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Abstract: In this paper, we consider a logarithmic fractional Schrédinger-Poisson system where the
potential is a sign-changing function. When the potential is coercive, we get the existence of infinitely
many solutions for the system. When the potential is bounded, we get the existence of a ground state
solution for the system.
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1. Introduction and Main Results

In this article, we investigate the following fractional Schrodinger-Poisson system
with logarithmic nonlinearity:
(=A)’u+V(x)u—¢(x)u = ulogu?, inR3, 1
(-A)'p =u?, in R3,

where t € (0,1),s € (0,1),4s + 2t > 3, and (—A)" with ¢ € {s,t} denotes the fractional
Laplacian operator defined as

u(x) —uly) ) g

(—A)lu(x) = C[P.V. RS W

where P.V. represents the principal value sense, C, represents an appropriate normalization
constant. It is worth pointing out that the application background of fractional equations is
rooted in areas such as fractional quantum mechanics, physics, finance, conformal geometry,
among others; see [1] for more details. In particular, when s = } and t = 1 system (1) gains
significant interest in physics as it comes from the semi-relativistic theory in the repulsive
(plasma Coulomb case).

In recent years, the study of small semiconductor devices has been stimulated increas-
ingly interest, in particular, in the use of quantum-mechanical and numerical methods
to explain quantum phenomena like quantum interference, size quantization and tunnel-
ing. Since the early 1980s, the Schrodinger-Poisson system, which is the coupling of a
Maxwell equations with Schrodinger equation, has been widely adopted as a mathematical
framework to explore and evaluate mathematical elements that are crucial for modeling
semiconductor heterostructures. For a comprehensive overview of the Schrédinger-Poisson
system and related models, for example we refer to [2].

The single particle system, named the Schrédinger-Poisson system, regulates the
temporal evolution of the wave function ®(x, t), which depicts the condition of a non-
relativistic quantum particle in space under the influence of a self-consistent potential V
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generated by its own charge. When related to a single particle system in a vacuum, the
Schrodinger equation in R® x (0, 0) is formulated as

iAaE——/\—ZA O+ UP, Um P(x,t) =0, P(x,0) =1y(x)
ot 2m " "o 0 =9,

where A represents Planck’s constant and m signifies the mass of the particle. To find U, we
combine this equation with the Poisson equation:

—AU =Bl lim U=0,

|x|—o00

where |®(x, t)|? represents the anticipated particle density for a pure quantum state in the
spatial domain R} at time ¢. The value of f is +1 when the Coulomb force is repulsive
and +1 when it is attractive. Our primary focus in this paper is the repulsive case, and the
Poisson equation represents the repulsive character of the Coulomb force.

Over the past three decades, the Schrodinger-Poisson system

—Au+ M(x)pu + U(x)u = h(x,u), inR3, )
{ —Ap = M(x)u?, in R3, @

has been the subject of extensive research because of its wide physical applications. The
model like (2) proposed by Benci [3] has been used to describe the relationship between the
nonlinear steady-state Schrodinger equation and the electrostatic field, and it is widely used
in quantum mechanical models and semiconductor theory. Under the specific hypothesis
of U and M, Liu and Guo [4] proved that, by utilizing variational methods, system (2) has
a minimum of one positive ground state solution. In [5], Zhang et al. demonstrated the
existence of high-energy solutions for system (2) by employing the linking theorem with
h(x,u) = u°. In [6], Zhong and Tang explored system (2) where U = 1, h = uf (x)u + |u|*u,
and established the problem has at least one ground state sign-changing solution by
employing the constraint variational method.

In the framework of fractional Laplacian systems, there are numerous results related
to the fractional Schrodinger-Poisson system. Here we list some results related to our paper.
Zhang et al. [7] investigated the fractional Schrédinger-Poisson system with subcritical and
critical nonlinear terms:

{ (—=A)u+ M(x)pu + U(x)u = h(x,u), inR3, 3)
(—A)'¢ = M(x)u?, in R,

Through a perturbation method, they obtained the existence of positive solutions and de-

tailed the asymptotic of solutions. Employing Pohozaev-Nehari manifold, the monotonicity

trick and global compactness Lemma, Teng in [8] obtained the existence of ground state

solutions for (3) with h(x,u) = Q(x)|u|>u + K(x)f(u). With the help of the Ljusternik-

Schnirelmann theory and penalization techniques, Ambrosio in [9] proved the concentration

and multiplicity of positive solutions for system (3) with M = 1,h(x,u) = g(u) + |u|> ~2u.
Lately, the logarithmic Schrédinger equation expressed as

Z,a% =AY +V(x)¥ - ¥log¥?, N >3 4)
with ¥ : [0, +00) x R® — C, has garnered significant attention because of its profound
impact in various fields, including effective quantum, quantum mechanics, and Bose-
Einstein condensation. Finding the standing waves of (4), which are represented by
Y(x,t) = exp(—iAt)u(x) where A € R, is essential. This substitution transforms the
equation into

—Au+V(x)u = ulogu?®, in RV, )
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The associated energy functional can be expressed as

R 1 1
W =3 [, (V(x) + Du? + |Vul*)dx — 2 /R3 u? log udx.

