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Abstract: This study proposes an enhanced Kepler Optimization (EKO) algorithm, incorporating
fractional-order components to develop a Proportional-Integral-First-Order Double Derivative (PI-
(1+DD)) controller for frequency stability control in multi-area power systems with wind power
integration. The fractional-order element facilitates efficient information and past experience sharing
among participants, hence increasing the search efficiency of the EKO algorithm. Furthermore, a
local escaping approach is included to improve the search process for avoiding local optimization.
Applications were performed through comparisons with the 2020 IEEE Congress on Evolutionary
Computation (CEC 2020) benchmark tests and applications in a two-area system, including ther-
mal and wind power. In this regard, comparisons were implemented considering three different
controllers of PI, PID, and PI-(1+DD) designs. The simulations show that the EKO algorithm demon-
strates superior performance in optimizing load frequency control (LFC), significantly improving the
stability of power systems with renewable energy systems (RES) integration.

Keywords: Kepler Optimizer; fractional-order element; double derivative controller; load frequency
control; wind farm

1. Introduction

Reducing environmental impacts as the world moves towards more environmentally
friendly and green power options requires the integration of RESs. Frequency fluctuations
result from these renewable sources’ unpredictability, which puts strain on power networks’
stability. With the increasing scale of wind power integration, LFC has become a critical
challenge for power systems. The intermittency and instability of wind power impose
higher demands on the frequency stability of power systems, making the development of
effective control strategies to address these challenges particularly important [1]. As an
illustration of the evolving landscape, recent research has highlighted a gradual decrease in
inertia across Europe, showing a decline of approximately 20% over the past two decades [2].
Highlighting the intricacies of this changing dynamic, an incident occurred in the Southern
California System on 16 August 2016, where a disruption of 1200 MW of solar generation
took place. This event was triggered by a low-inertia condition, leading to the activation
of inverter protections based on instantaneous frequency measurement [3]. Similarly, in
2019, the UK experienced a significant power outage lasting 1.5 h, resulting in a 5% loss
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of total load [4]. In light of these occurrences, the traditional hierarchical control scheme,
encompassing primary, secondary, and tertiary frequency control, appears inadequate in
ensuring dynamic security if the power system continues to transition towards increasing
reliance on RES [5].

Sustaining the equilibrium between generation and demand for power requires a
well-executed LFC strategy [6]. The stability of a whole electricity grid depends on this
balance. Through the efficient handling of frequency irregularities brought about by the
incorporation of RESs, electrical power networks develop more resilience and adaptability,
which in turn add to the long-term sustainability and dependability of the world’s energy
infrastructure. Hit-and-trial assessment with various loads and controllers, comprising I,
PI, and PID, was used in [7] to apply I, PI, and PID control strategies in order to preserve
the steady frequencies in each region. In reference [8], a PI-controller that can be used for
LFC in multi-area systems was reported. It was created utilizing a restricted population
extreme optimizer. Three distinct models of two-area power systems were used as test
cases to illustrate the efficacy of the designed controller. One drawback of the model was
that nonlinear components were not taken into consideration by the state space model
used in this method. Also, a method based on Harris Hawks” algorithm was created by [9]
in designing a PI controller to address issues related to frequency-associated concerns.
This plan was examined using a range of standard benchmark tools to address different
optimization issues. An adaptive LFC technique for power systems was presented in [10],
which involved employing an electro-search optimizer to regulate the integral controller’s
settings. Nevertheless, the system’s objective function was developed without taking into
account variations in the system’s parameters or load disruptions, instead relying solely
on the power plant’s transfer function. Consequently, inappropriate performance under
load fluctuations and changes in system characteristics could arise from this approach. The
cascaded tilt-integral-derivative controller was tuned by using the Salp Swarm Algorithm
for LFC control and elucidated by Ref. [11]. Utilizing the benefits of the cascade controller in
conjunction with fractional-order elements, the executed control method via TID controller,
the slave, and the PI controller, the master was comparative assessed against differential
evolution and flower pollination algorithms.

RESs are thought to be the most effective and environmentally friendly technologies,
especially wind energy. The cost of their upkeep and operations has dramatically dropped
recently. By incorporating multiple RESs, such as solar systems, turbines, and possibly
diesel generating units for backup, hybrid power sources serve a critical role in guaranteeing
a steady energy supply [12]. As a result, combining these hybrid plants with conventional
power plants improves their ability to handle efficient loads overall. Reference [13] delves
into the stability analysis of a multi-WTs system, albeit without extending the findings to
multi-area power systems. On the other hand, Ref. [14] discusses a control strategy tailored
to variable-speed WTs within the Argentine-Uruguayan grid, yet it focuses solely on an
on-off scheme applied to a single-area power system. Furthermore, Ref. [15] offers an
exhaustive categorization of SI control techniques in power systems with a high penetration
of renewables, though concentrating primarily on the control technique rather than the
power system model. In [16], a contemporary methodology was introduced for automatic
LFC in multiple-source power systems, utilizing PID control tuned by a hybrid technique
of sparrow optimization and bald eagle algorithm. In this work, the hybrid algorithm
leverages the dynamic characteristics associated with bald eagles and sparrows to address
convergence issues commonly encountered in optimization problems. Then, again, Ref. [17]
provides inertial responsiveness and conducts a modal study using the reserves of both
kinetic and electrostatic energies of the rotor from variable-speed WT and the supercapacitor
units, respectively. The implemented control strategy was not thoroughly explained, and
the power system representation utilized throughout the investigation was constructed
on a condensed two-area testing system. Moreover, only the power system’s frequency
was utilized as a feedback variable, thereby imposing a limitation on the scope of analysis.
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Table 1 summarizes a comparative analysis of the present work with the existing state-of
the-art.

Table 1. Summary of existing state-of-the-art compared to the presented work considering a two-
area system.

Tuning the Controller Parameters:

Ref. Year Controller Algorithm RES Integration
Restricted population extreme
[8] 2019 PI optimizer considering a four-area Not considered
P &
system
[11] 2019 TID Salp Swarm Algorithm Not specified
[7] 2023 I, PI, PID Hit-and-trial Not Considered
[18] 2023 Cascaded PD-PI Enhanced version of slime mold Not Considered
optimizer
Antlion algorithm with
[19] 2023 PID experimental validation via Not Considered
electronics environment
[10] 2020 I Electro-search optimizer Solar power
p p
[20] 2021 PI Moth flame optimizer Wind power plant
[21] 2022 MOdgolfgiiC“"e PSO DFIG wind systems
[22] 2022 Cascaded PDn-PI Coyote optimizer Solar a}nd wind power
integrated
A backpropagation- PSO is utilized to adjust the
<Propag neuron weights of the neural . .
[23] 2023 trained neural .. Wind power generation
network-Pl network to optimize the PI
controller
Hybrid sparrow optimization and Multiple sources
[16] 2023 PID bald eagle algorithm including wind
Fuzzv Logic Wind, biomass, and
[24] 2024 Sel f—Tu}rllin gPID Genetic algorithm photovoltaic power
& plants
Proposed Study PI-(1+DD) EKO Wind

