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Abstract: In the study of biological systems, nonlinear models are commonly employed, although
exact solutions are often unattainable. Therefore, it is imperative to develop techniques that offer ap-
proximate solutions. This study utilizes the Elzaki residual power series method (ERPSM) to analyze
the fractional nonlinear smoking model concerning the Caputo derivative. The outcomes of the pro-
posed technique exhibit good agreement with the Laplace decomposition method, demonstrating that
our technique is an excellent alternative to various series solution methods. Our approach utilizes the
simple limit principle at zero, making it the easiest way to extract series solutions, while variational
iteration, Adomian decomposition, and homotopy perturbation methods require integration. More-
over, our technique is also superior to the residual method by eliminating the need for derivatives, as
fractional integration and differentiation are particularly challenging in fractional contexts. Signifi-
cantly, our technique is simpler than other series solution techniques by not relying on Adomian’s
and He’s polynomials, thereby offering a more efficient way of solving nonlinear problems.

Keywords: Caputo derivative; Elzaki residual power series method; approximate solutions;
fractional nonlinear smoking model

1. Introduction

Traditional calculus deals with integer-order derivatives and integrals, while fractional
calculus (FC) extends these concepts to include derivatives and integrals of non-integer
orders, such as fractional and complex orders. FC is particularly useful for modeling
systems with memory effects, where the current state depends not only on the immediate
past but also on past states over a longer period. This behavior is common in many physical,
biological, and engineering systems, where the system retains a memory of its past states
or inputs. Memory effects can arise due to various factors, such as delays, relaxation
processes, and non-local interactions. FC provides a powerful mathematical framework
for modeling systems with memory effects, as it allows for the incorporation of fractional-
order derivatives and integrals, enabling more accurate descriptions of complex dynamics.
However, in systems exhibiting memory effects, fractional-order derivatives and integrals
of non-integer orders are necessary to accurately describe their dynamics. FC allows
for the incorporation of memory effects by introducing fractional-order operators, such
as the Riemann–Liouville, Caputo, and Grünwald–Letnikov operators. These operators
generalize the classical differentiation and integration operators to handle non-integer
orders, enabling the modeling of systems with long-term memory and complex dynamics.
Systems with memory effects are encountered in various fields, including viscoelastic
materials, biological systems, signal processing, and control theory. FC has proven to
be particularly valuable in these areas, providing a flexible framework for capturing
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the intricate behaviors arising from memory effects. By incorporating fractional-order
derivatives and integrals, researchers can develop more accurate models and gain a better
understanding of the dynamics of systems with memory [1–4].

Nonlinear fractional differential equations (NFDEs) play a crucial role in disease
modeling due to their ability to capture the complex dynamics of disease progression,
transmission, and intervention. Here is why they are important [5,6]:

1. Modeling complexity: Diseases often involve complex interactions between various
biological, environmental, and social factors. NFDEs can represent these interac-
tions more accurately than linear models, allowing for a more realistic portrayal of
disease dynamics.

2. Memory effects and long-range dependencies: Diseases may exhibit memory effects,
where past events influence future outcomes, and long-range dependencies, where
distant interactions impact disease spread. Nonlinear differential equations with
fractional derivatives can capture these effects, providing a better understanding of
disease behavior over time and space.

3. Nonlinearity in biological processes: The biological processes underlying disease pro-
gression are often nonlinear, involving feedback loops, threshold effects, and complex
interactions between different components of the system. NFDEs can model these non-
linearities more effectively, leading to more accurate predictions of disease outcomes.

4. Personalized medicine: Nonlinear models can incorporate individual variability in dis-
ease susceptibility, response to treatment, and other factors, allowing for personalized
predictions and treatment strategies tailored to specific patient characteristics.

5. Assessment of intervention strategies: NFDEs can evaluate the effectiveness of various
intervention strategies, such as vaccination campaigns, treatment protocols, and public
health interventions. By simulating the impact of interventions on disease dynamics,
these models can inform decision-making and resource allocation.

6. Prediction of emergent phenomena: Diseases may exhibit emergent phenomena such
as epidemics, outbreaks, and the emergence of drug resistance. NFDEs can predict
these phenomena and identify critical factors driving their occurrence, helping to
design proactive measures to mitigate their impact.

7. Integration of data: NFDEs can integrate diverse sources of data, including epi-
demiological, clinical, genetic, and environmental data, to provide a comprehensive
understanding of disease dynamics and inform evidence-based decision-making.

Overall, NFDEs are essential tools in disease modeling, enabling researchers to capture
the complexity of disease systems and develop strategies to prevent, control, and treat
diseases more effectively.

Smoking stands as one of the most significant health concerns worldwide, claiming
over a million lives annually due to its detrimental impact on vital organs. Those who
smoke face a heightened risk of suffering from heart attacks or developing lung cancer
compared to nonsmokers. The short-term effects of smoking encompass discolored teeth,
foul breath, elevated blood pressure, and persistent coughing. Conversely, the long-term
consequences of smoking have recently been associated with an array of serious conditions,
including stomach ulcers, lung cancer, heart disease, gum disease, throat cancer, and mouth
cancer. The life expectancy of a smoker is 10–12 years less than that of a nonsmoker, and
according to WHO reports, smoking causes several deaths each day. Many scientists,
mathematicians, and medical professionals are working to combat smoking to protect
human lives [7]. These factors have led mathematicians to attempt to create a practical
smoking model.

NFDEs play a significant role in modeling smoking behavior and its implications for
several reasons [8–10]:

1. Capturing complex dynamics: Smoking behavior is influenced by various factors
such as addiction, psychological factors, social interactions, and environmental cues.
NFDEs can capture the complex interactions between these factors and represent the
dynamic nature of smoking behavior more accurately than traditional linear models.



Fractal Fract. 2024, 8, 286 3 of 21

2. Memory effects and long-term dependencies: Individuals’ smoking behavior often
exhibits memory effects, where past experiences influence current decisions, and long-
term dependencies, where behavior is influenced by events far in the past. NFDEs with
fractional derivatives can capture these memory effects and long-range dependencies,
allowing for a more realistic representation of how past behavior influences current
smoking habits.

3. Modeling addiction dynamics: Smoking addiction involves nonlinear processes such
as tolerance, withdrawal symptoms, and craving cycles. NFDE models can describe
these nonlinear addiction dynamics and help understand the mechanisms underlying
addiction development and persistence.

4. Assessing intervention strategies: NFDE models can be used to evaluate the effective-
ness of smoking cessation interventions, such as behavioral therapies, pharmacologi-
cal treatments, and public health campaigns. By simulating the impact of interventions
on smoking behavior dynamics, these models can help identify the most effective
strategies for reducing smoking prevalence and improving public health outcomes.

5. Predicting population-level trends: NFDE models can project population-level trends
in smoking prevalence, cessation rates, and smoking-related morbidity and mortality.
By incorporating demographic trends, socioeconomic factors, and policy changes,
these models can help policymakers anticipate future challenges and develop targeted
interventions to address them.

6. Understanding heterogeneous responses: Individuals may respond differently to
smoking cessation interventions due to factors such as genetics, socioeconomics, and
cultural background. NFDE models can account for this heterogeneity and provide
insights into how different subpopulations may respond to various interventions.

Castillo-Garsow et al. [11] introduced the initial smoking model, investigating diverse
smoker categories such as potential, current, and former smokers. Drawing inspiration
from these studies, numerous researchers have explored different smoking models. For
example, Sharami et al. [12] adjusted Castillo-Garsow et al.’s model and introduced a new
category known as chain smokers. In [13], the author introduced a modified model that
numerically explores the dynamic behavior of smoking cessation. There are five categories
of potential smokers: potential smokers, light smokers, smokers, quit smokers, and total
smokers. His proposed model in integer order is given below:

Dϑ(ω) = βΩ(ω)− δ1Θ(ω)ϑ(ω)− (ζ1 + ϖ)ϑ(ω) + θΦ(ω),

DΘ(ω) = δ1Θ(ω)ϑ(ω)− δ2Θ(ω)Ψ(ω)− (ζ2 + ϖ)Θ(ω),

DΨ(ω) = δ2Θ(ω)Ψ(ω)− (Υ + ζ3 + ϖ)Ψ(ω), (1)

DΦ(ω) = ΥΨ(ω)− (θ + ζ4 + ϖ)Φ(ω),

DΩ(ω) = (β − ϖ)Ω(ω)−
(
ζ1ϑ(ω) + ζ2Θ(ω) + ζ3Ψ(ω) + ζ4Φ(ω)

)
.

FC provides a more accurate framework for modeling complex systems with memory
effects, non-local interactions, and long-range dependencies. Solutions to NFDEs allow
researchers to better capture the behavior of real-world phenomena, enhancing predictive
capabilities and understanding. Indeed, the inherent complexity of NFDEs often renders
finding exact solutions impossible, necessitating the use of approximate methods. These
equations combine the challenges of both nonlinearity and fractional-order derivatives,
making them particularly difficult to solve for exact solutions. When exact solutions to
NFDEs are not attainable, approximate solutions play a crucial role in understanding the
behavior of systems, making predictions, and guiding engineering design and decision-
making processes. In recent years, various approximate methods for solving NFDEs have
been utilized [14–23].