Nonetheless, [ might not be well-defined in H'(R3) as there is a u € H'(R?) such that
Jgs u*log u?dx = —oco. More precisely, we consider the case where N = 1 and u is a
smooth function defined as u(x) = (y/xlogx)~! for x > 2 and u(x) = 0 for x < 0. In
this scenario, u belongs to H'(R?) and I(u) = +co, assuming V grows slowly enough,
such as V(x) = (logx)'/? when x > 2. To resolve this problem, various techniques
have been developed by researchers. Next we review some established results about
logarithmic Schrodinger equations. In [10], the authors applied genus theory and the
minimax principles for lower semicontinuous functionals as detailed in [11] to find multiple
solutions for the problem (5) with periodic potential. Later, inspired by the ideas presented
in [10], Ji and Szulkin in [12] proved the existence of multiple solutions for the Equation (5)
where V meets

(V1) V € C(RN,R) and limy| e V(x) = c0.

(V) V € C(RN,R), limy e V(x) = sup,cpn V(x) =t Vo € (—1,00) and spectrum
c((=A)+V +1) C (0,00).

When the potential meets (V7), they acquire the existence of infinitely many solu-
tions for (5) and there exists a ground state solution for (5) when the potential meets
(V). By employing variational methods, Alves and Ji in [13] established the existence of
multi-bump positive solutions for the equation similar to (5). Another subject that has
gained growing attention lately is the logarithmic Schrodinger-Poisson system. Recently,
Peng [14] considered existence and concentration of positive solutions for the logarithmic
Schrodinger-Poisson system

—€?Au — pu+ V(x)u = ulogu?, inR3,
—ezAgb =1u?, inR3,

via variational method and penalization scheme under local assumption that potential meets.

Inspired by the above studies, this paper explores the existence of multiple solutions
for the logarithmic fractional Schrodinger-Poisson system. To the best of our knowledge,
in the fractional scenario, literature on the Schrédinger-Poisson system with logarithmic
features is relatively scarce. In the following, we present the main results.

Theorem 1. Assume that V satisfies (V1) with N = 3, problem (1) possesses infinitely many
solutions +u, such that limy, e I(Fuy,) = .

Theorem 2. Assume that V satisfies (V) with N = 3, problem (1) possesses a ground state solution.

Let us outline the main challenges we faced in this paper: Because of the logarithmic
terms, u € X may exist such that [; u?log u? = —co, which can result in the corresponding
functional attaining +oco. Therefore, the functional is not well-defined in H, which makes
traditional variational methods inapplicable in this situation. To find solutions for (1),
similar to [10], we decompose the functional into the sum of a C! functional and a lower
semicontinuous convex functional. As far as we know, there are few available results
about multiplicity of solutions for fractional Schrodinger-Poisson system, even in the
Laplacian setting.

Remark 1. Our results outline two key differences compared to those of [10]: (i) Our equation
includes not only logarithmic term but also the nonlocal term ¢ (x)u; (ii) We extend the Equation (5)
to the fractional Laplacian setting.
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This paper is divided into the following sections. The second section provides a review
of several lemmas that are utilized throughout the paper. In the third section, we give the
proof of Theorem 1. The fourth section is dedicated to demonstrating Theorem 2.

Throughout this article, we note the following:

e Cand C; are different positive constants.
1
g

e The norm |[u||, is defined as <f]R3 u|”>

e Define B;(u) as an open ball with radius I > 0 centered at u, and let B; := B;(0).
e  Fora functional I on H, denote by A the critical pointsetof I, I, := {u € X : I(u) > e},

Fi={ueX:Iu)<f}, I :=LNand Ay = ANT.

2. Preliminaries

Let us first define the homogeneous fractional Sobolev space D*?(R?) as
D'2(R%) = {u € L% (R)[[Z]'a(0) € L*(R?)}

which represents the closure of C§°(R?) in relation to the norm

o = ( f -tuee) = ([, ePrmrpac)

for t € (0,1); see [1] for more details.
Through the Fourier transform [1], the fractional Sobolev space H*(R?) is defined as

HR) = {u e 2R s [ (GP10)P + (0P < o
equipped with the norm
Jullar = ([, P10 + @) )

Based on the Plancherel theorem, it follows that ||[Z[5u||> = ||(=A)2u||» and |ju> = 4]/

Therefore,
}
— _AVS 12 2
e = ([, 1G5 4 ) )

Alternatively, the Sobolev space H*(R?) is described by

H*(R3) = {u € L*(R%): //R6 y3+25) dxdy < oo}

This space is endowed with a norm determined by

]| = (//Ré y|3+25) dxdy+/ de>1.

Based on Propositions 3.4 and 3.6 in [1], it can be established that

I-ayiul = s, D
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A widely recognized fact is that H*(R?) is continuously embedded into L' (R3) for every
r € [2,2¢] and compactly embedded into L] (R3) for every r € [1,27), where 2! =6/ (3 —
2s); see [1] for more details.