The existing literature on LFC in power systems, particularly with the integration
of RESs, reveals several significant shortcomings that have motivated further research.
Firstly, a notable issue is the inadequate handling of nonlinear components in many control
models. This limitation can result in suboptimal performance, particularly under varying
load conditions and dynamic system behavior. Another critical shortcoming is the lack of
adaptability to load fluctuations and system parameter variations. This oversight can lead
to inappropriate performance when the system encounters real-world conditions where
load demands and characteristics frequently change. Additionally, the integration of hybrid
renewable sources with conventional power plants is not comprehensively addressed in
the existing research. While studies like References [13,14] explore specific scenarios
involving wind turbines, they do not extend their findings to multi-area power systems or
consider the combined dynamics of multiple RESs and traditional energy sources. This gap
highlights the need for control strategies that effectively manage the diverse and hybrid
nature of modern power grids. Handling LFC in multi-area power grids requires the
use of increasingly sophisticated controllers and effective algorithms. In this instance, M.
Abdel-Basset et al. [25] recently presented KO, a revolutionary physics-based algorithm
influenced by Kepler’s equations explaining the orbits of the planets. KO offers a special
version of the metaheuristic for estimating the planet’s position and velocity at a given
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time that is based on Kepler’s computations [26]. In KO, each planet serves as a possible
solution that is arbitrarily adjusted during the process of optimization with regard to the
Sun to determine the best possible future solution. To address the LFC problem, this paper
presents a ground-breaking augmented EKO with additional fractional-order components
in order to design an advanced controller based on PI-(1+DD) stages. To boost the search
efficiency of the EKO, the primarily engaged change employs a fractional-order element
to achieve effective information and past expertise sharing amongst participants with the
goal of avoiding premature converging. Additionally, the LEA was incorporated to boost
the search procedure by evading local optimization. A two-area electrical system with a
thermal plant and wind renewable energy source was used to describe the LFC problem. It
was vulnerable to successive random variations and varying load demands in every area.
Minimization of the ITAE was the time domain objective function assessed and investigated.
The present study offers the following significant contributions:

An EKO algorithm enhanced with additional fractional-order components is presented.
An advanced PI-(1+DD) controller, based on EKO, is introduced to enhance frequency
stability in multi-area power systems with wind integration.

e  The performance of the proposed controller is investigated, showcasing significant
enhancements considering simultaneous step load changes in both thermal and wind
areas.

e  The proposed EKO algorithm is comprehensively evaluated and compared against
several recent algorithms.

The structure of the rest of the paper is as follows: Section 2 discusses the two-area
power system with WTG. Section 3 outlines the optimization frameworks for both the KO
and the EKO. Section 4 presents the simulation results. Finally, Section 5 discusses the
findings of the current study.

2. Two-Area Power System with WTG
2.1. Wind Farm

Wind power generation is inherently unpredictable, owing to its dependency on
external factors such as wind speed, ambient temperature, and more. The electricity output
of wind farms is significantly influenced by the continuous variation in wind speeds over
the course of the day. The mathematical modeling of the mechanical power output from a
wind turbine (Pgw) is represented as follows [27]:

1 ,
Pow = 5 x a* x p x V3 x Cp(Tip, B) (1)

In this context, the parameter “a” is defined as the swept area, measured in square
meters (m?); “p” represents the air density, measured in kilograms per cubic meter (kg/m?);
“Vw” stands for the wind speed, measured in meters per second (m/s); “Cp” denotes the
rotor efficiency; “B” refers to the pitch angle of the blade, measured in degrees; and “Tip”
stands for the tip speed ratio. These parameters are determined by the following equations:

C,(Tip, B) = % x (Tip — 56— (0.022 x /32)) x =017 % Tip )

Tip = (67(T) X 1‘)/:]1) x Rpm 3)

The parameter “Rpm” denotes the rotor speed in revolutions per minute, and “Dm”
represents the diameter of the rotor blades in meters.

The pitch control is utilized to regulate the power output of the WTG. It aims to
maintain the blade’s angle in an optimal way for adjusting to changes in wind speed.
The input signal to the pitch controller is derived from the feedback signal of the WTG
output power. The pitch control system of the wind farm, along with the data-fit pitch
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response, hydraulic pitch actuator, and induction generator, are all represented using
transfer functions. These functions are explained sequentially as follows [22]:

Gp(s) = Kp1 X (HngSXS)) 4)
1
6= () ©
1
Gp(s) = Kps <1+(Tp3><s)> (6)
1
G](S) = m (7)

where Kpy, Kpy, Kps, Tp1, Tpz, and Tp3 correspond to the pitch controls, hydraulic pitch
actuators, and data-fit pitch response’s gain and time constants, respectively.
The variance in wind output power is articulated as follows:

APgw = K xGi(s) 8)
where Kpc and Ky are the gains in blade characteristic and fluid coupling, respectively.

2.2. Thermal System

The thermal generation area consists of several components including the turbine,
governor, re-heater, and generator. Below, each of their transfer functions is detailed

sequentially [28].

1

Gg(s) = Kg x (1—|—(Tgxs)> )

60 = (17173 w

_ (14+ (T, x K, x5)

o) = () "
1

Go(s) = K, x (1+(Tp><s)) (12)

where K¢, Ty, K, Tt, Ky, Ty, Kp, and T) indicate the thermal plant governor, turbine, reheater,
and power system’s gain and time constants, respectively. The controllers receive inputs in
the form of related area control errors (ACE; and ACE,), which are defined as follows:

ACEq = B1Af1 + APrip (13)

ACEy = BoAfy + a1pAPrig (14)

The model of the power system under investigation is depicted in Figure 1. In this
figure, R denotes the governor speed droop characteristics; B refers to the frequency bias
factor; P indicates the nominal thermal loading; APp; and APp; are the power demand
changes in both areas; AP, refers to the wind power fluctuations; APryg is the tie-line
power change; T1, constitutes the synchronization coefficient of the tie-line; Af; and Af, are
the frequency deviations (Hz) in both areas.
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Area 1: Wind Generation Area

I
v APy APp1
()

, 1+(Tpixs) | 1 ) + 7
]‘F‘X[ Tos 1 £~ ‘(1+(1-,,1m)) (1+T,x3)

Proposed Kps,
b Controller 1+sTpg,
* ACE; Pitch Control Hydraulic Power System
Pitch Actuator Wind Generator
4fi
+
Tz /~
K \Z
Tie Line | 45
+| ACE:
Z Proposed © | 1 ‘ - 1 ] (1+(TxK,xs)) | | © Jon Kpys,
Controller | 14 (T, x9) ) 1+ (1xs) "1+ (Tx9) J | | P ‘\1-11;x3) 1+sTpg,

Governor Turbine Re-heater Generator Power System

A A Area 2: Thermal Generation Plant

Figure 1. Power system model.