Finding solutions to the fractional nonlinear smoking model (FNLSM) is also an in-
teresting area for researchers. There is a range of- published research on the approximate
solutions (App-Ss) of the FNLSM. Haq et al. [24] used the Laplace decomposition approach
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for solving FNLSM by using the Caputo derivative (CD) definition. Mahdy et al. [25]
used the Mittag-Leffler function and Sumudu transform methods to find App-Ss for
FNLSM utilizing the CD. Pavani and Raghavendar [26] found App-Ss to FNLSM using the
Atangana-Baleanu-Caputo, Caputo-Fabrizio, and Caputo definitions with the help of the
decomposition approach and the natural transform. Khan et al. [27] constructed App-Ss
using the Picard approach of FNLSM with Caputo Febrizo FD. Veeresha et al. [28] estab-
lished approximate and numerical solutions for the FNLSM with the q-homotopy analysis
transform approach. Gunerhan et al. [29] used the differential transformation approach to
find App-Ss for FNLSM. Each of these approaches has distinct restrictions and flaws. These
approaches have long running periods and enormous computational demands.

In this study, App-Ss of the FNLSM are obtained using the ERPSM. The residual
errors (Res-Errors) and recurrence errors (Rec-Errors) analysis, displayed in the form of
graphs and numerical values, demonstrate the levels of accuracy and convergence rates
of the proposed method. To assess the reliability of our technique, we compared our
obtained results with those from the Laplace decomposition method (LDM) in terms of
Res-Errors. The results obtained from ERPSM exhibit high agreement with the LDM [24],
indicating that ERPSM is a suitable tool for solving nonlinear models of biological systems.
ERPSM, on the other hand, has several advantages over other approximate series solution
methods. For example, the residual power series method (RPSM) requires finding the
fractional derivative each time to determine the unknown coefficients in series solutions,
which is difficult in the fractional case; the variational iteration method (VIM), the adomian
decomposition method (ADM), and the homotopy perturbation method (HPM) all require
integration, which is also difficult in the fractional case. The great feature of the suggested
method is how quickly the coefficients of terms in a series solution can be calculated using
the straightforward limit concept at zero. Therefore, ERPSM has a number of advantages
over other series solution methods.

Our main contributions can be outlined as follows:

1. For the first time in the literature, we have solved the smoking model using ERPSM,
which offers the simplest method for determining series coefficients compared to the
Adomian, homotopy, variational iteration, and residual methods.

2. We verified the correctness of our technique through analysis of Res-Errors
and Rec-Errors.

3. Moreover, we compared the solutions obtained by ERPSM with those obtained by
LDM. Our results strongly agree with LDM, verifying that our approach is an alterna-
tive tool for solving NFDEs.

4. To the best of our knowledge, in our research, we have solved the most modified
model of smoking.

We consider the following FNLSM [24]:

D℘ϑ(ω) = βΩ(ω)− δ1Θ(ω)ϑ(ω)− (ζ1 + ϖ)ϑ(ω) + θΦ(ω),

D℘Θ(ω) = δ1Θ(ω)ϑ(ω)− δ2Θ(ω)Ψ(ω)− (ζ2 + ϖ)Θ(ω),

D℘Ψ(ω) = δ2Θ(ω)Ψ(ω)− (Υ + ζ3 + ϖ)Ψ(ω), (2)

D℘Φ(ω) = ΥΨ(ω)− (θ + ζ4 + ϖ)Φ(ω),

D℘Ω(ω) = (β − ϖ)Ω(ω)−
(
ζ1ϑ(ω) + ζ2Θ(ω) + ζ3Ψ(ω) + ζ4Φ(ω)

)
,

subject to the conditions: ϑ(0) = w1, Θ(0) = w2, Ψ(0) = w3, Φ(0) = w4, Ω(0) = w5,
where, ϑ(ω) and Θ(ω) are potential and light smokers, respectively; Ψ(ω) represents the
smoker; and Φ(ω) and Ω(ω), respectively, are quit smokers and total smokers at time ω. β
and ϖ are the birth and natural birth rates, Υ is the smoking recovery rate, and δ1 and δ2
are the transmission coefficients. The population’s rate at which a former smoker becomes
a potential smoker once more is θ. The death rates of individuals ϑ(ω), Θ(ω), Ψ(ω), Φ(ω),
and Ω(ω) associated with smoking disease are represented by ζ1, ζ2, ζ3, and ζ4.
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Our research work is organized as follows: The subsequent section presents important
definitions and lemmas that form the foundation of our study. Section 3 consists of two
parts: the first part discusses the stability result, and the second part presents the primary
concept of the ERPSM and establishes approximate series solutions for the FNLSM. In
Section 4, we present the results obtained by ERPSM using graphics and tables. In this
section, we also present a comparison study. Finally, Section 5 concludes the research work.

2. Preliminaries

This section presents the basic definitions, properties of the Elzaki transform, and lem-
mas relevant to the ERPSM that are used to establish approximate series and
numerical solutions.

Definition 1. The Caputo fractional derivative of order ℘ > 0 is given by [30]:

D℘
ωϑ(ω) =

{
1

Γ(ν−℘)

∫ ω
0 (ω − p)ν−℘−1 dν

dpν ϑ(p)dp, ν − 1 < ℘ < ν,
dν

dων ϑ(ω), ℘ = ν ∈ N.
(3)

Definition 2. The Elzaki transform (ET) of ϑ(ω) is defined as follows [31]:

Z [ϑ(ω)] = ϑ∗(σ) = σ
∫ ∞

0
ϑ(ω)e−( ω

σ )dω, ς1 ≤ σ ≤ ς2, (4)

where ς1, ς2 can be either finite or infinite.

Lemma 1. Consider that ϑ1(ω) and ϑ2(ω) satisfy the axioms of ET existence. Suppose that
Z [ϑ1(ω)] = ϑ∗

1(σ), Z [ϑ2(ω)] = ϑ∗
2(σ) as well as the constants χ1, χ2. When this occurs, the

following criteria are met [32]:

(i) Z [χ1ϑ1(ω) + χ2ϑ2(ω)] = χ1ϑ∗
1(σ) + χ2ϑ∗

2(σ).
(ii) Z−1

[χ1ϑ∗
1(σ) + χ2ϑ∗

2(σ)] = χ1ϑ1(ω) + χ2ϑ2(ω),
(iii) limσ→0

( 1
σ2 ϑ(σ)

)
= ϑ(0).

(iv) Z [D℘
ωϑ(ω)] = ϑ∗(σ)

σ℘ − ∑ν−1
κ=0 σκ−℘+2ϑ(κ)(0), ν − 1 < ℘ ≤ ν, ν ∈ N.

(v) Z [Dν℘
ω ϑ(ω)] = ϑ∗(σ)

σν℘ − ∑ν−1
κ=0 σ℘(κ−ν)+2Dκϑ

ω ϑ(0), 0 < ℘ ≤ 1.

Lemma 2. Assume that the fractional power series (FPS) demonstration in ET space for the
function Z [ϑ(ω)] = ϑ∗(σ) is as follows [32]:

ϑ∗(σ) =
∞

∑
ν=0

ϑνσν℘+2, (5)

then we have
ϑν = Dν℘

ω ϑ(0), (6)
where Dν℘

ω = D℘
ω. D℘

ω . . . D℘
ω(ν − times).

The following theorem establishes the conditions for the ϑ∗(σ) = ∑∞
ν=0 ϑνσν℘+2 series

to converge.

Lemma 3 ([33]). Let Z [ϑ(ω)] = ϑ∗(σ) be represented as a new FPS in ET space.
If | 1

σ2 Z [D(κ+1)℘
ω ϑ(ω)]| ≤ S , then the remainder Rκ(σ) of the new form of FPS satisfies the

following inequality:
|Rκ(σ)| ≤ σ(κ+1)℘+2S . (7)

3. Stability Result and Algorithm of the ERPSM

The stability result and algorithm of the ERPSM are presented in this section to solve
the nonlinear smoking model of fractional order.
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3.1. The Stability Result for the Trivial Fixed Point

In this subsection, we are discussing the stability result at E0(0, 0, 0, 0, 0).
First of all, we develop the Jacobian matrix as

J =


δ1Θ − (ζ1 + ϖ) −δ1ϑ 0 θ β

δ1Θ δ1ϑ − δ2Ψ − (ζ2 + ϖ) −δ2Θ 0 0
0 δ2Ψ δ2Θ − (Υ + ζ3 + ϖ) 0 0
0 0 Υ −(θ + ζ4 + ϖ) 0

−ζ1 −ζ2 −ζ3 −ζ4 β − ϖ

.