In Theorem 1, let

H:= {u € H¥(R%) : /R3 [(=A)2u + (V(x) +1) T uldx < °°} 6)

with V* := max{+V,0}. Evidently, H is a Hilbert space endowed with the inner product:

//R6 ‘x _)(ggs) - (P(y))dxder /RS(V(X) +1) ugdx,

It is standard to prove that the space H can be continuously embedded into L' (IR?) for all
r € [2,2¢], and locally compact embedded into L] (IR3) for any r € [1,2}), we refer to [15]
for more details.

loc

In Theorem 2, our working space will be H*(R3). When V meets the conditions stated
in Theorem 2, H := H*(R3) is endowed with the inner product:

//Rf, T _)y(f;’i’i — ) dxdy+/ )+ 1)ugdx.

Note that we do not assume the global positivity of V 4 1. In fact, we require that o ((—A)* +
V +1) C (0,00), which implies that the quadratic form

U / A)2u? + (V(x) +1)uldx
is positive definite on H*(R3).
It is well known that if 4s + 2t > 3, there is a unique ¢}, € D"?(R3) for every

u € H*(R®), which is guaranteed through the Lax-Milgram theorem, see for example [16].
This unique function satisfies the equation

/RS(—A)%QDL(—A)%Ddx = /]1@3 w?vdx, Yo € DY(R3)
which indicates that ¢/, is a weak solution to
(—A)¢l, =u?, xcR3
Additionally, the expression for ¢, is given by
2
tiy) — u”(y) 3
) =a [, oy xCR

with

This function is referred to as the t-Riesz potential.
By substituting ¢' = ¢/, into system (1), we see that system (1) can be reformulated as
a single equation
(=A)u+V(x)u —¢lu=ulogu?, xcR3. (7)

It is standard to show that the energy functional I related to problem (7) is

1 1
I(u):i R3|( )2u|2dx+2/ x) + 1) uldx — 4/ Pl u 2dx—§/ ulog u?dx.
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Definition 1. A solution to Equation (7) means a function u € H such that u?log u®> € L'(R3)
(ie., I(u) < o0) and

./]1.@3 ((—A)%u(—A)%v + V(x)uv)dx - /R3 ¢! uvdx = ./R3 uvlogu?dx, Yo € CJ(R®).
First of all, we outline several properties of ¢,

Lemma 1. Ifu € H and 4s 4 2t > 3, then the following properties hold:
@ gu=0inR and oo pru*dx < Cllull’yy < Cllull®, 9hllpr < Cllull2yy < Cllull®
(i) Ifz € R withu;(x) = u(x +z), it follows that ¢},_(x) = ¢! (x +z) and [gs ¢!, uZdx =

Jgs @ udx.
(iii) Ifu, — win H, it follows that

to2 S t o2
/R3 P udx < 11151;10{)&/]1§3 Py, Undx
and ¢f, — ¢!, in D"*(R3).
(iv) Ifuy, v, are bounded in H with ||u, — vn||% — 0, then
+2t

/Rl* cpf,nunzdx — /RS 4>Zt,nvnzdx forany z € H.

(v)  Ifu, — uwin H, then it follows that

/K¢;nunvdx — /kqbiluvdx

for any v € C3°(R3) and the compact support K of v.

Proof. We just need to verify (iv) and (v) since the verifications for (i), (ii) and (iii) are
available in Lemma 2.1 of [14]. Following the ideas from Lemma 2.2 in [16], we can prove
(iv) and (v).

*  Verification of (iv): Applying Holder’s inequality along with the condition 4s + 2t > 3
which implies H — L3 (R3), we obtain

t t
’/11&3 ¢, Unvdx — /1R3 ¢y, Onvdx

Un(y)v(y)
[t ( — o) + /R3 /R3(u%(x) ~ () ey

1 1
< /]R3 () = 2 (0)1(95,) 2 (¢) 2 + [|atw — 0| 2 [I0l] 23[9, 125

3+2¢
1 1
< ||(P§;n||7ifH‘Pé”fg«(””n”% + anllﬁ)\lun - Un”%

1194, s i = 2ull gz Noll . — 0

forany v € H.
*  Verification of (v): Using Holder's inequality, 4s + 2t > 3 and (iii) which implies

1
(/K 9, — 4>i|2?‘dx> f oo
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Then we can conclude that

- ’/K (pfln (uy — u)vdx + ./I.((qbfl" — ¢;)uvdx

3+2¢

12 12 ¢
< (o= ufsEx) ol g llgh, 2

1

t t2f Z
(16, = ohax) Tl g lol g

342t

o 12 12
< Cillunl ([ = dx ) ol g,

342t

‘/Kgb;nunvdx /K ¢! uvdx

1
([ 10k, — g ) ¥l g oll sy, — 0.
g !'THn " KA =

As desired.
O
As in [10], we define
0 m =0,
Ay =14 —im?logm? 0<|m| <9,
Im2(log ¥ +3) +20|m| — 162 |m| >0,
and
Ag(m) == ~mlogn?® + A
2(m) = 5" logm” + 1(m).
Consequently,

Ay(m) — A1(m) = %mz log m?.