3. Proposed Controller-Based Enhanced Kepler Optimization (EKO)
3.1. Proposed PI-(1+DD) Controller

In this investigation, we utilize a controller fashioned by using PI-(1+DD) to regulate
frequency fluctuations, showcasing its superior efficacy when juxtaposed with traditional
controllers [29]. The foundational layout of the envisaged PI-(1+DD) controller is depicted
in Figure 2. As depicted in the figure, the controller is structured into two tiers, namely
PI and DD. Additionally, the architecture of the PI-(1+DD) controller incorporates two
independently adjustable parameters, Kp and K}, on one side, and Kpj, Kp; alongside a
constant gain of 1 on the other side. The adjustable parameters afford flexibility in controller
customization. The merits of the proposed PI-(1+DD) controller include augmented
transient response and heightened system stability, culminating in a decrease in peak
deviation. The transfer function of the envisaged controller is delineated in Equation (15).

Ki
Geontroller(8) = (Kp + S) X (1+ (Kp1 x s) + (Kpz x 5)) (15)
_____________ (1+DD) Control
PI Control
" 1
K,
Input | C+ K, & e
l —> K, S
A
----- PI Component (1+DD) Component

Figure 2. Proposed controller of PI-(1+DD) [29].



Fractal Fract. 2024, 8, 323

7 of 28

In LFC analyses, the optimization of different controllers is carried out using the
integral of ITAE as the performance index. Equation (16) defines the ITAE minimization
function utilized for this particular objective.

tsim
J=ITAE = [ (IAfi|+|8fa] + |APrig]). tat (16)
0

To enhance system responsiveness, it is crucial to minimize the | value, taking factors
such as Af1, Afy, and AP into account within the time span of t,;,,. The only exception is
the boundary for the filter coefficient n of the PID controller, which is set between 1 and
200, while all other candidate controller parameters are adjusted within the range of —4 to
4 [22].

3.2. Developing EKO for Tunning the Proposed Controller

KO provides an exclusive meta-heuristic description of the field of physics-based
inspiration, relying on Kepler’s calculations to anticipate the velocity and position of the
planets at specific moments [25]. This section presents a ground-breaking EKO with addi-
tional fractional-order components. The EKO algorithm introduces an information-sharing
mechanism and an LEA, effectively improving search efficiency and avoiding premature
convergence. Specifically, the information-sharing mechanism allows individuals to ex-
change information during the optimization process, thereby finding the global optimum
more quickly, while the LEA method helps individuals escape local optima, enhancing the
algorithm’s global search capability [30].

3.2.1. Primary Addition of Fractional-Order Element

The concept of fractional calculus is frequently centered on GL calculation, which can
be mathematically expressed in the following manner [31]:

h—0

DE(Ob;(t)) = lim (h—ézjj_o Ob;(t — mh) ( ¢ ) (-1)’“) (17)

where

(i> _ F(m1+1) % p(Ié(fnf?l) = % XxC(—1)(C—2)...(—m+1) (18)

where D% (x(t)) represents the fractional derivative with order ¢ of the Grunwald-Letnikov
formula and Ob;(t) becomes the solution vector, defining each object’s position in space at
every point in time (¢). I finds the gamma function. The following equation represents its
mathematical structure for discrete-time execution:

D¢ (Ob;(t)) = %Z:nozo (=)™ x I(7— TZ(-?- 1+)11")(m +1)

=
X Ob;(t —mT) (19)
where T is the sample interval. Equation (19) is written as follows when { = 1: wherein

D'[x(t)] denotes the variance between two-tailed occurrences.
Concerning Equation (17), it can be expressed as follows when ¢ = 1:

D! [abi(t +1)] = abi(t +1) - abi(t) (20)

wherein D'[Ob;(t)] denotes the variance between two-tailed occurrences.
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To incorporate the fractional-order element that was previously stated inside the
KO, the variance between the newly generated and current position of each object can be
mathematically simulated as follows:

b=+ [t TR,

Fractional order element

H ift>3 (1)

On the basis of the suggested framework, the stored information and heredity portions
of the motivated action are defined in the method to speed up the exploration approach.
When changing its placement according to the combination approach, every alternative
solution vector uses memory, and the updated position of each object can be simplified and
estimated as follows:

— —
Ob;(t+1) = Ob;(t) + [FOE; x Ob;(t) + FOE; x Ob;(t — 1) + FOE3 x Ob;(t —2) + FOE4 x Ob;(t — 3) lift>3 (22)

Fractional order element

FOE; = %g (23)

FOE, = % (1-20) (24)

FOEs = 0(1-0)(2- ) @5)
FOEs = 12(1-)2-0)(3-0) 26)

As stated in Equation (22), if the present iteration surpasses three, this method accom-
plishes nothing extra. This characteristic is caused by the reliance on prior recollections.

3.2.2. Proposed EKO

The Sun is regarded as the most favorable or best option in KO, whereas the placements
of the different planets constitute potential alternatives that arbitrarily alter throughout the
iterated process. The algorithm’s core equation states that upon initialization, each position
(Ob;) of each object (j) is randomly assigned.

—

— — —
Ob](()) B ObLo + Rdl X (Obu - ObL),] =1: NOh (27)

where the planet population is denoted by N, and the minimum and maximum restric-
tions on every controlling variable (i), accordingly, are represented by Ob; and Oby;. Rd;
stands for a number that is generated at random and ranges from 0 to 1.

Then, based on the location of each object in reference to the Sun, its rate of motion
is established. The aforementioned motion sequence can be represented by an algebraic
equation as follows:

<1x X 7, x (Rd;0by — Oby) x Rds x (1 — Rk,nm(t))> + (u « (Oby — Oby) x Rdz) if Ri_m(t) > 05
Vk(t) = — — — — — — — (28)
<1x X ;1 x (Oby — Oby) x Rdz x (1— Rk,nm(t))> + (p*(Ob,, - Obb)> + (p(ZRdzobk - Obb)> Else
where 05
U = [(m+ Ms) x u(t)[2 % (e + Re(t) " = (e +ai(t)) ] (29)
p=Ux q x (Rds x (1 — Rdy) + Rdy) (30)

p* = (1—q) x (Rd3 x (1 — Rdy) + Rdy) (31)
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H
Ol (t +1)

where V(t) signifies the object’s velocity at time ¢; A vector type is denoted by the symbol
(—) on the tag for every element. g, 41, and g7 are integers frequently picked at random
from the spectrum [0, 1]; « designates a randomized value within the range [—1, 1]; Rd;:
Rds are numbers that are irregularly dispersed within the bounds of [0, 1]; Ob, and Ob;
are the positions of two randomly planets; Ms and my represent the masses of the Sun
regarding the best position of the planets and each object, correspondingly; y(t) reflects
the gravitational constant of the universe; ¢ is still a tiny amount used to avoid division
by zero inaccuracies; Ry (t) corresponds to the distance between the Sun and each object; a;
represents the semimajor axis of the elliptical orbit of the planet as follows:

=

a(t) = Rds x [0.257f2 x T2 % u(t) x (my + Ms)] (32)

where T} is an absolute value derived using a normal distribution, indicating the orbital
period of each object. Ry, (t) is the normalized Euclidian distance between the Sun and
each object. Planets orbit the Sun, rotating in and out of orbit [26]. The KO concept divides
the process into two phases: exploration and exploitation. Nearer solutions are used, while
far-off solutions are investigated for novel possibilities.