Stability of E0

J (E0) =


−(ζ1 + ϖ) 0 0 θ β

0 −(ζ2 + ϖ) 0 0 0
0 0 −(Υ + ζ3 + ϖ) 0 0
0 0 Υ −(θ + ζ4 + ϖ) 0

−ζ1 −ζ2 −ζ3 −ζ4 β − ϖ

.

In order to determine the eigenvalues, we have to find the determinant of the above
matrix, as follows:

det


−(ζ1 + ϖ)−L 0 0 θ β

0 −(ζ2 + ϖ)−L 0 0 0
0 0 −(Υ + ζ3 + ϖ)−L 0 0
0 0 Υ −(θ + ζ4 + ϖ)−L 0

−ζ1 −ζ2 −ζ3 −ζ4 β − ϖ −L

 = 0.

By solving the above determinant, we have the values of the eigenvalues
L1 = −ϖ, L2 = −(ζ2 + ϖ), L3 = −(Υ + ζ3 + ϖ), L4 = −(θ + ζ4 + ϖ), L5 = β − ϖ − ζ1.

The stability of the trivial fixed point is demonstrated by the negativity of all eigenvalues.

3.2. Algorithm of the ERPSM and Series Solutions of the Nonlinear Smoking Model

This section discusses the procedure for utilizing the proposed method to obtain ap-
proximate analytical solutions to FNLSM. Initially, the ET is applied to the FNLSM, yielding
an algebraic expression. Subsequently, the FPS is introduced as the ET space solution for
the derived expression, constituting the fundamental principle of the ERPSM. The key
distinction between the ERPSM and the RPSM lies in how the coefficients of this series
are determined through the limit concept. The resultant consequences are subsequently
mapped back into real space using the inverse ET. The guidelines for employing the ERPSM
to identify solutions are outlined below.

Utilize Z on both sides of Equation (2)

Z [D℘ϑ(ω)] = Z [δΩ(ω)− δ1Θ(ω)ϑ(ω)− (ζ1 + ϖ)ϑ(ω) + θΦ(ω)],

Z [D℘Θ(ω)] = Z [δ1Θ(ω)ϑ(ω)− δ2Θ(ω)Ψ(ω)− (ζ2 + ϖ)Θ(ω)],

Z [D℘Ψ(ω)] = Z [δ2Θ(ω)Ψ(ω)− (Υ + ζ3 + ϖ)Ψ(ω)], (8)

Z [D℘Φ(ω)] = Z [ΥΨ(ω)− (θ + ζ4 + ϖ)Φ(ω)],

Z [D℘Ω(ω)] = Z [(β − ϖ)Ω(ω)−
(
ζ1ϑ(ω) + ζ2Θ(ω) + ζ3Ψ(ω) + ζ4Φ(ω)

)
].

For 0 < ℘ ≤ 1 from the Lemma 1(iv), we obtain the following:

Z [D℘
ωϑ(ω)] =

ϑ∗(σ)

σ℘
− σ2−℘ϑ0. (9)

We have alsoZ[ϑ(ω)] = ϑ∗(σ),Z[Θ(ω)] = Θ∗(σ),Z[Ψ(ω)] = Ψ∗(σ),Z[Φ(ω)] = Φ∗(σ),
and Z[Ω(ω)] = Ω∗(σ). Further, by taking inverse ET, we also have: ϑ(ω) = Z−1

[ϑ∗(σ)],
Θ(ω) = Z−1

[Θ∗(σ)], Ψ(ω) = Z−1
[Ψ∗(σ)], Φ(ω) = Z−1

[Φ∗(σ)], and Ω(ω) = Z−1
[Ω∗(σ)].
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As a result, we obtain the following from Equation (8):

ϑ∗(σ)

σ℘
− σ2−℘ϑ0 = βΩ∗(σ)− δ1Z

[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
− (ζ1 + ϖ)ϑ∗(σ) + θΦ∗(σ),

Θ∗(σ)

σ℘
− σ2−℘Θ0 = δ1Z

[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
− δ2Z

[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
− (ζ2 + ϖ)Θ∗(σ),

Ψ∗(σ)

σ℘
− σ2−℘Ψ0 = δ2Z

[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
− σ℘(Υ + ζ3 + ϖ)Ψ∗(σ), (10)

Φ∗(σ)

σ℘
− σ2−℘Φ0 = ΥΨ∗(σ)− (θ + ζ4 + ϖ)Φ∗(σ),

Ω∗(σ)

σ℘
− σ2−℘Ω0 = (β − ϖ)Ω∗(σ)−

(
ζ1ϑ∗(σ) + ζ2Θ∗(σ) + ζ3Ψ∗(σ) + ζ4Φ∗(σ)

)
.

From Equation (10), we have also

ϑ∗(σ) = σ2ϑ0 + σ℘βΩ∗(σ)− σ℘δ1Z
[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
− σ℘(ζ1 + ϖ)ϑ∗(σ) + σ℘θΦ∗(σ),

Θ∗(σ) = σ2Θ0 + σ℘δ1Z
[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
− σ℘δ2Z

[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
− (ζ2 + ϖ)σ℘Θ∗(σ),

Ψ∗(σ) = σ2Ψ0 + σ℘δ2Z
[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
− σ℘(Υ + ζ3 + ϖ)Ψ∗(σ), (11)

Φ∗(σ) = σ2Φ0 + σ℘ΥΨ∗(σ)− σ℘(θ + ζ4 + ϖ)Φ∗(σ),

Ω∗(σ) = σ2Ω0 + σ℘(β − ϖ)Ω∗(σ)− σ℘
(
ζ1ϑ∗(σ) + ζ2Θ∗(σ) + ζ3Ψ∗(σ) + ζ4Φ∗(σ)

)
.

Assume that the FPS solutions of Equation (11) in ET space are below.

ϑ∗(σ) =
∞
∑

ν=0
ϑνσ2+ν℘, Θ∗(σ) =

∞
∑

ν=0
Θνσ2+ν℘, Ψ∗(σ) =

∞
∑

ν=0
Ψνσ2+ν℘, Φ∗(σ) =

∞
∑

ν=0
Φνσ2+ν℘,

and Ω∗(σ) =
∞
∑

ν=0
Ωνσ2+ν℘.

As a result of applying Lemma 1(iii), we obtained the following results:
limσ→0

( 1
σ2 ϑ∗(σ)

)
= ϑ0 = w1, limσ→0

( 1
σ2 Θ∗(σ)

)
= Θ0 = w2, limσ→0

( 1
σ2 Ψ∗(σ)

)
= Ψ0 = w3,

limσ→0
( 1

σ2 Φ∗(σ)
)
= Φ0 = w4, and limσ→0

( 1
σ2 Ω∗(σ)

)
= Ω0 = w5.

Hence, FPS can be rearranged as follows:

ϑ∗(σ) = ϑ0σ2 +
∞
∑

ν=1
ϑνσ2+ν℘, Θ∗(σ) = Θ0σ2 +

∞
∑

ν=1
Θνσ2+ν℘, Ψ∗(σ) = Ψ0σ2 +

∞
∑

ν=1
Ψνσ2+ν℘,

Φ∗(σ) = Φ0σ2 +
∞
∑

ν=1
Φνσ2+ν℘, and Ω∗(σ) = Ω0σ2 +

∞
∑

ν=1
Ωνσ2+ν℘.

Assume that the κth-truncated FPS solutions of Equation (11) are below.

ϑ∗
κ (σ) = ϑ0σ2 +

κ

∑
ν=1

ϑνσ2+ν℘, Θ∗
κ(σ) = Θ0σ2 +

κ

∑
ν=1

Θνσ2+ν℘, Ψ∗
κ(σ) = Ψ0σ2 +

κ

∑
ν=1

Ψνσ2+ν℘,

Φ∗
κ(σ) = Φ0σ2 +

κ

∑
ν=1

Φνσ2+ν℘, and Ω∗
κ(σ) = Ω0σ2 +

κ

∑
ν=1

Ωνσ2+ν℘, where κ = 1, 2, 3, . . .

