP-type with Rm-Lu FITs:

o) e o(159)] o)

ooy (e () (e ()
2

4

g“(ﬁé)i (30’ '+ 10ty W)ﬁ(3|o'<n>|q+m'<§>|q)3],

as provided by Ertugral et al. ([31], Corollary 4.11).

Remark 7. If we take & = 6 = 1 in Remark 5, we obtain the following inequality of MP-type:

\g imxm_o(v;é)\
Ui

_ ) 1

<€411(pf_1):7 |Q’(€)q+’(;/(77;‘€>r q+ |Q( )|ﬂ ‘(2)/<77‘21‘€> a
1: ' i ! 1 1 / q / q 1

<Eoa( )y | (AN Oy (o)

which is given by Kirmaci ([5], Theorem 2.3).
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Theorem 4. Postulate that all conditions of Lemma 1 are fulfilled. If |Q)'|7 is convex over [1, ]
where g > 1, we obtain the next inequality:

ad

r(5+1)[5 & 0(x) + 57510(@} - (

=

< (€2 Ay (0,0) (Ba(a ) [V Q)| + A 0) |0 () (15)

==

1-1
=) Ay T (w,6) (Bi(a, )]0 ()| + A (w,6)[ 0 (1)) .
Here, A1 and By are defined as in Theorem 2, and A3 is defined by
1 s
- 1 1—(1—x)" 1 1 1
AB(“'(S)_/[M_(zx d)(—ﬁ 1—&% (5+1,§ .
0

Proof. Taking the convexity of || and the power mean inequality into consideration,
we conclude

1 VNN
Jla- (=)

1

[[a- (=) o)

0

1
" (/1 [15 - (1_(1_@)5] G+ (1~ x)x)!qu) q 1o
0

1_1 1 i3
<, Two) (/ [* - (Wﬂ XMo@l +a —x>!0’<x>ﬂd")
0

| (xT+ (1— x)x)|dx

=~

14

—_

1

= Ay T (@,0)(Bi(w,0)|Y (2)]" + A (a,6)[ Q' (x)|") ¥

and similarly

1Y (xT+ (1= x)x)|dx

70‘5 - (ﬂi)
1

1
1-— -
< Ay T (w,6) (Bi(a, )| ()] + Av(w,8)| 0 (x)|") 7.

If we consider (16) and (17) in (11), then the proof of Theorem 4 is completed. [
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Corollary 6. Setting « = 1 in Theorem 4 yields the next inequality of Ostrowski-type with the FITs
of Rm-Lu:

TE+ D300 + 18- 0®)] = (€ -2+ (x =)o)
<@ 0" () T (g @I + (- ey ) @)

e (=) g 10+ (3 ok IO

Corollary 7. By setting 6 = 1 in Corollary 6, we gain the next Ostrowski-type inequality:

Z
Q(x)dx — Q(x
£ | k-0

1 1
1| QP AY@ NG a1 20 @) g
Sagw | x)( 3 ) T ’7)( 3 )

Remark 8. If we set x = '7+€ in Theorem 4, we find the next inequality of MP-type for the

generalized FITs:
W2 TICOHY) 6 70 o (1HE) | 670 o 1F8 +¢
L o() ety o)

(Bl(a,@m'(mq +A1<%5>‘“’<”§>

)

((A1(04/5) +2B(2,9))|(D)]" + Al(w/5)|0’(77)|">’17

_ _1
< %A; " (,0)

n;é)

+(&MJHQ (|7 + A ( w&%Y(

N

— 1-1
UA3 ’(a,0)

IN

2

H;

7

(e 2810510 ) +A1<a,5>|0'<@>|">5
2

as shown by Hyder et al. ([30], Theorem 4).