Oby(t +1) = Oby(f) — (|Rds| + Fgy(£)) x (Oby(t) — OBs(t)) +a x Vi(t)  (33)

where Oby(t + 1) represents a planet’s ultimately determined location at time f + 1; Obs(t)
represents the Sun’s position with respect to the specified best solution and acts as a marker
to modify the search’s orientations. The term “Fg;” refers to the force of gravity that pulls
planets towards the Sun:

(“Ll(t) X e X n?nk X M_;“ls)
Fgi(t) = Rds + = (34)
(Rmy)* +e

where y symbolizes a gravitational constant; ¢; is a stochastic randomized number denoting
the eccentricity of a rotating planet; and Mng and mny stand for the normalized amounts of
M,, and my, [25]. Furthermore, Ry symbolizes the Ry’s normalized value, representing the
Euclidian distance between the object and the Sun as follows:

D

Ry (t) = [|Obs(t) — Obi(t) ||, = J Y (Obs(t) — OB (1)) (35)

j=1

When the planets tend to be in proximity to the Sun, KO will prioritize taking advan-
tage of exploitation over exploring, as shown below:

where Rdy and Rdg represent values selected at random according to normal distribution,

and a, represents a periodic regulating factor that slowly decreases from 1 to 2 for T cycles
throughout the optimizing procedure, as shown below:

E’ xObk() (1-14,)x
Ob

— — — — — (36)
5+Oba -‘rObk( ) + 1 % Obg+0b, (t)+Oby (+)—300by (t)
o(Ri; (17 (a; 1) < Rdg)) 3

—t
ap =

~1 (37)

Tmax
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Elitism, the final phase, adopts an elitist method to ensure the optimal locations for
the Sun and planets. This process is outlined in the following equation:

Oby(t+1) ith(SbkaH)) < Ft<5bk(t))
Cg)bk(t) Else

—
Obk,new(t + 1) = (38)

Also, an LEA is incorporated to boost the searching procedure by evading local
optimization, wherein the positions of some planets can be modified in each iteration as
follows:

— — — 0'14)2,82 — — .
Oby(t) + P1 (,Blobs — ,BQOba> + =5 (Obh — Obc) if Rdg < 0.5

N
Obk(iL + 1) = — — — - — —
Obs + ¢1 (,BlObS - ,BZOba> + %ﬁz (Obb — Obc> Else

Zf Rdlo < Qw (39)

where Qy, is a probability parameter that governs LEA stimulation. In the range [0, 1], Rdg
and Rdyo denote arbitrary numbers; ¢1 and ¢, are random values within band [—1; 1]; Ob,,
Oby, and Ob. denote multiple solutions that were randomly selected. Also, 1, B1, and B2
are randomized number produced in an adaptive way as in [30]. Figure 3 displays the
flowchart of the proposed EKO.

Start

| Input Nov, Obr, Obu, y and Fuesx |
¥
| Generate randomly the initial population (Ob) using Equation (27) 1

L 2
| Evaluate the fitness for each planet Ff(Obx) using Equation (16) |

Extract the Sun (Obs)

L]
No Yes
%Rd/ t>3
T v ~T
| Select randomly Ob. and Obs | calculate a2 using
Equation (37)

Evaluate Fg(#) and Rni(?)

[ Equations (34 and 35) ] Evaluate U, p, p* and ax() No Yes
) Evaluate Obw(t+1) Evaluate Obx(f+1)

l l via Equation (36) via Equation (39)

Evaluate Obx(t+1) Evaluate Vi(?) employing | |
using Equation (33) using Equation (28) Evaluate Obx(t+1)
| using Equation (22)

I Check the bounds and set the violated variable to the nearest li mit |<—‘

k=k+1 | 5 Y = 7
| Evaluate the fitness Ff(Obi) using Equation (16) |
¥
| Apply the elitist strategy to guarantee the best positions for the planets using Equation (38) |

| Add a memory saving to the solutions for the three previous iterations |

¥ =
Update the Sun (Obs) Sl

Optimal Solution

Figure 3. Flowchart of the proposed EKO.
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4. Results and Discussion
4.1. Testing on RW Engineering Design Issues

Simulation results of RW problems were conducted to assess the performance of the
proposed EKO algorithm in addressing constrained, non-convex optimization challenges.
Thirteen optimization problems from mechanical and chemical engineering fields, drawn
from CEC 2020, were utilized for testing purposes. The lower and upper limit violations of
the constraint functions were determined based on reference [32].

4.1.1. Proposed EKO versus KO: Testing on RW Engineering Design Issues

In the presented case studies, the firm penalty method was employed to manage the
constraints. The population size was fixed at 200 for all 13 benchmarks, with a maximum
of 500 iterations set for each case study. The key details regarding the benchmark func-
tions and the inequality constraints employed in the investigation were considered [33]
(their industrial data are displayed in Appendix A). They were process synthesis prob-
lems (RW8 and RW12), process design problem (RW13), speed reducer design (RW15),
tension/compression spring design (RW17), pressure vessel design (RW18), welded beam
design (RW19), three-bar truss design (RW20), multiple disk clutch brake design (RW21),
rolling element bearing (RW28), gas transmission compressor design (RW29), gear train
design (RW31), and Himmel Lau’s function (RW32).

The proposed EKO and the standard KO methods were applied for fifty different runs
and the resultant boxplots are shown in Figure 4 while the related average converging
properties are depicted in Figure 5. The comparison reveals noteworthy observations:

e  The proposed EKO consistently achieved the lowest minimum objective in eleven RW
problems, showcasing an impressive 84.61% outperformance ratio compared to the
standard KO. Interestingly, both techniques exhibited similar performance in RW8
and RW32 problems.

e In terms of mean objective scores, the proposed EKO outperformed the standard
KO in ten RW problems, with a notable 76.92% outperformance ratio. Conversely,
the standard KO achieved lower scores in only two RW problems (RW12 and RW18)
compared to the proposed EKO, while both techniques yielded comparable results in
the RW32 problem.

e  Analysis of the maximum objective scores indicates that the proposed EKO excelled in
twelve RW problems, demonstrating a significant 92.3% outperformance ratio against
the standard KO. Additionally, both methods yielded similar scores in the RW32
problem.

e Examination of the standard deviation in the attained objective scores reveals that
the proposed EKO achieved the lowest values in ten RW problems, showcasing a
substantial 76.92% outperformance ratio compared to the standard KO. Conversely,
the standard KO attained smaller values in only two RW problems (RW12 and RW18)
compared to the proposed EKO, while both techniques exhibited similar performance
in RW32 problem.
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Figure 5. Convergence curves of the proposed EKO and KO for RW engineering problems.
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4.1.2. Comparative Assessment against Other Techniques