The Elzaki residual functions (ERF) ZRes(ϑ∗(σ)),ZRes(Θ∗(σ)),ZRes(Ψ∗(σ)),
ZRes(Φ∗(σ)) and ZRes(Ω∗(σ)) for the Equation (11) are defined as follows:

ZRes(ϑ∗(σ)) = ϑ∗(σ)− σ2ϑ0 − σ℘βΩ∗(σ) + σ℘δ1Z
[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
+ σ℘(ζ1 + ϖ)ϑ∗(σ)−

σ℘θΦ∗(σ),

ZRes(Θ∗(σ)) = Θ∗(σ)− σ2Θ0 + σ℘δ1Z
[
Z−1

[ϑ∗(σ)]Z−1
[Θ∗(σ)]

]
+ σ℘δ2Z

[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
+

(ζ2 + ϖ)σ℘Θ∗(σ),

ZRes(Ψ∗(σ)) = Ψ∗(σ)− σ2Ψ0 − σ℘δ2Z
[
Z−1

[Ψ∗(σ)]Z−1
[Θ∗(σ)]

]
+ σ℘(Υ + ζ3 + ϖ)Ψ∗(σ), (12)

ZRes(Φ∗(σ)) = Φ∗(σ)− σ2Φ0 − σ℘ΥΨ∗(σ) + σ℘(θ − ζ4 + ϖ)Φ∗(σ),

ZRes(Ω∗(σ)) = Ω∗(σ)− σ2Ω0 + σ℘(β − ϖ)Ω∗(σ) + σ℘
(
ζ1ϑ∗(σ) + ζ2Θ∗(σ)− ζ3Ψ∗(σ) + ζ4Φ∗(σ)

)
.

The κth-ERF ZResκ(ϑ∗(σ)),ZResκ(Θ∗(σ)),ZResκ(Ψ∗(σ)),ZResκ(Φ∗(σ)), and
ZResκ(Ω∗(σ)) are now defined for Equation (11):
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ZResκ(ϑ
∗(σ)) = ϑ∗

κ (σ)− σ2ϑ0 − σ℘βΩ∗
κ(σ) + σ℘δ1Z

[
Z−1

[ϑ∗
κ (σ)]Z

−1
[Θ∗

κ(σ)]
]
+ σ℘(ζ1 + ϖ)ϑ∗

κ (σ)−
σ℘θΦ∗

κ(σ),

ZResκ(Θ∗
κ(σ)) = Θ∗

κ(σ)− σ2Θ0 + σ℘δ1Z
[
Z−1

[ϑ∗
κ (σ)]Z

−1
[Θ∗

κ(σ)]
]
+ σ℘δ2Z

[
Z−1

[Ψ∗
κ(σ)]Z

−1
[Θ∗

κ(σ)]
]
+

(ζ2 + ϖ)σ℘Θ∗
κ(σ), (13)

ZResκ(Ψ∗
κ(σ)) = Ψ∗

κ(σ)− σ2Ψ0 − σ℘δ2Z
[
Z−1

[Ψ∗
κ(σ)]Z

−1
[Θ∗

κ(σ)]
]
+ σ℘(Υ + ζ3 + ϖ)Ψ∗

κ(σ),

ZResκ(Φ∗
κ(σ)) = Φ∗

κ(σ)− σ2Φ0 − σ℘ΥΨ∗
κ(σ) + σ℘(θ − ζ4 + ϖ)Φ∗

κ(σ),

ZResκ(Ω∗
κ(σ)) = Ω∗

κ(σ)− σ2Ω0 + σ℘(β − ϖ)Ω∗
κ(σ) + σ℘

(
ζ1ϑ∗

κ (σ) + ζ2Θ∗
κ(σ)− ζ3Ψ∗

κ(σ) + ζ4Φ∗
κ(σ)

)
.

By inserting the κth-truncated FPS ϑ∗
κ (σ), Θ∗

κ(σ), Ψ∗
κ(σ), Φ∗

κ(σ), and Ω∗
κ(σ) into

Equation (13), multiplying the resulting expression by 1
σ2+κ℘ on both sides, and finally

putting limσ→0, the obtained results are as follows:

lim
σ→0

( 1
σ2+κ℘

ZResϑ∗
κ (σ)

)
= 0,

lim
σ→0

( 1
σ2+κ℘

ZResΘ∗
κ(σ)

)
= 0,

lim
σ→0

( 1
σ2+κ℘

ZResΨ∗
κ(σ)

)
= 0, (14)

lim
σ→0

( 1
σ2+κ℘

ZResΦ∗
κ(σ)

)
= 0,

lim
σ→0

( 1
σ2+κ℘

ZResΩ∗
κ(σ)

)
= 0.

To determine the first unknown coefficient of the FPS solution, solve Equation (14)
for κ = 1. The detailed methodology used to find ϑ1, Θ1, Ψ1, Φ1, and Ω1 is outlined in the
Appendix A.

ϑ1 = βΩ0 − δ1Θ0ϑ0 − (ζ1 + ϖ)ϑ0 + θΦ0,

Θ1 = δ1Θ0ϑ0 − δ2Θ0Ψ0 − (ζ2 + ϖ)Θ0,

Ψ1 = δ2Θ0Ψ0 − (Υ + ζ3 + ϖ)Ψ0, (15)

Φ1 = ΥΨ0 − (θ + ζ4 + ϖ)Φ0,

Ω1 = (β − ϖ)Ω0 − (ζ1ϑ0 + ζ2Θ0 + ζ3Ψ0 + ζ4Φ0).

For κ = 2 solve the Equation (14) to obtain the 2nd unknown coefficient of the
FPS solution.

ϑ2 = βΩ1 − δ1
(
Θ0ϑ1 + Θ1ϑ0

)
− (ζ1 + ϖ)ϑ1 + θΦ1,

Θ2 = δ1
(
Θ0ϑ1 + Θ1ϑ0

)
− δ2

(
Θ0Ψ1 + Θ1Ψ0

)
− (ζ2 + ϖ)Θ1,

Ψ2 = δ2
(
Θ1Ψ0 + Θ0Ψ1

)
− (Υ + ζ3 + ϖ)Ψ1, (16)

Φ2 = ΥΨ1 − (θ + ζ4 + ϖ)Φ1,

Ω2 = (β − ϖ)Ω1 − (ζ1ϑ1 + ζ2Θ1 + ζ3Ψ1 + ζ4Φ1).

To find the 3rd unknown coefficient of the FPS solution, solve Equation (14) for κ = 3.

ϑ3 = βΩ2 − δ1
(
Θ0ϑ2 + Θ1ϑ2

Γ(2℘+ 1)
Γ(℘+ 1)2 + Θ2ϑ0

)
− (ζ1 + ϖ)ϑ1 + θΦ2,

Θ3 = δ1
(
Θ0ϑ2 + Θ1ϑ1

Γ(2℘+ 1)
Γ(℘+ 1)2 + Θ2ϑ0

)
− δ2

(
Θ0Ψ2 + Θ1Ψ1

Γ(2℘+ 1)
Γ(℘+ 1)2 + Θ2Ψ0

)
− (ζ2 + ϖ)Θ2,

Ψ3 = δ2
(
Θ0Ψ2 + Θ1Ψ1

Γ(2℘+ 1)
Γ(℘+ 1)2 + Θ2Ψ0

)
− (Υ + ζ3 + ϖ)Ψ2, (17)

Φ3 = ΥΨ2 − (θ + ζ4 + ϖ)Φ2,

Ω3 = (β − ϖ)Ω2 − (ζ1ϑ2 + ζ2Θ2 + ζ3Ψ2 + ζ4Φ2).
In the same way, to find the 4th, 5th, and 6th unknown coefficients of the FPS solution,

solve Equation (14) for κ = 4, 5, and 6, and finally we obtain the following results:
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ϑ4 = βΩ3 − δ1
(
Θ0ϑ3 + Θ1ϑ2

Γ(3℘+ 1)
Γ(℘+ 1)Γ(2℘+ 1)

+ Θ2ϑ1
Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ ϑ0Θ3

)
− (ζ1 + ϖ)ϑ3+

θΦ3,

Θ4 = δ1(Θ0ϑ3 + Θ1ϑ2
Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ Θ2ϑ1

Γ(3℘+ 1)
Γ(℘+ 1)Γ(2℘+ 1)

+ ϑ0Θ3)− δ2
(
Θ0Ψ3 + Θ1Ψ2

Γ(3℘+ 1)
Γ(℘+ 1)Γ(2℘+ 1)

+ Θ2Ψ1
Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ Ψ0Θ3

)
− (ζ2 + ϖ)Θ3, (18)

Ψ4 = δ2
(
Θ0Ψ3 + Θ1Ψ2

Γ(3℘+ 1)
Γ(℘+ 1)Γ(2℘+ 1)

+ Θ2Ψ1
Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ Ψ0Θ3

)
− (Υ + ζ3 + ϖ)Ψ3,

Φ4 = ΥΨ3 − (θ + ζ4 + ϖ)Φ3,

Ω4 = (β − ϖ)Ω3 − (ζ1ϑ3 + ζ2Θ3 + ζ3Ψ3 + ζ4Φ3).