Remark 9. By setting « = 1 in Remark 8, we acquire the next MP-type inequality with the FITs of
Rm-Lu:
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IN

20711 (5 + 1)

(
=/}
4

ool
(A
12)|Q/(’7)|q+(411 G110 5+2>‘ <U+€>
()

20+ 3 ’ 1 1 /
~z ners) Y0 (3 e O

+(5- GC+1) 5+2))‘Q/( 2
)]

(G- mener)wor+ (- e

<2(5 ()

Q= | =
~—~

>,

_|_

N
S~—
N———

2
—
=
N~—

=
N———

as expressed by Hyder et al. ([30], Remark 7).

Remark 10. If we take « = 6 = 1 in Remark 8, we gain the upcoming inequality of MP-type:

¢
2y ool
U
r 1 1
’ /Lé ™ g ! ’ / L‘f‘@ ™ g
i |0<@>q+zt>( )] " |o<n>|'7+z;1( SR
i —(zm'(@)q?w )Iq>1+(IQ’(€)|q22lﬂ’(f7)lq>‘l7 ,

as presented by Budak et al. ([32], Remark 4.10).

5. Ostrowski-Type Inequalities for Bounded Functions

This section addresses fractional Ostrowski-type inequalities that pertain to bounded
functions.

Theorem 5. Postulate that the constraints of Lemma 1 are satisfied. If there are 6, ® € R so that
0 <O (x) <O forx € [n,{l, then it results in:

ST(5+1 —x Y —
g(_‘; ) (xé_ e s 5 O(x) + (g_xzw JjéX_Q(x)] —Q(x)

< GoNENO0 Ly 1))
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Proof. By equalities (8) and (9), we can formulate

ucé(x—gn_);g—x) L — L]
aT(5+1)
l7

(18)

o sagam+ 221 g o] -

By equality (18), we have

g_x o o) X—1 5 & 0
TR (x)+(€_x)a5 J-Q(x)

(
1 13
n)(CX){/'l L (1(1x)>5] Q' (xZ + (1 — x)x)dx
0

—Q(x)

E 4
_Z[;_C—u“—x)“)‘s

1) —x) {/1[1 _ <1—(1—X)“>5] {Q’(xCJr (1-x)x) — Hz(a}dx
0

Q' (xn+(1— X)x)d?(} (19)

o

0/1[:5 N (1_(1_)()“)5] {Q/(X77+ (1-x)x) - “f]dx}.

By using the absolute value of (19), we obtain

—Q(x)

“§F(5+1) g_x o o X=N 57
o |Gy T oy A

1 o
s - (ot

%_ (1—(1“—;0“)5

It is evident that m < Q'(x) < M for x € [1,{]. Thus, we conclude

6+ 0

Q' (xZ+ (1 —x)x) — 5 dx

O/ (xp + (1 - ) — 52 dx}-

O+ (100 - 52| < O 0

and 9+0| ©—0
+ —
A+ (1 =x)x) = ——| < —5— (21)

If we consider (20) and (21), then we obtain

T +1 — _
| L g + 2 g o

)
_ &) -x)(©-6) /1[15 (! <1ax>“)5
0

—Q(x)

dx
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This ends the proof. [

Corollary 8. If we set &« = 1 in Theorem 5, we obtain the next Ostrowski-type inequality with the
FITs of Rm-Lu:

ro6+1)| ¢—x . X—1 5 ol — alx
o e e + g )] Q)
< - 1)(§—x)(©@—10))

(€—=m(+1)

Remark 11. Setting 6 = 1 in Corollary 8 gives the upcoming Ostrowski-type inequality:

x 4
1 {—x / xX—n f
— Q(0dx+ 71 [ 0G0dx| - O
|§—f7{x—n” (x)dx =y (x)dx (x)
L -nE-0©-0)
- 2(6—=m)
Corollary 9. If we choose x = 77+€ in Theorem 5, we obtain the next MP-type inequality with the

generalized FITs:

() o) o)

< EonO=, (s 1Y]

Remark 12. If we assign « = 1 in Corollary 9, we acquire the following inequality of MP-type with

Rm-Lu FITs:
(1) ko150 o)