By choosing a sufficiently small ¢ > 0, we know that A; is convex, A1, Ap € C 1 (R,R) and
|A}| < Cplm|P~1, where p € (2,2%).
Denote

1 s 1 1
Y(u):= 2 /]R3 |(=A)2u|?dx + 5 /RS(V(x) + 1) uldx — 1 ./R3 ol utdx — ./11@3 Ap(u)dx,

G(u) := /]11{3 Aq(u)dx.

Hence, I(u) = Y(u) + G(u), ¥ € C!(H,R), G > 0. Obviously, G is a convex
function. Besides, by Fatou’s lemma, we may conclude that G is lower semicontinu-
ous (see [17] Lemma 2.9). Therefore, the critical point theory described in [13] is applicable
to the functional I.

Definition 2 (see [11]). Let H be a Banach space and I = ¥ + G, where ¥ € C'(H,R) and
G : H — (—o0,00]. Moreover, G is lower semicontinuous, convex and G # +oo.

(i) D(I):={u€ H:I(u) < +oo} is named the effective domain of I.
(i) Foranyu € D(I). We define

l(u):={¢ e H :G(z) = G(u) + (Y (u),z—u) > (& z—u)}

as the subdifferential of I at u, withz € H.
(iti) Forall z € H, supposing that u € D(I) and 0 € 9I(u), i.e.

G(z) — G(u)+ (¥ (u),z—u) >0,

then u € H is a critical point of I.
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(iv) Assume I(uy) is bounded and there exists e, — 07 such that
G(z) — G(un) + (Y (un),z — un) > —enllz — unl| forallz € H, (8)

then (uy,) is a Palais-Smale sequence for 1.
(v) I fulfills the Palais-Smale condition if Palais-Smale sequence has a convergent subsequence.

Lemma 2 (see Proposition 2.3 of [12]). If u € D(I), then there is a unique { € H* such that
ol(u) ={¢}, ie,
G(z) — G(u) + (¥'(u),z —u) > (& z—u) for this ¢ and all z € H.
Furthermore,
/]RN Ay (w)vdx + (¥ (u),v) = (&0) for any v € H such that Aj(u)v € LY(R3).
This unique ¢ is defined as I' (u).

Lemma3. (i) Ifu € D(I), then I'(u) = 0 if and only if (u, ¢',) is a solution of (1).
() If I(uy) is bounded, then (uy) is a Palais-Smale sequence if and only if I' (u,) = 0.
(iii) If I(un) is bounded above, u, — wand I'(u,) — 0, it follows that u is a critical point.

Proof. The proof of (i) and (ii) is similar to Lemma 2.4 of [12]. Now we prove (iii). In fact,
we can deduce that G is weakly lower semicontinuous due to the lower semicontinuity
and convexity of G. Therefore, G(u) < co and u € D(I). By (v) of Lemma 1 and u,, — u in
L7 (R3)foreachr € [1,2%),

loc

— im (T
0= nlgi;(l (uy),v)

Nlw

=lim [ ((=A)2uu(—n)

n—oo JR3

= /]R3 ((=A)2u(=A)20 + V(x)uv)dx — /]R3 uvlog u?dx — /]R3 ¢! uvdx
= (I'(u),)

forallv € CP(R3). O

v+ V(x)upv)dx — /RS unvloguidx — /R3 ¢, unvdx

For all u € H, we define by A the critical point set of I, for which A = {u € D(I) :
I'(u) = 0}. The subsequent pseudo-gradient vector field will be significant in the upcoming
sections:

Proposition 1 (see Lemma 2.7 of [10]). If there is a set of points (u;) C D(I)\A, a locally finite

countable covering (M;) of D(I)\ A and a locally Lipschitz continuous vector field F : D(I)\ A —

H, then the following conclusions hold:

() || F(u) ||< Yand (I'(u), F(u)) > g(u), where g(u) := min % || I'(w;) || for all i such that
u e M,

(ii) Fisodd in u.

(iii) F possesses locally compact support. That is, for each ug € D(I) \ A there is a neighbourhood
Up of ug in D(I) \ A and K > 0 such that supp F(u) C Bg(0) for any u € Uj.

Corollary 1. Forany b € R, we can construct (M;), (u;),and Fon {u € H: b < I(u) < oo}\ A,
where (M;), (u;), and F satisfy all properties in Proposition 1. (i.e., D(I)\ A can be substituted
with {u € H:b < I(u) < co}\ A all the time).
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In addition, we will require a logarithmic Sobolev inequality in [18] applicable to all
u € H*(R3), stated as follows:

2 2 2 ), o 52 3 sT(3) 2
/R3“ log u dxﬁ||“H210g||“\|2+;H(—A)Z“Hz— 3+g10g06+10gr(2%) ullz (9)

for any & > 0.