ϑ5 = βΩ4 − δ1
(
Θ0ϑ4 + Θ1ϑ3

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Θ2ϑ2
Γ(4℘+ 1)
Γ(2℘+ 1)2 + Θ3P1

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+

ϑ0Θ4
)
− (ζ1 + ϖ)ϑ4 + θΦ4,

Θ5 = δ1
(
Θ0ϑ4 + Θ1ϑ3

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Θ2ϑ2
Γ(4℘+ 1)
Γ(2℘+ 1)2 + Θ3ϑ1

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ ϑ0Θ4
)
−

δ2
(
Θ0Ψ4 + Θ1Ψ3

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Θ2Ψ2
Γ(4℘+ 1)
Γ(2℘+ 1)2 + Θ3Ψ1

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Ψ0Θ4
)
−

(ζ2 + ϖ)Θ4, (19)

Ψ5 = δ2
(
Θ0Ψ4 + Θ1Ψ3

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Θ2Ψ2
Γ(4℘+ 1)
Γ(2℘+ 1)2 + Θ3Ψ1

Γ(4℘+ 1)
Γ(℘+ 1)Γ(3℘+ 1)

+ Ψ0Θ4
)
−

(Υ + ζ3 + ϖ)Ψ4,

Φ5 = ΥΨ4 − (θ + ζ4 + ϖ)Φ4,

Ω5 = (β − ϖ)Ω4 − (ζ1ϑ4 + ζ2Θ4 + ζ3Ψ4 + ζ4Φ4).

ϑ6 = βΩ5 − δ1
(
Θ0ϑ5 + Θ1ϑ4

Γ(5℘+ 1)
Γ(℘+ 1)Γ(4℘+ 1)

+ Θ2ϑ3
Γ(5℘+ 1)

Γ(2℘+ 1)Γ(3℘+ 1)
+

Θ3ϑ2
Γ(5℘+ 1)

Γ(3℘+ 1)Γ(2℘+ 1)
+ Θ4ϑ1

Γ(5℘+ 1)
Γ(4℘+ 1)Γ(℘+ 1)

+ Θ5ϑ0
)
− (ζ1 + ϖ)ϑ5 + θΦ5,

Θ6 = δ1
(
Θ0ϑ5 + Θ1ϑ4

Γ(5℘+ 1)
Γ(℘+ 1)Γ(4℘+ 1)

+ Θ2ϑ3
Γ(5℘+ 1)

Γ(2℘+ 1)Γ(3℘+ 1)
+ Θ3ϑ2

Γ(5℘+ 1)
Γ(3℘+ 1)Γ(2℘+ 1)

+ Θ4ϑ1
Γ(5℘+ 1)

Γ(4℘+ 1)Γ(℘+ 1)
+ Θ5ϑ0

)
− δ2

(
Θ2Ψ5 + Θ1Ψ4

Γ(5℘+ 1)
Γ(℘+ 1)Γ(4℘+ 1)

+

Θ2Ψ3
Γ(5℘+ 1)

Γ(2℘+ 1)Γ(3℘+ 1)
+ Θ3Ψ2

Γ(5℘+ 1)
Γ(3℘+ 1)Γ(2℘+ 1)

+ Θ4Ψ1
Γ(5℘+ 1)

Γ)4℘+ 1)Γ(℘+ 1)
+ Θ5Ψ0

)
−

(ζ2 + ϖ)Θ5, (20)

Ψ6 = δ2
(
Θ0Ψ5 + Θ1Ψ4

Γ(5℘+ 1)
Γ(℘+ 1)Γ(4℘+ 1)

+ Θ2Ψ3
Γ(5℘+ 1)

Γ(2℘+ 1)Γ(3℘+ 1)
+ Θ3Ψ2

Γ(5℘+ 1)
Γ(3℘+ 1)Γ(2℘+ 1)

+

Θ4Ψ1
Γ(5℘+ 1)

Γ(4℘+ 1)Γ(℘+ 1)
+ Θ5Ψ0

)
+ (Υ + ζ3 + ϖ)Ψ5,

Φ6 = ΥΨ5 − (θ + ζ4 + ϖ)Φ5,

Ω6 = (β − ϖ)Ω5 − (ζ1ϑ5 + ζ2Θ5 + ζ3Ψ5 + ζ4Φ5).
In this way, we obtained the following 6th-step App-Ss of the Equation (11) in

ET space:

ϑ∗(6)(σ) =
6

∑
ν=0

ϑνσν℘+2,
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Θ∗(6)(σ) =
6

∑
ν=0

Θνσν℘+2,

Ψ∗(6)(σ) =
6

∑
ν=0

Ψνσν℘+2, (21)

Φ∗(6)(σ) =
6

∑
ν=0

Φνσν℘+2,

Ω∗(6)(σ) =
6

∑
ν=0

Ωνσν℘+2.

We obtained the 6th-step App-Ss of the Equation (2) in real space using the inverse ET
as follows:

ϑ(6)(ω) =
6

∑
ν=0

ϑν
ων℘+2

Γ(ν℘+ 1)
,

Θ(6)(ω) =
6

∑
ν=0

Θν
ων℘+2

Γ(ν℘+ 1)
,

Ψ(6)(ω) =
6

∑
ν=0

Ψν
ων℘+2

Γ(ν℘+ 1)
, (22)

Φ(6)(ω) =
6

∑
ν=0

Φν
ων℘+2

Γ(ν℘+ 1)
,

Ω(6)(ω) =
6

∑
ν=0

Ων
ων℘+2

Γ(ν℘+ 1)
.

To demonstrate the usefulness and efficiency of the ERPSM in handling nonlinear
models, we present the numerical results for the App-Ss of the FNLSM presented in
Equation (2). Therefore, to obtain the numerical results, utilize the following values of
the initial conditions: ϑ(0) = 20, Θ(0) = 40, Ψ(0) = 60, Φ(0) = 80, Ω(0) = 200, and
parameters: β = 0.1, δ1 = 0.01, δ2 = 0.001, ζ1 = 0.33, ζ2 = 0.44, ζ3 = 0.55, ζ4 = 0.66,
θ = 0.2, ϖ = 0.05,Υ = 0.99 [25], we have the following coefficients of FPS.

By utilizing the initial conditions and parameter values in Equations (15) and (16), we
obtain the 1st and 2nd coefficients of FPS as follows: ϑ1 = 20.4, Θ1 = −14,
Ψ1 = −93, Φ1 = −13.4, Ω1 = −100. ϑ2 = −25.792, Θ2 = 16.78, Ψ2 = 143.31,
Φ2 = −79.876, Ω2 = 54.422. By using the initial conditions and parameter values in
Equation (17) we obtain the 3rd coefficient of FPS as follows:

ϑ3 =
2.856Γ(2℘+ 1)

Γ(℘+ 1)2 + 6.22876,

Θ3 = − 4.158Γ(2℘+ 1)
Γ(℘+ 1)2 − 21.9222,

Ψ3 =
1.302Γ(2℘+ 1)

Γ(℘+ 1)2 − 221.124, (23)

Φ3 = 214.564,

Ω3 = − 22.2531.

In the same way, by utilizing the same initial conditions and parameter values in
Equation (18), we obtain the 4th coefficient of FPS as follows:

ϑ4 = − 1.39608Γ(2℘+ 1)
Γ(℘+ 1)2 − 7.034Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ 40.2135,

Θ4 =
0.5082Γ(2℘+ 1)

Γ(℘+ 1)2 +
10.6009Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ 8.26734,
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Ψ4 = − 2.26758Γ(2℘+ 1)
Γ(℘+ 1)2 − 3.56688Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ 341.426, (24)

Φ4 =
1.28898Γ(2℘+ 1)

Γ(℘+ 1)2 − 414.166,

Ω4 =
0.17094Γ(2℘+ 1)

Γ(℘+ 1)2 − 13.5166.

In the same manner, by utilizing the same values in Equations (19) and (20), we obtain
the 5th and 6th coefficients of FPS as follows:

ϑ5 =
1.24807Γ(4℘+ 1)Γ(2℘+ 1)

Γ(℘+ 1)3Γ(3℘+ 1)
+

1.26219Γ(2℘+ 1)
Γ(℘+ 1)2 +

3.36634Γ(3℘+1)
Γ(2℘+1) + 5.34416Γ(4℘+1)

Γ(3℘+1)

Γ(℘+ 1)
+

4.3279Γ(4℘+ 1)
Γ(2℘+ 1)2 − 117.205,

Θ5 =
0.368466Γ(4℘+ 1)Γ(2℘+ 1)

Γ(℘+ 1)3Γ(3℘+ 1)
+

3.54524Γ(2℘+ 1)
Γ(℘+ 1)2 +

6.16472Γ(3℘+1)
Γ(2℘+1) + 5.1345Γ(4℘+1)

Γ(3℘+1)

Γ(℘+ 1)
+

2.40474Γ(4℘+ 1)
Γ(2℘+ 1)2 − 528.715,

Ψ5 = − 3.41788Γ(2℘+ 1)
Γ(℘+ 1)2 − 3.53121Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ 714.903, (25)

Φ5 = − 3.41788Γ(2℘+ 1)
Γ(℘+ 1)2 − 3.53121Γ(3℘+ 1)

Γ(℘+ 1)Γ(2℘+ 1)
+ 714.903,

Ω5 =
0.642088Γ(2℘+ 1)

Γ(℘+ 1)2 − 0.381383Γ(3℘+ 1)
Γ(℘+ 1)Γ(2℘+ 1)

+ 67.981.