_E-n©-0s
=740+

Remark 13. If we take « = 6 = 1 in Corollary 9, we have the MP-type inequality:

‘giﬂ/gnoc)dx—n(”;%

1

_E-m©-0)
- 8

6. Ostrowski-Type Inequalities for Lipschitzian Functions

Now, our focus shifts to a set of fractional inequalities resembling Ostrowski’s, applied
to Lipschitz functions.
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Theorem 6. Consider that the constraints of Lemma 1 are satisfied. If Q' is an L-Lipschitzian
function on 1, (], the subsequent Ostrowski-type inequality is true:

2l - —
= [(f:ﬁ“" "I + ngx)} ~ O

<SLx—m@-n[+inE+1,2) - 1s(s+1,1)).

Proof. By equality (19), we have

TEH) | L% 4 X s o]
=1 |(x—pn* j'”Q(xH(g—x)“‘s TEOQ(x)| - O(x)
@’ (x — 1) (

[ (XT+ (1= x)x) = Q' (xn + (1 — x)x)]dx.

E}f—@jk;_@—g;mvé

Using the fact that )’ is a L-Lipschitzian function, we have

T+1 — X g .

: §<_—; ) (xg_ 17)0«5(5 ,7+Q(x)—|—(éx_x1§m5 jg_Q(X)] —O(x)
Cx-m@—x 1 /1-1=0"\] /

< ( gﬂ_)sf )O/la,s— ((ax)> ]|Q(X€+(1—x)x)—0(x;7+(1—x)x)|dx
Wr-p@-x [[1 (1-a-p0Y

= [ O/ ao‘<a) ]LX(CU)dX

1 1 2 1 1
=Lx—n)(C—-x)|=+- L,2)-= 1,-
(x=m)(C x)[2+a%(5+,a> “%<5+,a>],
Hence, the proof is finished. [

Corollary 10. By picking « = 1 in Theorem 6, we have the next inequality of Ostrowski-type with
the FITs of Rm-Lu:

F(g(sjyl) Lxé'_;)é ];;+Q(x) + (g__:)o-]‘g_ﬂ(x)} —Q(x)

L(x—y)(f—x)é
S T

Remark 14. If we assign = 1 in Corollary 10, we gain the upcoming Ostrowski-type inequality:

x ¢
|55 [ 12 o

(X) < L<x—776)(€—x>.
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Corollary 11. If we choose x = ’%g in Theorem 6, then we have the following MP-type inequality

for generalized FITs:

() o) o1

2
< M[1+1%(5+1,2) —1%<5+L1>}
4 2« o o o

Remark 15. If we assign « = 1 in Corollary 11, we obtain the next inequality of MP-type with

Rm-Lu FITs:
A GRS CORES)

=806 +2)

Remark 16. Selecting « = & = 1 in Corollary 11 yields the MP-type inequality:

£y fowa-o(15)
U

7. Ostrowski-Type Inequalities for Functions of Bounded Variation

S LE—n?
=T

Here, Ostrowski-type inequalities are presented for functions of bounded variation by
means of generalized FITs.

Theorem 7. Suppose that Q) : [5,{] — R is a function of bounded variation on [n,{]. Then, we
obtain

wd

«d «d
r(0+1)[ T80 + T Q)| - <(§_x) (=) )Q(x)

x ]M\g/((}).

U

Li¢—n  |n+¢
Sm{z+’z‘

¢
Here, \/(Q) denotes the total variation of Q) on [n,].
n
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Proof. With the help of integrating by parts, we obtain

ﬂ@-m NEE @—x)“ﬂmm

ad "

—/xl(x —a;y)”“s - ((x—n)"‘ x (X_U)aﬂdn()d
1

YS——

s j((g SEs —x)“)‘”(g a0y

_ [(xw” B ((xm“(xn)“)&]mx) )

S o

U

. /"(@ —x)* - (@ —x)“)‘”(g a0y
n

wd o wd
=T(E+1)[° ,;"+Q(x)+‘5.75’"_()(x)]—<(§_x) +x =) )Q(x).