3. Proof of Theorem 1

This section introduces several lemmas that will be utilized later. Firstly, we will
demonstrate that the functional I fulfills the Palais-Smale condition.

Lemma 4. The functional I fulfills the Palais-Smale condition.

Proof. First, let us demonstrate the boundedness of the sequence (u,,). Select h € R such
as I(u,) < hforall n. Asn — oo, we have

201 | = 21(atn) = (1 Ctn) ) = Juall3 + 5 [ b > a3 10
Using (9), we conclude that
[ i loguldx < 3 [(=8)5ul + Co log [l + 1) ulB, )
by choosing a sufficiently small « > 0. Consequently, by employing (10) and (11), we have
dh 4 o(1) ||un|| > 41(un) — (I’ (un), un)
= a2+ llual3 = [ (V) + 1) udx — [0 log e
> a2~ Ca ] + 1)1,

where we take 0 < 6 < 1. Therefore, the sequence (u,) is bounded and for some u,
u, — u in H, after passing to a subsequence. Due to the compactness of the embedding
H < L' (R3) for r € [2,27), as shown in [19], u, — u in L"(R3). Substituting v = u into (8),
we deduce that

(U, U — Uy) _/R3 4)511(14—un)undx—/]RS V() up(u — uy)dx

+G(u) — Glity) — /RS A (1) (1 — wun)dx > —en |t — 1],
where
t t
[ 00— ) < Nl s, gl o — ]
< Cllutal s — ul| 12— 0
3+2t

as n — oo. Thus,
G(u) — G(un) + |Jul® = unl? +0(1) > o(1).

Since lim inf, 0o G (1) > G(u) and lim inf, o ||un|?> > ||u||%, the above inequalities lead
to ||un|| — ||u|. Consequently, u, — uin H. O

Lemma 5 (see Lemma 3.3 of [12]). Suppose A; = @, there is ey > 0 such that no Palais-Smale
sequences exists in Igfifo.
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Assume A; = @ and consider ¢ as defined in Lemma 5. Define x : H — [0,1] as an
even function is locally Lipschitz continuous, with x = 0 on I~ and x > 0 elsewhere. Let
the flow # be denoted by

d = —K u u
(s

The vector field F which is defined on {u € F : d —2¢p < I(u) < co}\ A — H is described
according to Corollary 1. It should be noted that x (u)F(u) = 0if I(u) < d — €p. In [10], it
has been proved t — I(7(t,u)) is differentiable and

w = (1’(,7(t,u),%;7(t,u)>_

Therefore, according to (i) of Propositon 1, we see that

oL (n(t, u))

<
o <0, t— I(n(tu))

is non-increasing. Taking into account ||F(u)| < 1and AN Iddirﬁg = @ for any t > 0, there
exists 77 (t, u).

Lemma 6 (see Proposition 3.4 of [12]). Assume Ay = @ and let ¢ be as defined in Lemma 5. If
e € (0,e9), then for each compact set W C I1¢ N C3°(R3), there is T > 0 such that (T, W) C
Id—s

Given that H is separable and C{°(R?) is dense in H, it is possible to find a sequence of
subspaces, denoted as (Hy), each within C§°(R?) and of dimension k, such that H = U®_ Hj.
Define Zj as the orthogonal complement of Hy in H, denoted by Z; := H'. Let

Do:={u € Hy: |jul| <%}, Qcv:={u€ Zy_1:|ul| =0x},
where 1, > 0} > 0.
Lemma 7 (see Lemma 3.4 of [20]). Ifa € C(Py, H) is odd and a|yp, = id, then a(Py) N Qx # @.
Lemma 8. There exists 1, > oy > 0 such that

r:= max I(u) <0 forall k and fi:= inf I(u) — co as k — oo.
MEHk,HuH:Tk MGQk

Proof. Set u = sv with u € Hy and ||v|| = 1. Subsequently,
Lo 2 -2 2 2 2
I(sv) < 78 <||1/| —/RS(V(x) +1)v dx—/R31/ log vedx —logs” |.

Considering that all norms in H are equivalent, coupled with H, C C°(R?), we
can conclude that both integrals above are uniformly bounded. Therefore, as s — oo,
I(sv) — —oco uniformly for all v. This implies that there exists 7; such that gy < 0.
Additionally, 7; can be selected to be arbitrarily large as needed.
Set
wp:=  max  |jul| 1.
u€Zy fJul=1" "3+
In order to prove wy — 0, we refer to Lemma 3.8 in [20]. Specifically, we give the following
proof. The sequence wy is both positive and decreasing, leading to the conclusion that
wy — w > 0. Additionally, there exists a sequence u; € Z;_1 with [Jug|| = 1 such
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that ||uk|\31722 > wy/2. Considering that uy — 0in H, it follows u; — 0 in L%(H@).
T2f

Consequently, we can conclude that w = 0.
Employing (11) as demonstrated in Lemma 4, one has