The achieved outcomes were compared against other optimization solvers including
WSO [34], DBO [35], MFO [36], LWSO [33], and FOX algorithms [37]. Table 2 compares the
efficiency of the suggested EKO algorithm with other competing optimization methods
for each of the 13 RW case studies. In this table, the symbols Min., Av., Med., Max., and
STd indicate the best, average, median, worst, and the standard deviation of the obtained
fitness scores for the fifty different runs implemented by the algorithms. Also, rank refers
to the order of each algorithm, where the best performing one takes the first place in the
order. The order is made based on the lowest values of the Min., Av., Med., Max,. and
STd metrics. As shown, the average rank offers insights into the relative performance of
algorithms across the evaluated criteria. A lower average rank signifies better performance.
The proposed EKO demonstrates superiority with an average rank of 2.384615, indicating
its effectiveness across the metrics considered. Therefore, the proposed EKO secures the top
position with a final ranking of 1, highlighting its overall superiority among the evaluated
algorithms. Assessing the average rank, notable improvements in the proposed EKO over
each algorithm are highlighted. The proposed EKO demonstrates the most substantial
enhancement, with a 59.74% improvement compared to FOX. Additionally, it achieves
significant improvements of 38.0%, 35.417%, and 34.043% compared to DBO, MFO, and
WSO, respectively. In comparison to the standard KO, the proposed EKO algorithm shows
a noteworthy improvement of 26.19%. Lastly, it exhibits the lowest improvement of 22.5%
compared to LWSO.

Table 2. Statistical metrics for the RW engineering benchmarks under study.

Engineering

Design Items WSO DBO MFO LWSO FOX KO Prgll’("cs)ed
Problem
Min. 2 2 2 2 2 2 2
Av. 2 2 2 2 2 2 2
Med. 2 2 2 2 2 2 2
RWS Max. 2 2 2 2 2 2 2
STd Pl P P 2N 7axas AR 1IN
Rank 4 1 1 1 7 6 5
Min. 2924831 2.924831 2.924831 2.924831 2924831 2924832232  2.924830555
Av. 2.924831 3.378957 2.96061 2.940521 2946508 292529553 2927494414
Med. 2.924831 3081732 2.946961 2.924831 2925031 2946961824  2.946961113
kW12 Max. 2924831 4.074353 3081732 3.081732 3082564 2924844916  2.924830584
STd 143 x 1077 0481632 0053133 0048293  0.047529  0.003126717  0.00726176
Rank 1 7 6 4 5 2 3
Min. 2688742 2688742 2688742 2688742 2688742 2688742  26,887.42
Av. 2688742 2688742 2688742 2688742 27,3501 2688742  26,887.42
Med. 2688742 2688742 2688742 2688742 2688742 2688742  26,887.42
RWI3 Max. 2688742 2688742 2688742 2688742 2836822 2688742  26,887.42
STd 8.52 x 105 11'331T 11’(1)% 205 % 1076 4734105 1'?89? X 9’31501?3 X
Rank 6 1 1 5 7 4 3
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Table 2. Cont.

Engin(.eering Proposed
Design Items WSO DBO MFO LWSO FOX KO
Problem EKO
Min. 2994.648 2994.424 2994.424 2994.429 2995595  2994.426015 2994.424539
Av. 6 x 1014 6 x 1014 2998.352 5 x 1013 6.5 x 101 2994.427404  2994.424768
RW15 Med. 1 x 10% 1 x 10%° 2994.424 2994.439 1x10%  2994.429985  2994.425372
Max. 1 x 101° 1 x 1010 3033.702 1 x 1015 1x 10Y 2994427249  2994.424751
STd 5.03 x 1014 5,03 x 101 12.08925 224 x 101 4.89 x 10  0.000867638  0.000154279
Rank 5 6 3 4 7 2 1
Min. 0.012665 0.012666 0.012674 0.012665 0.012677 0.01266588  0.012665241
Av. 0.012665 0.012742 0.012827 0.012665 5x 1013  0.01266772  0.012665815
Med. 0.012665 0.012719 0.012719 0.012665 0.012781  0.012672708  0.01266995
RW17 Max. 0.012665 0.012928 0.014283 0.012665 1x 1015  0.012667121  0.012665365
STd 169 x 1078 756 x 10~ 0.000356 83 x 1013 224 x 10 1'61107§Z % 1'1103,721 %
Rank 2 6 6 1 7 1 3
Min. 6247.675 6247.673 6247.673 6247.72 6359.528 6059.74963  6059.714355
Av. 6247.681 6544.502 6283.05 6247.934 39,927.73  6061.052218  6073.212954
Med. 6247.681 6382.985 6247.673 6247.853 15,046.06  6090.661389  6090.532868
RW18 Max. 6247.688 7319.001 6436.743 6248.808 239,304.1  6060.129709  6059.726443
STd 0.003228 400.6724 63.7404 0.236775 65,645.18  4.432071131  15.38116002
Rank 3 6 5 4 7 2 1
Min. 1.670218 1.670218 1.670218 1.670218 1.67593 1.670251358  1.670217856
Av. 1.670218 1.700254 1.670219 1.670218 1.756922  1.670303479  1.670218426
Med. 1.670218 1.670218 1.670218 1.670218 1.722726  1.670434518  1.670219985
RW19 Max. 1.670218 1.816712 1.670239 1.670218 1.994586  1.670301692 1.670218296
STd 62 x 108 0.055884  4.83x 107 561 x1078  0.080852 3'112(}% % 4'8178,79 %
Rank 2 6 4 1 7 5 3
Min. 263.8958 263.8958 263.8958 263.8958 263.8958  263.8958434  263.8958434
Av. 263.8958 263.8958 263.8985 263.8958 263.8959  263.8958434  263.8958434
Med. 263.8958 263.8958 263.8967 263.8958 263.8959  263.8958434  263.8958434
RW20 Max. 263.8958 263.8961 263.9237 263.8958 263.8962  263.8958434  263.8958434
STd ‘i’égé 476 x 107> 0.006081 13 x 10~ 7.87 x 107 8'71%0_41% X 1‘51%4_4191 8
Rank 2 5 7 1 6 4 3
Min. 0.235242 0.235242 0.235242 0.235242 0.235242  0.235242458  0.235242458
Av. 0.235242 0.235242 0.235242 0.235242 0235243  0.235242458  0.235242458
Med. 0.235242 0.235242 0.235242 0.235242 0235243  0.235242459  0.235242458
kw2l Max. 0.235242 0.235242 0.235242 0.235242 0.235243  0.235242458  0.235242458
STd 5.94 x 1072 11'31112 11'3‘,112( 11~§Z§ 9.23 x 1078 1'?3??& 6'81%5,3153 X