ϑ6 =
− 3.13277Γ(3℘+1)

Γ(2℘+1) + 3.94335Γ(5℘+1)
Γ(4℘+1) − 2.07271Γ(4℘+1)

Γ(3℘+1)

Γ(℘+ 1)
+

−1.52456Γ(2℘+ 1)− 1.55167Γ(5℘+1)
Γ(3℘+1) − 3.14734Γ(3℘+1)Γ(5℘+1)

Γ(2℘+1)Γ(4℘+1)

Γ(℘+ 1)2 +

Γ(2℘+ 1)
(
− 0.650189Γ(4℘+1)2

Γ(3℘+1) − 0.299124Γ(5℘+ 1)
)

Γ(℘+ 1)3Γ(4℘+ 1)
− 2.02923Γ(4℘+ 1)

Γ(2℘+ 1)2 −

6.69936Γ(5℘+ 1)
Γ(2℘+ 1)Γ(3℘+ 1)

+ 240.481,

Θ6 =

0.933797Γ(3℘+1)
Γ(2℘+1) + 1.60548Γ(5℘+1)

Γ(4℘+1) + 0.465271Γ(4℘+1)
Γ(3℘+1)

Γ(℘+ 1)
+

0.6924Γ(4℘+ 1)
Γ(2℘+ 1)2 +

0.307546Γ(2℘+ 1) + 2.1257Γ(5℘+1)
Γ(3℘+1) + 4.08329Γ(3℘+1)Γ(5℘+1)

Γ(2℘+1)Γ(4℘+1)

Γ(℘+ 1)2 +

Γ(2℘+ 1)
(

0.258175Γ(4℘+1)2

Γ(3℘+1) + 0.31464Γ(5℘+ 1)
)

Γ(℘+ 1)3Γ(4℘+ 1)
+

13.5515Γ(5℘+ 1)
Γ(2℘+ 1)Γ(3℘+ 1)

− 25.2313,

Ψ6 =
− 9.62652Γ(3℘+1)

Γ(2℘+1) − 5.54883Γ(5℘+1)
Γ(4℘+1) − 8.58719Γ(4℘+1)

Γ(3℘+1)

Γ(℘+ 1)
+

−5.51892Γ(2℘+ 1)− 0.574035Γ(5℘+1)
Γ(3℘+1) − 0.935946Γ(3℘+1)Γ(5℘+1)

Γ(2℘+1)Γ(4℘+1)

Γ(℘+ 1)2 +

Γ(2℘+ 1)
(
− 0.668115Γ(4℘+1)2

Γ(3℘+1) − 0.0155165Γ(5℘+ 1)
)

Γ(℘+ 1)3Γ(4℘+ 1)
− 4.13131Γ(4℘+ 1)

Γ(2℘+ 1)2
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− 6.85213Γ(5℘+ 1)
Γ(2℘+ 1)Γ(3℘+ 1)

+ 819.723, (26)

Φ6 =
0.364781Γ(4℘+ 1)Γ(2℘+ 1)

Γ(℘+ 1)3Γ(3℘+ 1)
+

6.62006Γ(2℘+ 1)
Γ(℘+ 1)2 +

9.31647Γ(3℘+1)
Γ(2℘+1) + 5.08315Γ(4℘+1)

Γ(3℘+1)

Γ(℘+ 1)
+

2.38069Γ(4℘+ 1)
Γ(2℘+ 1)2 − 1173.99,

Ω6 =
0.0967567Γ(4℘+ 1)Γ(2℘+ 1)

Γ(℘+ 1)3Γ(3℘+ 1)
+

0.095992Γ(2℘+ 1)
Γ(℘+ 1)2 +

0.0230625Γ(4℘+1)
Γ(3℘+1) − 1.66776Γ(3℘+1)

Γ(2℘+1)

Γ(℘+ 1)

+
0.211547Γ(4℘+ 1)

Γ(2℘+ 1)2 − 140.544.

The 6th-step App-Ss produced by ERPSM in terms of ϑ(ω), Θ(ω), Ψ(ω), Φ(ω), and
Ω(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0 are shown below.

By utilizing the numerical values of the coefficients of FPS in Equation (22), we obtain
6th-step App-Ss of ϑ(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0, respectively, as follows:

ϑ6(ω) = 20 + 22.8312ω0.6 − 23.4089ω1.2 + 6.06638ω1.8 + 8.82477ω2.4 − 14.1731ω3.0 + 14.1475ω3.6,

ϑ6(ω) = 20 + 22.4512ω0.7 − 20.7637ω1.4 + 4.78958ω2.1 + 5.20164ω2.8 − 6.75802ω3.5 + 5.31228ω4.2,

ϑ6(ω) = 20 + 21.9029ω0.8 − 18.0411ω1.6 + 3.66816ω2.4 + 2.85741ω3.2 − 2.93698ω4.0 + 1.75654ω4.8, (27)

ϑ6(ω) = 20 + 21.211ω0.9 − 15.3845ω1.8 + 2.7346ω2.7 + 1.45643ω3.6 − 1.15069ω4.5 + 0.492564ω5.4,

ϑ6(ω) = 20 + 20.4ω1.0 − 12.896ω2.0 + 1.99013ω3.0 + 0.679973ω4.0 − 0.393774ω5.0 + 0.102576ω6.0.

By utilizing the numerical values of the coefficients of FPS in Equation (22), we obtain
6th-step App-Ss of Θ(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0 respectively, as follows:

Θ6(ω) = 40 − 15.6684ω0.6 + 15.2296ω1.2 − 16.4991ω1.8 + 9.06384ω2.4 − 6.80173ω3.0 + 4.02973ω3.6,

Θ6(ω) = 40 − 15.4077ω0.7 + 13.5086ω1.4 − 12.8221ω2.1 + 6.32114ω2.8 − 4.31189ω3.5 + 2.45206ω4.2,

Θ6(ω) = 40 − 15.0314ω0.8 + 11.7373ω1.6 − 9.65203ω2.4 + 4.23371ω3.2 − 2.58298ω4.0 + 1.35418ω4.8, (28)

Θ6(ω) = 40 − 14.5566ω0.9 + 10.009ω1.8 − 7.06324ω2.7 + 2.73583ω3.6 − 1.47083ω4.5 + 0.690291ω5.4,

Θ6(ω) = 40 − 14ω1.0 + 8.39ω2.0 − 5.0397ω3.0 + 1.71193ω4.0 − 0.800088ω5.0 + 0.328775ω6.0.

By utilizing the numerical values of the coefficients of FPS in Equation (22), we obtain
6th-step App-Ss of Ψ(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0 respectively, as follows:

Ψ6(ω) = 60 − 104.083ω0.6 + 130.069ω1.2 − 130.825ω1.8 + 111.439ω2.4 − 82.698ω3.0 + 54.2306ω3.6,

Ψ6(ω) = 60 − 102.351ω0.7 + 115.371ω1.4 − 99.7282ω2.1 + 70.5278ω2.8 − 42.1854ω3.5 + 21.6255ω4.2,

Ψ6(ω) = 60 − 99.8514ω0.8 + 100.243ω1.6 − 73.4528ω2.4 + 42.5057ω3.2 − 20.1626ω4.0 + 7.90615ω4.8, (29)

Ψ6(ω) = 60 − 96.6971ω0.9 + 85.4821ω1.8 − 52.4532ω2.7 + 24.5186ω3.6 − 9.08508ω4.5 + 2.66097ω5.4,

Ψ6(ω) = 60 − 93ω1.0 + 71.655ω2.0 − 36.42ω3.0 + 13.5913ω4.0 − 3.8768ω5.0 + 0.824144ω6.0.