1
I(u) = £ [Jul* = Cllull3 — Co(1 + [[ul3’) - C3||”H4L
1
> lull* - C4\|u||212 — Gsllul?}, — Cylu ||412 -Gy,
+
where 6 € (1,2). Set 0y, = wik and ||u|| = ox. Thus, as k — oo, it can be concluded that

1
I(“)ZZU]%—C5—C4—C2—>OO,

which implies that fy — co. Given that 7; can be selected such that 7 > oy, this proof is
thus completed. O

Proof of Theorem 1. Set
Ty := {a € C(P, H) : alyp, = id, a(Py) has compact support and « is odd }

and
dr = inf max [(a(u)).

a€l, uel;

According to Lemma 7, we find that a(P;) N Qx # @, which leads to the conclusion
that dy > f; — oo. What remains to be shown is that A; # @ for sufficiently large k.
Assuming the opposite, select g9, ¢ and T according to Lemma 6. Consider a € I'y such that
a(Py) C I%*¢, Set y(u) := n(T,a(u)), with ;7 representing the flow given in (12). By (ii) of
Proposition 1, a is odd. Given that 17(T, u) = u for any u € 1%, it follows Y|ap, = id, and
therefore y € T;. According to Lemma 6, we have (P) C I%~¢, which contradicts the
definition of d.

4. Proof of Theorem 2

In this section, our work is conducted in the space H = H®(R3) where the functional
is defined as

_ Ly 1 tog. 1 2002
I(”>—§H“” _ZL/Ra(P“M dx—i/wu log u“dx. (13)
Lemma 9. If I(uy) is bounded above and I' (u,) — 0, then (uy) is bounded.

Proof. Selecting 1 € R such as I(uy,) < h for any n, we derive as n — oo
4+ o(1) lun > 4I(un) — (I (un), un)

1
> 5 llunll? = Colflunll + 1)1,

where 0 < 0 < 1. Here, we have used (10) once more, by choosing « in (9) to be sufficiently
small. Consequently, 1/2 in (11) is replaced by a constant a, ensuring that a||(—A)3u||3 <
11,12

zllull®. O

We next consider a limiting problem
(—A)’u + Veou — pu = ulogu® inR3. (14)

The associated energy functional is given by

Ioo(u)—;(./R3|(—A);M|2 (Voo +1) 2dx> /(pt 2dx—f/ u?logu®dx. (15)
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Consider the Nehari manifold for I, denoted as

X := {u e D)\ {0} : (I'(u), u) = 0}.

In a similar way, the Nehari manifold for I is denoted by X.. Following the ideas
from [10], we can prove problem (14) exists a nontrivial solution #* and ir}(f I=1I(u*)>0.
UE XKoo

It is obvious that u* is a ground state solution to (14). We first elaborate on the differences
from the Section 2.1 of [10]. It is worth noting that Lemma 10, Lemma 12, and Lemma 13 in
this paper correspond to Lemma 2.10, Lemma 2.13, and Lemma 2.14 in [10], respectively.
For the reader’s convenience, we restate these lemmas below.

Lemma 10 (see Lemma 2.10 of [10]). p :=inf{|j — k| : j,k € A,j #k} > 0.

Lemma 11 (see Lemma 2.11 of [10]). If (1), (v4) C H are two Palais-Smale sequence, then one
of the following holds: limsup,, . |[un — va| > p or ||uy — vu|| — 0asn — oo.

Proof. Choose q = 12/(3 + 2t), where g is in (2,2?). Hence there exists a constant C > 0
to ensure |A}(s)| < Cls|771. Let us first assume ||u, — vyl — 0 as n — co. By Lemma 9, it
follows that (u,), (v,) are bounded in H. By (8) and (iv) of Lemma 1, we conclude that

0(1) + 1t =l = =l = [ (00 = 00) (9, 100 = 94, o)

—/ (un — vp) (1 log u2 — v, log v2)dx +o(1)

= (I'(uy), un — vn) — (I'(0n), iy — vy)
= / uy — o) (A (un) — Ay (vy))dx + (¥ (un), un — vn) — (¥ (0n), un — vp)
<c/ w = On| (100|771 4 || 7~V )dx + 260|141 — 0|

< Cillun — vnllg + 260 ||un — 04|

So ||uy — vy = 0asn — oo.

Suppose now that ||, — v,|; - 0. Using Lions’ lemma (see Lemma 1.21 of [20]
or Lemma 1.1 of [21]), it is easy to find a sequence (a,) C R3 and ¢ > 0 such that, for
sufficiently large n,

/ (ty — vy)2dx > 0.
By (an)

By (ii) of Lemma 1, I is invariant under translations by elements of R3, the subsequence
(a,) can be assumed to be bounded. Thus, after taking a subsequence, 1, — u, v, — v and
u # v. By (iii) of Lemma 3, we have u,v € A. Hence

limsup [y — 0| > [|u— o] > p.
n—oo
This finishes the proof. O
Remark 2. As in Remark 2.12 of [10], the conclusions of Lemmas 1013 remain valid on I", we

just need to show that u,v € 1" within the arqument for Lemma 11. By the lower semicontinuity of
\|u||3 and (iii) of Lemma 1,

2 1) = 5 {0, 0) +0(0) = Sl + 5 [ gz +o0(1)
SIulB+ 5 [ ghaddx+o(1) = 1) = 201/, ) +0(1) = 1(u) +0(1)

Therefore, u € I " and similarly, v € I h,
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Now, we turn our focus to the flow 7 as defined by
it u) = —F((t,u)), 16)
7(0,u) =u, u € D(I)\A.