Rank 6 1 1 4 7 5 3
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Table 2. Cont.
Engineering Provosed
Design Items WSO DBO MFO LWSO FOX KO P
EKO
Problem
Min. 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448
Av. 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448
Med. 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448
RW28
Max. 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448 5599.448
STd 0 0 0 0 0 0 0
Rank 1 1 1 1 1 1 1
Min. 2,964,895 2,964,895 2,964,897 2,964,895 2,989,723 2,964,895.455 2,964,895.417
Av. 2,964,895 3,011,451 2,965,099 2,964,895 3,086,914 2,964,895.914 2,964,895.417
Med. 2,964,895 2,964,897 2,964,99 2,964,895 3,096,913 2,964,897.792 2,964,895.418
RW29
Max. 2,964,895 3,147,942 2,966,063 2,964,895 3,104,538 2,964,895.788 2,964,895.417
STd 9.68 x 1075 74,628.94 302.1104 1.85 x 107> 29,668.78 0.419557334  0.000130887
Rank 4 6 5 3 7 2 1
. 3.89 x 5.46 x 3.38 x 2.57685 x
Min. 10—20 0 0 10~19 10—19 1016 0
391 x 8.34 x _ 1.57017 x 7.96262 x
Av. 10716 0 0 10717 4.3 x 10 17 10,12 10,20
7.25 % 1.44 x 6.21 % 1.61363 x 3.9813 x
RW31 Med. 10717 0 0 10717 10718 10711 10718
1.95 x 452 x 3.28 x 3.14661 x 6.93335 x
Max. 10—15 0 0 10—16 10—16 10—13 10—33
5.92 x 1.33 x 8.09 x 3.14661 x 5.63041 x
STd 10-16 0 0 10-16 10-17 10-12 10-19
Rank 6 1 1 5 4 7 3
Min. 2.6393 2.6393 2.6393 2.6393 2.6393 2.6393 2.6393
Av. 2.6393 2.6393 2.6393 2.6393 2.6541 2.6393 2.6393
Med. 2.6393 2.6393 2.6393 2.6393 2.6939 2.6393 2.6393
RW32 Max. 2.6393 2.6393 2.6393 2.6393 2.6513 2.6393 2.6393
3.73 X 3.73 x 1.79439 x 1.79439 x
STd 0.001059 o2 o1 0.002432 0.415896 015 015
Rank 5 3 7 6 5 1 1
Ranks summation 47 50 48 40 77 42 31
Average rank 3.615385 3.846154 3.692308 3.076923 5.923077 3.230769 2.384615
Regarding L;“pmveme“t 34.043% 38.000% 35.417% 22.500% 59.740% 26.190% -
Final ranking 4 6 5 2 7 3 1

4.2. Application on Multi-Area Power Systems with WI'G

Three distinct controllers” performances were examined while taking simultaneous
step load variations in the thermal and wind regions into account. The power system
discussed in Section 2 is modelled in this section under MATLAB SIMULINK, and relevant
values are derived from [22]. Consequently, the following analysis is conducted on three
distinct cases:

e Case 1: PI Controller;
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e Case 2: PIDn Controller;
e  Case 3: Proposed PI-(1+DD) Controller.

For this purpose, the proposed EKO algorithm and the standard KO algorithm were ap-
plied with comparative assessment against well-known efficient algorithms such as DE [38],
SFO [39] and PSO [40,41]. The population size was fixed at 20 for all three cases, with a
maximum of 100 iterations set for each case study and 20 separately running executions.

4.2.1. Case 1: PI Controller

In this case, both areas were subjected to an additional 10% step load, and the controller
was developed using the PI framework. Table 3 presents the gains (Kp and Kj) that
were obtained by the suggested EKO, KO, PSO, DE, and SFO algorithms for each area.
Comparing each algorithm against the proposed EKO, it is evident that the proposed EKO
outperforms all other algorithms in terms of minimizing the ITAE. Notably, the ITAE value
achieved by the EKO (3.232379096) is lower than that of DE (3.232596), PSO (3.247192601),
SFO (3.234732), and KO (3.232469).

Table 3. Optimized gains using DE, PSO, SFO, KO, and EKO for Case 1.

Parameters DE PSO SFO KO Pr(]i:I;(oOsed
Area 1 Kp 0.090109 0.072778354  0.098906 0.091053 0.090498113
K1 0.280171 0.283155395  0.276407 0.281548 0.281895243
Area 2 Kp 0.081499 0 0.10512 0.08444 0.087513508
K; 0.457284 0.441958801  0.462502 0.454033 0.455743125
ITAE 3.232596 3.247192601  3.234732 3.232469 3.232379096

Regarding improvement

o 0.0067% 0.4562% 0.0727% 0.0028% -

To estimate the improvement percentage of each algorithm compared to the proposed
EKO, we can use the following formula:

ITAEAlgorithm — ITAEgko %

100 (40)
ITAEAlgorithm

Improvement % =

From Table 3, the EKO algorithm demonstrates the lowest ITAE score with 3.232379
while DE, PSO, SFO, and KO achieve ITAE counterparts of 3.232596, 3.247192601, 3.234732,
and 3.232469, respectively. Also, the table illustrates the improvement percentages, showing
how much better the proposed EKO performs compared to each algorithm in terms of
minimizing ITAE. As shown, the EKO algorithm demonstrates a substantial improvement
over PSO, of 0.456%, and small improvements over the DE, SFO, and KO algorithms of
0.0067%, 0.0727% and 0.0028%, respectively. Added to that, Figure 6 displays the boxplots of
the DE, PSO, SFO, KO, and proposed EKO algorithms for this case, while Figure 7 shows the
average converging characteristics of the DE, PSO, SFO, KO, and proposed EKO algorithms.
Table 4 presents a comparative analysis of the efficiency of the proposed EKO algorithm
against DE, PSO, SFO, and KO. The results reveal significant enhancements achieved by the
proposed EKO in mean ITAE values, with improvements of 0.0639%, 6.8793%, 1.9309%, and
0.0213% compared to DE, PSO, SFO, and KO, respectively. Moreover, notable enhancements
are observed in the worst ITAE values, where the proposed EKO achieves improvements of
0.2751%, 25.1534%, 10.1625%, and 0.2998% compared to DE, PSO, SFO, and KO, respectively.
Finally, the proposed EKO declares great superiority in achieving the lowest standard
deviation of 5.35385x 10~°, where DE, PSO, SFO, and KO correspondingly attain 0.00234,
0.4338, 0.08087 and 0.00217, respectively. These findings underscore the effectiveness of



Fractal Fract. 2024, 8, 323 18 of 28

the proposed EKO algorithm in optimizing the PI controller’s performance across various
evaluation metrics, highlighting its superiority over existing optimization methods.
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Figure 6. Boxplots of the DE, PSO, SFO, KO, and proposed EKO for Case 1.
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Figure 7. Average converging characteristics of DE, PSO, SFO, KO, and proposed EKO for Case 1.

Table 4. Statistical metrics for DE, PSO, SFO, KO, and proposed EKO for Case 1.