By utilizing the numerical values of the coefficients of FPS in Equation (22), we obtain
6th-step App-Ss of Φ(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0 respectively, as follows:

Φ6(ω) = 80 − 14.9969ω0.6 − 72.4958ω1.2 + 127.984ω1.8 − 138.329ω2.4 + 117.362ω3.0 − 84.5975ω3.6,

Φ6(ω) = 80 − 14.7473ω0.7 − 64.3036ω1.4 + 97.6347ω2.1 − 87.8166ω2.8 + 60.4283ω3.5 − 34.5449ω4.2,

Φ6(ω) = 80 − 14.3872ω0.8 − 55.872ω1.6 + 71.9722ω2.4 − 53.1208ω3.2 + 29.2235ω4.0 − 13.0493ω4.8, (30)

Φ6(ω) = 80 − 13.9327ω0.9 − 47.6448ω1.8 + 51.4462ω2.7 − 30.7765ω3.6 + 13.3653ω4.5 − 4.59817ω5.4,

Φ6(ω) = 80 − 13.4ω1.0 − 39.938ω2.0 + 35.7607ω3.0 − 17.1495ω4.0 + 5.81228ω5.0 − 1.5212ω6.0.
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By utilizing the numerical values of the coefficients of FPS in Equation (22), we obtain
6th-step App-Ss of Ω(ω) at ℘ = 0.6, 0.7, 0.8, 0.9, and 1.0 respectively, as follows:

Ω6(ω) = 200 − 111.917ω0.6 + 49.3936ω1.2 − 13.2736ω1.8 − 4.45481ω2.4 + 11.3696ω3.0 − 10.6432ω3.6,

Ω6(ω) = 200 − 110.055ω0.7 + 43.8121ω1.4 − 10.126ω2.1 − 2.82466ω2.8 + 5.86365ω3.5 − 4.37738ω4.2,

Ω6(ω) = 200 − 107.367ω0.8 + 38.0673ω1.6 − 7.46445ω2.4 − 1.70626ω3.2 + 2.84105ω4.0 − 1.66788ω4.8, (31)

Ω6(ω) = 200 − 103.975ω0.9 + 32.4619ω1.8 − 5.33564ω2.7 − 0.986961ω3.6 + 1.30215ω4.5 − 0.593831ω5.4,

Ω6(ω) = 200 − 100ω1.0 + 27.211ω2.0 − 3.70885ω3.0 − 0.548948ω4.0 + 0.567675ω5.0 − 0.198916ω6.0.

Based on their graphical and numerical outcomes, the approximations established by
the ERPSM for the FNLSM are reviewed and evaluated in the next section.

4. Graphical and Numerical Results of Approximate Solutions Attained by ERPSM

In this section, we evaluate the graphical and numerical results of the approximate
solutions for the five groups of smokers discussed in Section 3. Error functions are utilized
to assess the precision and capabilities of the approximation method. Since ERPSM provides
an approximate solution in terms of an infinite FPS, it is necessary to indicate the errors of
the approximate solution. To illustrate the precision and capability of ERPSM, we employ
the recurrence and residual error functions.

Figures 1–3 illustrate the behaviors of the 6th-step App-Ss derived by ERPSM for
potential smokers ϑ(ω), light smokers Θ(ω), smokers Ψ(ω), quit smokers Φ(ω), and total
smokers Ω(ω) for various fractional derivative values, including ℘ = 0.6, 0.7, 0.8, 0.9,
and 1.0, within the interval ω ∈ [0, 2.0]. From these figures, it is evident that the FNLSM
exhibits a higher degree of freedom due to the utilization of fractional derivatives. The
results show that the decline is significant for the lower fractional order but not as much
for the higher order. It is important to note that we used a short period of time because
we considered small initial values. The initial data should be sufficiently large for a longer
time interval. Moreover, from these figures, we concluded that ERPSM yielded results
that are in accordance with [25], which established the reliability and effectiveness of the
suggested method for solving fractional nonlinear problems that arise in biological systems.
Figures 4–6 are used to assess the accuracy of the proposed method. These figures depict
the Res-Errors obtained by the ERPSM for the FNLSM’s 6th-step App-Ss in the range
ω ∈ [0, 0.5]. For all sorts of smokers, we observed that the Res-Errors are incredibly small.
We come to the conclusion that the proposed method provides a very accurate App-Ss
in the form of a series. The convergence of the App-Ss to the exact solutions for FNLSM
has been illustrated graphically using Rec-Errors in the interval ω ∈ [0, 0.5] at ℘ = 1.0,
as shown in Figures 7–11. These figures demonstrate that the suggested method quickly
converges to the exact solutions because the Rec-Errors for the 5th-step App-Ss are very
small, but they get even smaller for the 6th-step App-Ss. The Rec-Errors study confirmed
the high level of convergence rates of App-Ss achieved by ERPSM. We therefore came to
the conclusion that the proposed method is a practical and effective technique for solving
nonlinear fractional models.

Tables 1–5 show how the 6th-step App-Ss of ϑ(ω), Θ(ω), Ψ(ω), Φ(ω) and Ω(ω)
obtained by ERPSM behave at different ℘ =0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 FD values in
the ω ∈ [0, 1.0] interval. Tables 6 and 7 show the Res-Errors for the 5th and 6th apps
in the interval ω ∈ [0, 0.5] as obtained by the ERPSM for the FNLSM at ℘ = 1.0. From
these tables, we observed that the Res-Errors for all the kinds of smokers in the 5th step
App-Ss are very small. When we consider 6th-step App-Ss for all categories of smokers,
the Rec-Errors become even smaller. This process of Rec-Errors shows the accuracy of
our proposed method, and hence the approximation is rapidly converging to the exact
solution. Tables 8 and 9 compare the Res-errors of the third-step App-Ss derived by ERPSM
and LDM [24] for all types of smokers in the ω ∈ [0, 0.5] range. The results obtained
using the proposed method show clear agreement with the LDM, confirming that the
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ERPSM is a useful substitute method in the solution of fractional nonlinear problems in
biological systems.
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Figure 1. The behavior of 6th-step App-Ss with ℘ = 0.6, 0.7, 0.8, 0.9, 1.0 of (a) potential smokers,
ϑ(ω); (b) light smokers, Θ(ω).
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Figure 2. The behavior of 6th-step App-Ss with ℘ = 0.6, 0.7, 0.8, 0.9, 1.0 of (a) smokers, Ψ(ω);
(b) quit smokers, Φ(ω).
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Figure 3. The behavior of 6th-step App-S with ℘ = 0.6, 0.7, 0.8, 0.9, 1.0 of total smokers, Ω(ω).
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Figure 4. The Res-Errors of 6th-step App-Ss are as follows: (a) potential smokers, ϑ(ω); (b) light
smokers, Θ(ω) at ℘ = 1.0.
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Figure 5. The Res-Errors of 6th-step App-Ss are as follows: (a) smokers, Ψ(ω); (b) quit smokers, Φ(ω)

at ℘ = 1.0.
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Figure 6. The Res-Errors of 6th-step App-S for total smokers Ω(ω).
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Figure 7. Graphs of Rec-Errors in the interval ω ∈ [0, 0.5] when ℘ = 1.0: (a) |ϑ5(ω) − ϑ4(ω)|,
(b) |ϑ6(ω)− ϑ5(ω)|.
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Figure 8. Graphs of Rec-Errors in the interval ω ∈ [0, 0.5] when ℘ = 1.0: (a) |Θ5(ω) − Θ4(ω)|,
(b) |Θ6(ω)− Θ5(ω)|.
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Figure 9. Graphs of Rec-Errors in the interval ω ∈ [0, 0.5] when ℘ = 1.0: (a) |Ψ5(ω) − Ψ4(ω)|,
(b) |Ψ6(ω)− ψ5(ω)|.
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Figure 10. Graphs of Rec-Errors in the interval ω ∈ [0, 0.5] when ℘ = 1.0: (a) |Φ5(ω)− Φ4(ω)|,
(b) |Φ6(ω)− Φ5(ω)|.
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Figure 11. Graphs of Rec-Errors in the interval ω ∈ [0, 0.5] when ℘ = 1.0: (a) |Ω5(ω)− Ω4(ω)|,
(b) |Ω6(ω)− Ω5(ω)|.

In the following tables, we conduct a comparative study of our results obtained
by ERPSM with those obtained by LDM [24] in the framework of Res-Errors. We ob-
serve that the results obtained by both methods are highly consistent with each other.
Therefore, we conclude that ERPSM is an alternative method for solving NFDES in a
straightforward manner.
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Table 1. ϑ(ω) behavior at various ℘ values.

ω ℘ = 0.6 ℘ = 0.7 ℘ = 0.8 ℘ = 0.9 ℘ = 1.0

0.1 24.3750 23.6971 23.0343 28.8668 21.9131
0.2 25.7061 25.2921 24.7592 28.8668 23.581
0.3 26.3695 26.2781 25.9725 28.8668 25.0176
0.4 26.6172 26.8904 26.8427 28.8668 26.2374
0.5 26.5161 27.2191 27.4509 28.8668 27.2551
0.6 26.0702 27.2979 27.8413 28.8668 28.0848
0.7 25.2547 27.1300 28.0358 28.8668 28.7407
0.8 24.0291 26.6996 28.0411 28.8668 29.235
0.9 22.3432 25.9767 27.8513 28.8668 29.5787
1.0 20.1403 24.9207 27.4504 28.8668 29.7803

Table 2. Θ(ω) behavior at various ℘ values.

ω ℘ = 0.6 ℘ = 0.7 ℘ = 0.8 ℘ = 0.9 ℘ = 1.0

0.1 36.7931 37.3704 37.8765 38.3126 38.6792
0.2 35.4676 36.0428 36.5635 37.0484 37.4978
0.3 34.4138 35.0008 35.505 35.976 36.4312
0.4 33.4292 34.0719 34.5765 35.0243 35.4555
0.5 32.4207 33.1699 33.7091 34.1473 34.5495
0.6 31.3302 32.2363 32.8527 33.3081 33.6915
0.7 30.1124 31.2237 31.9646 32.4733 32.8593
0.8 28.7286 30.089 31.0045 31.6097 32.0283
0.9 27.1437 28.7909 29.9319 30.6825 31.1727
1.0 25.3242 27.2881 28.7046 29.6542 30.2621

Table 3. Ψ(ω) behavior at various ℘ values.