Denote the maximal existence time for the trajectory ¢ — 7(t,u) as (Y~ (u), Y+ (u)).

Lemma 12 (see Lemma 2.13 of [10]). Let u € D(I)\ A. Then there are two possible outcomes:
either Y (u) = oo, limy_,y+ () [(7f) = —oo0 or limy_,y+ ) 7(t, u) exists and is a critical point

of I.

Leth > 0, select 1 > 0 such that 1}1:2281 NA=A,

€1
Lemma 13 (see Lemma 2.14 of [10]). For every p > 0 there is ¢ € (0,€1) such that

lim I(7(t,u)) <d—¢, wheneveru € 11\ Uy (Ap).
=Y+ (u)

Furthermore, for all t € [0,Y™ (u)), we have fj(t,u) & Uy o(Ap) N I

Lemma 14. There is a,b > 0 such that I(u) > 0 holds for any u € B,(0) and I(u) > b for any
uec Sb(O).

Proof. For the proof we mimic that of Lemma 2.15 in [10]. In view of (i) of Lemma 1,
|Al(s)| < C|s|P~!and G > 0, we find that I(1) > ¥ (u) = 3||u||? + o(||u|?). Therefore, the
desired result follows. [

Inspired by the idea of [10], we can prove that problem (7) possesses a ground state
solution. In fact, for any u € D(I)\{0}, we define ¢, := I(lu),] > 0; then, we obtain

1 "
9, (1) = 1(2||u||2 — 2 [ glatdx— [ w*logutdx —2|ul3log] - ||u||%). 17)

Rewrite ¢/, (1) = Ig,(I), where

1
gull) = P =2 [ glwdx— [ u?logudx—2|ulBlogl ~ ul}.  (18)

It can be easily infered from (18) that lim;_,y+ g, (!) > 0 and lim; ., «, gu(!) < 0. Obviously,
foralll > 0, g},(I) < 0, so there exists a unique Iy such that g,(lp) = 0. Note that [y > 0,
we confirm that ¢/, (Iy) = 0 from (17) and I is the only intersection of the ¢}, (1) with X.
Furthermore, ¢, (I) = —co as | — oo. When ||u|| = 1, the mapping [ — ¥(I/u) increases for
all 0 < I < Iy (where Ij is independent of u) and I — G(lu) increases for all I > 0 thanks to
its convexity. Therefore, X is bounded away from the origin. Set

I':={y € C([0,1], H) : 7(0) = 0, I(7(1)) < 0}

and

¢ := inf sup I(7y(s)), cx := inf I(u).

o e (7(s)), ex = inf I(u)
Based on Lemma 14, we have that ¢ > b > 0. Obviously, ¢ < cx. Suppose that for some
€1 > 0, there are no nontrivial solution with energy levels below ¢ + €1. By Remark 2, we
can apply Lemma 13 with U, (A.) = @ and a sufficiently small ¢ < £1. We explore the flow
denoted by
— (" (b)) E(p* (1),

u, u € I°t, (19)
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where x* : H — [0,1] is locally Lipschitz continuous such that x* = 0 on I?/2, ¥* > 0
elsewhere. By Lemma 13, we obtain a contradiction and a sequence of nontrivial solutions
. Hence we deduce that ¢ = cx and thus I(u,) — c. Furthermore, we assume u,, — u in
H as n — co. According to (iii) of Lemma 3, u is a solution of (14). If ||u,|| gz 0, then

342t

12
01) = {1'(tn) ) 2 aal* = Co [, Jn|Frdx = o4 20)

n=vg

which implies that ||u,|| — 0 as n — oo. This contradicts the assumption that (u,) C X.
Therefore, ||uy]| 2 0 and then we can find a sequence (a,) C R® and ¢ > 0 such that
+2f

/ u%dx >4,
By (ﬂn)

thanks to Lions” lemma (see Lemma 1.21 of [20] or Lemma 1.1 of [21]). Using the method ap-
plied in Lemma 11, we can assume that the sequence (a,) remains bounded after necessary
translations. Hence, for the (translated) sequence (uy,), it follows u, — u # 0as n — co.
Based on (iii) of Lemma 3, u € A, so I(u) > c. Following the reasoning in Remark 2, we
also conclude that I(#) < c¢. Thus, I(1) = fg;fg I, indicating that u is a ground state solution.

for large n,

Remark 3. It is worth mentioning that if V(x) = Ve > —1, then the above results remains valid.
In this case, there is a nontrivial solution u* # 0 for (14) and satisfying inf, cx_ Io = Ioo(1*).