DE PSO SFO KO P rgi‘ges
Min 0315377 0.259712 0.298104 0.257969 0.238278

Average 0.420843 0508383 0.469785 0.37775 0374211

Median 0.382479 0373369 0.401883 0.36156 0.335956
Max 0.560605 1.001491 0.995069 0.566848 0.549338
STd 0.093496 0.26523 0.173228 0.084127 0.111095
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4.2.2. Case 2: PID Controller

In this case, the controller was developed using the PID framework while every
zone required a 0.1 step increase in power. Table 5 shows the lowest ITAE values for
the PID controller’s ideal settings when employing the suggested EKO, KO, PSO, DE,
and SFO algorithms. Comparing each algorithm against the proposed EKO algorithm
reveals that EKO significantly outperforms all other algorithms in terms of minimizing
the ITAE. The ITAE metric emphasizes quick error correction by penalizing errors more
heavily as time progresses. In this study, the EKO achieved an ITAE value of 0.238278,
which is considerably lower than the values achieved by other algorithms: DE recorded an
ITAE of 0.315377, PSO achieved 0.259712, SFO had 0.298104, and the original KO achieved
0.257969. Also, the EKO algorithm demonstrated substantial improvements over the other
algorithms, ranging from approximately 7.63% to 24.44%. These results highlight the
superior performance of EKO in efficiently handling and reducing errors over time, thereby
ensuring a more stable and reliable control system. This improvement can be attributed
to EKO’s advanced optimization capabilities, which enhance search efficiency and avoid
premature convergence.

Table 5. Optimized gains using DE, PSO, SFO, KO, and EKO for Case 2.

Parameters DE PSO SFO KO Pr(])iia(o(s;ed

Kp 1.438757 1.900453 1.586249 2.219521 1.983181

Area 1 K1 1.215012 1.603468 2.200458 1.685726 1.633524
Kp1 2.140379 2.45894 2.261332 2.61141 2.103699

Kp2 3.649792 4 3.888985 3.786046 3.976172

Kp 0.396676 0.45051 0.173962 0.609858 0.403955

Area 2 Ky 2.106416 2.558977 2.817782 2.503367 2461233
Kp1 0.503803 0.658649 0.678034 0.67905 0.570483

Kb 3.841419 4 3.602219 3.76936 3.889637

ITAE 0.315377 0.259712 0.298104 0.257969 0.238278

Regarding improvement

o 24.4466% 8.2530% 20.0688% 7.6331% -

Added to that, Figure 8 displays the boxplots of the DE, PSO, SFO, KO, and proposed
EKO for this case, while Figure 9 shows the average converging characteristics of the DE,
PSO, SFO, KO, and proposed EKO. In this regard, Table 6 compares the efficiency of the
suggested EKO algorithm with DE, PSO, SFO, and KO. As demonstrated, the proposed
EKO algorithm achieves significant improvements in the mean ITAE values, exhibiting
enhancements of 11.0806%, 26.3919%, 20.3443%, and 0.9371% compared to DE, PSO, SFO,
and KO, respectively. Similarly, notable enhancements are observed in the median ITAE
values, with the proposed EKO showing improvements of 12.1636%, 10.0203%, 16.4046%,
and 7.0816% compared to DE, PSO, SFO, and KO, respectively. Additionally, substantial
enhancements are evident in the worst ITAE values, with the proposed EKO achieving
improvements of 2.0098%, 45.1480%, 44.7940%, and 3.0891% compared to DE, PSO, SFO,
and KO, respectively. These results underscore the efficacy of the proposed EKO algorithm
in optimizing the performance of the PID controller across various metrics, showcasing its
superiority over existing optimization techniques.
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Figure 8. Boxplots of the DE, PSO, SFO, KO, and proposed EKO for Case 2.
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Figure 9. Average converging characteristics of the DE, PSO, SFO, KO, and proposed EKO for Case 2.

Table 6. Statistical metrics for DE, PSO, SFO, KO, and proposed EKO for Case 2.

DE PSO SFO KO Prgi‘ges

Min 0.315377 0.259712 0.298104 0.257969 0.238278
Average 0.420843 0.508383 0.469785 0.37775 0374211
Median 0.382479 0.373369 0.401883 0.36156 0.335956
Max 0.560605 1.001491 0.995069 0.566848 0.549338
STd 0.093496 0.26523 0.173228 0.084127 0.111095

Moreover, Figures 10-12 display the change in the transfer power frequencies for
the DE, PSO, SFO, KO, and proposed EKO algorithms for this case. The proposed EKO
algorithm demonstrates significant improvements in system stability, as evidenced by
its performance metrics compared to the other optimization techniques. In the case of
frequency change in Area 1, as illustrated in Figure 10, the proposed EKO achieves the
shortest settling time of 3.95 s, outperforming DE, PSO, SFO, and KO, which record settling
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times of 3.9851, 3.9973, 4.0023, and 9.6391 s, respectively. Moreover, the proposed EKO
exhibits the smallest rise time of 0.00016 s, matching the performance of PSO, while KO,
SFO, and DE achieve rise times of 0.0016, 0.0086, and 0.0238 s, respectively. Similarly, for the
frequency change in Area 2 depicted in Figure 11, PSO, DE, and the proposed EKO achieve
settling times of 2.76, 2.86, and 2.91 s, respectively, while SFO and KO require 3.5 and 4.19 s,
respectively. Furthermore, in the case of transfer power change shown in Figure 12, the
proposed EKO demonstrates the shortest settling time of 7.51 s, compared to DE, PSO, SFO,
and KO, which record settling times of 9.5830, 8.0135, 9.6733, and 9.5585 s, respectively.
These results highlight the superior performance and stability-enhancing capabilities of
the proposed EKO algorithm, indicating its suitability for optimizing control strategies in
dynamic power system environments.
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Figure 10. Change in frequency (Area 1) regarding the DE, PSO, SFO, KO, and proposed EKO
algorithms for Case 2.
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Figure 11. Change in frequency (Area 2) regarding the DE, PSO, SFO, KO, and proposed EKO
algorithms for Case 2.
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Figure 12. Change in transfer power between areas regarding the DE, PSO, SFO, KO, and proposed
EKO algorithms for Case 2.

4.2.3. Case 3: Proposed PI-(1+DD) Controller

In this case, the controller was developed using the proposed PI-(1+DD) framework.
Table 7 shows the lowest ITAE values for the proposed PI-(1+DD) controller settings
when employing the suggested EKO, KO, PSO, DE, and SFO algorithms. Comparing each
algorithm against the proposed EKO, it is evident that the proposed EKO outperforms all
other algorithms in terms of minimizing the ITAE. Notably, the ITAE value achieved by the
EKO (0.068234) is lower than that of DE (0.071969), PSO (0.068583), SFO (0.069858), and KO
(0.069735). As shown, the EKO algorithm demonstrates substantial improvements over the
DE, PSO, SFO, and KO algorithms of 5.1902%, 0.5095%, 2.3251%, and 2.1530%, respectively.
In addition, Figure 13 displays the boxplots of the DE, PSO, SFO, KO, and proposed EKO
algorithms for this case, while Figure 14 shows the average converging characteristics of
the DE, PSO, SFO, KO and proposed EKO algorithms.

Table 7. Optimized gains using DE, PSO, SFO, KO and EKO for Case 3.