Thus, we can write

ad o ad
r(5+1)[‘5 ,;‘+Q(x)+5jgﬂ(x)}—<( ) ;(x 1) )Q(x)
1 Y. Y. T Y 24
:/ (¢ D;) _((C x) a(C x)) d0(x)

_/[u—“&n)“ B ((x—n>“;<x—n>“>5]d0(x)_
U

It is evident that, if g,Q: [¢,{] — R are such that g is continuous on [y, {] and Q) is of

¢
bounded variation on [, ], then [ g(x)dQ(x) exist and

n
1 ¢
[st0iaaw| < sup 15001V (@). 22)
0 X€lnb] 1
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By using (22), we have

AY.7 _\&d
((5+1)[ }7+ (x> + 5‘7510(30} _ <(§ x) +(X 77) )Q(x)
4

/

X

<

C-0% <<cx>"‘

ad

<ax>“)5

. dQ(x)

wd «
U
o | E=0% (E=0"—@=0"\|
<X6[f€] p; ( X > \X/(Q)
(= (ot et
+ su QO
XSG[WI?X] « ( & ) \'7/( )
_ooad G _\ad x
(g a;) \/(Q)+ (X IX;I) \/(Q)
x U
1 7 wd ¢
< s max{ (£ = 0", (x =)™ } V(@)
Ul
1[g—n  |n+g_ [1%°¢
ol Vi
Here, we use the fact that
max{mk,nk} = [max{m,n}]k = {W

form,n, k > 0.
The proof is completed. [J

Remark 17. By setting o = 1 in Theorem 7, we obtain the next Ostrowski-type inequality for the
FITs of Rm-Lu:

[r@+ Do+ 10| - (€ -+ x-n’)ow)
L @ 5 ¢
<[FheE A ve

2

which is proved by Dragomir in the book chapter ([33], Theorem 3.1.1).
Remark 18. If we assign 6 = 1 in Remark 17, we obtain the following Ostrowski inequality:

4 Nt S i
|H/Q(X)dx—0(X) <3t 2o Ve

which is proved by Dragomir ([34], Theorem 2.1).
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Corollary 12. If we choose x = ’7+§ in Theorem 7, we gain the next MP-type inequality for
generalized FITs:

() o5 o1

1

*Y

N

Remark 19. If we choose « = 1 in Corollary 12, we obtain the next inequality MP-type with

Rm-Lu FITs:
22717 (6 +1 +¢ +7 +¢
T Mw("z o)) -a(1)

(€~

1.8

<; V(@
U

Remark 20. If we set &« = 6 = 1 in Corollary 12, we acquire the next MP-type inequality:

4
1
H”/Q(X)d

which is proved by Dragomir ([34], Theorem 2.1).

8. Summary and Concluding Remarks

In this work, we have introduced novel Ostrowski-type inequalities that apply to
various function classes and generalized FITs. The primary contribution of this study is the
development of a new identity applicable to differentiable functions under FITs. This iden-
tity leads to significant special cases for functions with convex absolute value derivatives,
offering deeper insights into their behavior under fractional integration. Furthermore, we
have explored a new condition for functions of bounded variation, extending the appli-
cability of our results. The study also includes an analysis of expansions to bounded and
Lipschitzian derivatives, enhancing the breadth and applicability of the derived inequali-
ties. Comparative analysis with existing literature reveals that our findings contribute new
perspectives and refine current understanding in the field. The results not only align with
but also extend beyond previously established theories, providing a more comprehensive
framework for future research. Based on our findings, we recommend several avenues
for further investigation. Future studies could explore the implications of our results in
broader contexts, such as higher-dimensional spaces or different types of FITs. Additionally,
investigating the practical applications of these inequalities in various mathematical and
applied fields could offer valuable insights and advancements. Overall, this work advances
the theoretical understanding of Ostrowski-type inequalities and FITs, paving the way for
further research and applications in mathematical analysis and related disciplines.
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