Lemma15. (i) IfV # Vo, then cx < ¢*, where ¢* := inf,cx_, Loo(1).
() IfI(un) —de (0,c*)and I'(uy,) — 0 then u, — u # 0; after takeing a subsequence, u is
a critical point of I and 1(u) < d.

Proof. (i) Choose Iy > 0 such that [pu* € X, where u* # 0 is a ground state solution of (14).
Considering V < V, in some open set and u* # 0, | — Io(Iu*) for all I > 0 has a unique
maximum at/ =1,

cx < I(lgu™) < Io(lpu™) < Io(u™) = c*.

(ii) According to Lemma 9, we have u,, — u in H after passing to a subsequence. Further-
more, as stated in (iii) of Lemma 3, u is a critical point of I. Following the same argument
as in Remark 2, we get I(u) < d. Now there is only the task of demonstrating that u # 0.
Indirectly, let us assume u = 0. Given that V(x) — Vo as |x| = co and u, — 0in L7 _(R3),
we find

Too(tt) — I(1t) = %/RS (Voo — V(x))u2dx — 0.

Thus, Io(1,) — d. By applying the Sobolev inequality and the Holder inequality, and
choosing v such that ||v]| = 1, we derive

[(aotn) = (1), 0) | < [ Jsal o] (Voo = V (5))x

< C(/RB (Voo — V(x))zuﬁdx> :

The expression on the right converges to 0 uniformly when ||v|| = 1, I, (u,) — I' (un) — 0.
Therefore, I}, (1) — 0. If |1y, | S22 — 0, according to (20), we have 1, — 0in H. By setting
v = 0in (8), we obtain

(¥ (un), —ttn) — G(u) > —en||unl|.
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This implies that G(u,) — 0. Thus, I(u,) — 0, which contradicts the assumption that
I(uy) — d > 0. Consequently, ||uy| UG 0. By means of Lions’” lemma, we deduce that
+2t

there exist sequences (b,) C R? and ¢ > 0 such that for large 7,

/ uZdx > 0.
By (bu)

Set wy (x) := uy(x + by). By (ii) of Lemma 1, I is invariant under translations by elements
of R3, thus I, (w,) — d and I% (w,) — 0. Furthermore,

/ widx = / uZdx > 9.
B1(0) JB1(bn)

and hence w, — w # 0 after taking a subsequence. Thus w is a nontrivial critical point of
I satisfying loo(w) < d < Io(u*). Consequently, this leads to a contradiction. [

Proof of Theorem 2. According to Remark 3, if V = V,, then u* is the exact solution we
seek for. Therefore, suppose V(x) < V, for some x. Let us assume that thereis ¢y € (0,¢/2)

such that there are no Palais-Smale sequences in Iszzsg Lete € (0,g9). Select ¥ € T so

that v([0,1]) € I°t?/¢, It can be assumed I((1)) < —e/2. Let tx € C'(R5,[0,1]) be such
that g = 1if |x] < K, 7x = 0if |x| > 2K and ||(=A)21¢|[» < 1. Let ug(x) := txu(x).
We observe that ||ug — u|| — 0 uniformly in u € ([0,1]) as K — +oo. Given that
Y € C'(H,R), there is K > 0 such that for any u € ([0,1]), we have ¥ (ug) < ¥(u) +¢/2.
Additionally, since A; is convex and |ug| < |u|, we conclude that G(ug) < G(u). Therefore,
1k ([0,1]) C I°" and I(yk(1)) < 0, where yk(s) := t7(s). By the definition of compact
support, we can conclude that g has compact support and since yx(0) = 0, we obatin
vk € I'. According to Lemma 6, let ax (s) = (T, vk (s)) and we derive ag € T, leading to
ag([0,1]) C I°¢, thereby conflicting with the definition of c. Due to the fact that g may be
taken arbitrarily small, there is a sequence u,, such that I(u#,) — c¢and I'(u,) — 0. Through
Lemma 15, we acquire a nontrivial critical point u of I, fulfilling I(u) < c. Therefore, u € X.
Consequently, c = cx and u is a ground state solution. Thus, the proof is complete.

5. Conclusions

In the article, we investigate the existence of solutions for a logarithmic fractional
Schrodinger-Poisson system with a potential which may change sign. Due to the lack of
smoothness of the functional I, we employed the approach explored in [10,12] to establish
our results. Some main results are as follows:

(i) When the potential was coercive, we applied some arguments of the Fountain theorem
to show dy — co. Subsequently, by using the deformation lemma (Lemma 6), we
demonstrated that A;, # @ for sufficiently large k. Consequently, we established the
existence of infinitely many solutions for the system (1).

(i) When the potential was bounded, following the ideas from [10], we proved the
existence of a ground state solution for problem (14). Additionally, by utilizing the
deformation lemma (Lemma 6) and the Nehari method, we confirmed the existence
of a ground state solution for the system (1).
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