Parameters DE PSO SFO KO Pr(])Efl)(ocs)ed
Kp 2.799941 4 2.580767 3.682332 3.524932
Area 1 K; 3.851379 4 3.898463 3.925627 4
Kp1 —2.14108 —3.38925 —1.08412 0.139779 0.847833
Kb 2.939685 4 1.983451 0.582093 —0.14473
Kp 1.444046 1.645876 1.884726 1.740169 1.66395
Area 2 K; 3.894251 4 3.989225 4 4
Kp1 —0.72786 —3.61616 —0.16341 2.626995 3.982741
Kpo 1.166057 4 0.514835 —2.28613 —3.58183
ITAE 0.071969 0.068583 0.069858 0.069735 0.068234

Regarding improvement

o 5.1902% 0.5095% 2.3251% 2.1530% -
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Figure 13. Boxplots of the DE, PSO, SFO, KO and proposed EKO algorithms for Case 3.
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Figure 14. Converging characteristics of the DE, PSO, SFO, KO, and proposed EKO algorithms for
Case 3.

In this regard, Table 8 compares the efficiency of the suggested EKO algorithm with
the DE, PSO, SFO and KO algorithms. As demonstrated, the proposed EKO algorithm
achieves significant improvements in the mean ITAE values, exhibiting enhancements
of 37.1845%, 78.8091%, 36.8516%, and 12.2815% compared to DE, PSO, SFO, and KO,
respectively. Similarly, notable enhancements are observed in the median ITAE values,
with the proposed EKO showing improvements of 25.1049%, 74.2522%, 15.9631%, and
10.6539% compared to DE, PSO, SFO, and KO, respectively. Additionally, substantial
enhancements are evident in the worst ITAE values, with the proposed EKO achieving
improvements of 61.5404%, 93.2302%, 88.5823%, and 31.0667% compared to DE, PSO, SFO,
and KO, respectively. These results underscore the efficacy of the proposed EKO algorithm
in optimizing the performance of the proposed PI-(1+DD) controller across various metrics,
showcasing its superiority over existing optimization techniques.
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Table 8. Statistical metrics for the DE, PSO, SFO, KO, and proposed EKO algorithms for Case 3.

DE PSO SFO KO Prg%‘ges

Min 0.071969 0.068583 0.069858 0.069735 0.068234

Average 0.111844 0.331536 0.111255 0.080092 0.070255
Median 0.09293 0.270314 0.08282 0.077899 0.0696

Max 0.193783 1.100891 0.652739 0.108116 0.074528

STd 0.040317 0.329608 0.127764 0.008283 0.001992

Moreover, Figures 15-17 display the change in the transfer power frequencies of the DE,
PSO, SFO, KO, and proposed EKO algorithms for this case. The proposed EKO algorithm
demonstrates significant improvements in system stability, as evidenced by its performance
metrics compared to other optimization techniques. Similarly, for the frequency change
in Area 1 depicted in Figure 15, KO, DE, PSO, the proposed EKO algorithm, and SFO
achieve comparable settling times of 2.94, 2.94, 2.95, 2.96, and 3 s, respectively. In the case
of frequency change in Area 2, as illustrated in Figure 16, the proposed EKO algorithm
achieves the shortest settling time of 2.148 s, outperforming DE, PSO, SFO, and KO, which
record settling times of 2.2182, 2.2049, 2.1746, and 2.2893 s, respectively. Moreover, in
the case of transfer power change shown in Figure 17, the proposed EKO algorithm
demonstrates the shortest settling time of 4.097 s, compared to DE, PSO, SFO, and KO,
which record settling times of 4.2785, 5.7654, 4.1196, and 5.8834 s, respectively.
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Figure 15. Change in frequency (Area 1) regarding the DE, PSO, SFO, KO and proposed EKO
algorithms for Case 3.
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Figure 16. Change in frequency (Area 2) regarding the DE, PSO, SFO, KO, and proposed EKO for
Case 3.
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Figure 17. Change in transfer power between areas regarding the DE, PSO, SFO, KO, and proposed
EKO for Case 3.

5. Conclusions

In this study, an EKO algorithm is presented, incorporating additional fractional-
order components. The performance of the proposed EKO algorithm was evaluated
through simulations of RW engineering design problems and its application in optimizing
control strategies for multi-area power systems with WTG. Firstly, the simulation results
demonstrate that the proposed EKO algorithm consistently outperformed the standard
KO method across various RW engineering design problems, achieving lower minimum,
mean, and maximum objective scores, as well as smaller standard deviations. Comparative
assessments against other optimization techniques further confirmed the superiority of
the proposed EKO, showcasing substantial improvements in efficiency and effectiveness
across multiple evaluation metrics. Secondly, in the application to multi-area power
systems with WTG, the proposed EKO algorithm demonstrated remarkable performance
in optimizing the PI, PID, and proposed PI-(1+DD) controllers. It consistently achieved
lower ITAE values compared to other algorithms, indicating superior frequency regulation
capabilities. Moreover, the proposed EKO exhibited enhanced stability and faster settling
times in response to frequency and transfer power changes, highlighting its suitability for
dynamic power system environments. The EKO algorithm proposed in this paper performs
excellently in load frequency control, particularly in addressing frequency stability issues
in multi-area power systems with wind power integration. The experimental results show
that compared to the traditional KO and other algorithms, the EKO algorithm significantly
improves system frequency stability. Future work will include further optimization of
the algorithm parameters and validation of its effectiveness in larger-scale power systems.
Also, it can be extended to improve distribution system performance with active smart
grid functions.
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Abbreviations

CEC 2020 Congress on Evolutionary Computation 2020

DBO Dung Beetle optimizer

DFIG Doubly fed induction generator
EKO Enhanced Kepler Optimization
GL Grunwald-Letnikov

I Integral

ITAE Integral time-multiplied absolute value of the error
KO Kepler Optimization

LEA Local Escaping Approach

LFC load frequency control

LWSO Leader White Shark Optimization
MFO Moth-Flame Optimizer

PI Proportional-integral

PID Proportional-integral-derivative
PI-(1+DD) Proportional-Integral-First-Order Double Derivative
PSO Particle Swarm Optimization
RESs Renewable energy sources

RW Real-world

SFO Sunflower Optimizer

WSO White Shark Optimization

WT Wind turbine

Appendix A

Table A1 showcases the RW optimization engineering benchmark cases featured in
the CEC 2020 competition.

Table A1. RW benchmarks included in the CEC 2020.

Function Case Study Problem Decision Variables Constraints Global Optima
RWS Process synthesis 2.0 2.0 2.0
RW12 Process synthesis 7.0 9.0 292
RW13 Process design 5.0 3.0 26,900
RWI15 Weight minimization of a speed 70 11.0 2990.0
reducer
RW17 Tension/ comp(rce:(ieolr; spring design 30 30 0.0127
RW18 Pressure vessel design 4.0 4.0 5890.0
RW19 Welded beam design 4.0 5.0 1.67
RW20 Three-bar truss design 2.0 3.0 264.0
RW21 Multiple disk clutch brake design 5.0 7.0 0.0235
RW28 Rolling element bearing 10.0 9.0 14,600.0
RW29 Gas transmission compressor design 4.0 1.0 2,960,000.0
RW31 Gear train design 4.0 1.0 0.0
RW32 Himmel Lau’s function 5.0 6.0 —30,700.0
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