ω ℘ = 0.6 ℘ = 0.7 ℘ = 0.8 ℘ = 0.9 ℘ = 1.0

0.1 40.3498 43.4776 46.4251 49.0826 51.3815
0.2 33.6865 36.1773 38.7503 41.3893 43.9953
0.3 31.3447 31.1612 33.1467 35.3161 37.6663
0.4 25.1759 27.2493 28.7682 30.3769 32.2422
0.5 21.1535 23.8488 25.1668 26.2779 27.5896
0.6 16.5328 20.5494 22.0337 22.8044 23.5891
0.7 10.884 17.0038 19.1155 19.7788 20.1306
0.8 3.81331 12.8878 16.1771 17.0388 17.1088
0.9 0.0000 7.87628 12.9823 14.4238 14.4184
1.0 0.0000 1.6342 9.28190 11.7653 11.9495

Table 4. Φ(ω) behavior at various ℘ values.

ω ℘ = 0.6 ℘ = 0.7 ℘ = 0.8 ℘ = 0.9 ℘ = 1.0

0.1 73.2326 75.1508 76.5721 77.5862 78.2947
0.2 68.6195 70.9958 73.0208 74.6795 75.9829
0.3 64.6459 67.1806 69.4402 71.4721 73.2252
0.4 60.8445 63.6189 65.9297 68.1171 70.1529
0.5 56.7892 60.1818 62.5195 64.7121 66.8716
0.6 52.0247 56.6919 59.1907 61.3152 63.465
0.7 46.0478 52.9183 55.8813 57.9519 59.9966
0.8 38.2974 48.5693 52.4854 54.6175 56.5105
0.9 28.1516 43.2892 48.8494 51.2765 53.0316
1.0 14.9268 36.6506 44.7664 47.8593 50.0316
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Table 5. Ω(ω) behavior at various ℘ values.

ω ℘ = 0.6 ℘ = 0.7 ℘ = 0.8 ℘ = 0.9 ℘ = 1.0

0.1 174.7853 179.7025 183.9093 187.4144 190.2682
0.2 163.7824 168.5715 173.1086 177.2942 181.0585
0.3 155.7041 159.8945 164.13322 168.3195 172.3465
0.4 149.1545 152.6465 156.3363 160.1892 164.1075
0.5 143.5553 146.3673 149.4094 152.7442 156.3195
0.6 138.5483 140.7923 143.1632 145.8825 148.9592
0.7 133.9145 135.7273 137.4642 139.5225 142.0012
0.8 129.4625 131.0385 132.2115 133.6035 135.4255
0.9 125.0315 126.5975 127.3175 128.0733 129.2065
1.0 121.0312 122.5973 123.3175 122.0735 139.2463

Table 6. The Rec-Errors for the App-Ss in the 5th and 6th iterations for ϑ(ω), Θ(ω), and Ψ(ω).

ω
Rec-Errors Rec-Errors Rec-Errors Rec-Errors Rec-Errors Rec-Errors

|ϑ(5) − ϑ(4)| |ϑ(6) − ϑ(5)| |Θ(5) − Θ(4)| |Θ(6) − Θ(5)| |Ψ(5) − Ψ(4)| |Ψ(6) − Ψ(5)|
0.1 0.00000393774 0.00000010258 0.00000800088 0.00000032878 0.00003876801 0.00000082414
0.2 0.00012600801 0.00000656485 0.00025602801 0.00002104160 0.00124058012 0.00005274521
0.3 0.00095687100 0.00007477780 0.00194421001 0.00023967701 0.00942063101 0.00060080102
0.4 0.00403225001 0.00042015101 0.00819290001 0.00134666021 0.03969840102 0.00337569001
0.5 0.01230540120 0.00160275001 0.02500270012 0.00513711011 0.12115110001 0.01287730011

Table 7. The Rec-Errors for the App-Ss in the 5th and 6th iterations for Φ(ω) and Ω(ω).

ω
Rec-Errors Rec-Errors Rec-Errors Rec-Errors

|Φ(5) − Φ(4)| |Φ(6) − Φ(5)| |Ω(5) − Ω(4)| |Ω(6) − Ω(5)|
0.1 0.00005812280 0.000001521201 0.00000567675 0.00000019891
0.2 0.00185993010 0.000097356900 0.00018165601 0.00001273060
0.3 0.01412380001 0.00110896002 0.00137945001 0.00014501001
0.4 0.05951770003 0.006230840010 0.00581299002 0.00081476002
0.5 0.18163410201 0.02376880001 0.01773981020 0.00310806003

Table 8. The comparison of Res-Errors in 3rd-step App-Ss of ϑ(ω), Θ(ω), and Ψ(ω) obtained
by ERPSM and SDM.

ω
Res-Errors Res-Errors Res-Errors Res-Errors Res-Errors Res-Errors

[ϑ(ω)][ERPSM] [ϑ(ω)][LDM] [Θ(ω)][ERPSM] [Θ(ω)][LDM] [Ψ(ω)][ERPSM] [Ψ(ω)][LDM]

0.1 0.00295059101 0.00295059101 0.00896119120 0.00896119120 0.00797612010 0.00797612010
0.2 0.02532571201 0.02532571201 0.06905251122 0.06905251122 0.00440025120 0.00440025120
0.3 0.09087270012 0.09087270012 0.224824110011 0.224824110011 0.00055981812 0.00055981812
0.4 0.22726811220 0.22726811220 0.51490300001 0.51490300001 0.00326328012 0.00326328012
0.5 0.46531721210 0.46531721210 0.97319521210 0.97319521210 0.01277340001 0.01277340001

Table 9. The comparison of Res-Errors in 3rd-step App-Ss of Φ(ω) and Ω(ω) obtained by
ERPSM and SDM.

ω
Res-Errors Res-Errors Res-Errors Res-Errors

[Φ(ω)][ERPSM] [Φ(ω)][LDM] [Ω(ω)][ERPSM] [Ω(ω)][LDM]

0.1 0.00290541001 0.00290541001 0.00028394910 0.00028394910
0.2 0.00464952002 0.00464952002 0.00454189120 0.00454189120
0.3 0.02353910210 0.02353910210 0.02299221120 0.02299221120
0.4 0.07439590211 0.07439590211 0.07266461101 0.07266461101
0.5 0.81632002110 0.81632002110 0.17740211210 0.17740211210
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5. Conclusions

In this research, we have utilized a novel straightforward approximate technique
known as ERPSM to establish approximate series and numerical solutions for the FNLSM,
which has held significant importance in applied sciences. The precision and convergence
rates have been demonstrated through Res-Errors and Rec-Errors analyses, presented
both graphically and numerically. ERPSM has proven to be a valuable alternative tool for
solving fractional nonlinear models in biological systems, as evidenced by the outcomes
demonstrating strong alignment with the LDM.

The advantages of ERPSM over other methods for providing approximate solutions, as
evidenced by the results, can be summarized as follows: ERPSM determines the coefficients
of terms of the series solution by applying the straightforward limit principle at zero. In con-
trast, other established methods like VIM, ADM, and HPM have necessitated integration,
while RPSM has relied on derivatives, both of which have posed challenges in fractional
contexts. Therefore, ERPSM is an alternative tool to various series solution methods for
solving differential equations of fractional order. Moreover, ERPSM has been capable of
solving NFDEs without relying on He’s or Adomian’s polynomials. Consequently, ERPSM
has required significantly fewer computations to solve NFDEs, making it a viable substitute
for methods reliant on He’s or Adomian polynomials. Additionally, ERPSM has generated
series solutions for FNLSM without using the concepts of perturbation, linearization, or
discretization, distinguishing it from numerous approximation techniques. Given these
results, we have established that our technique is both accurate and simple to use.

In the future, we intend to employ ERPSM to solve both the Nagumo-type equa-
tion and evolutionary equations [34,35]. Additionally, we will investigate whether this
method can be applied to stochastic problems. If any modifications are required for the
method to solve fractional stochastic differential equations, we will work on implementing
these amendments.
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Appendix A

The detailed derivations of ϑ1, Θ1, Ψ1, Φ1, and Ω1 are given below.
Firstly, by utilizing κ = 1 in Equation (13) and κth-truncated FPS, we obtain the

following results:

ZRes1(ϑ
∗(σ)) = ϑ∗

1(σ)− σ2ϑ0 − σ℘βΩ∗
1(σ) + σ℘δ1Z

[
Z−1

[ϑ∗
1(σ)]Z

−1
[Θ∗

1(σ)]
]
+ σ℘(ζ1 + ϖ)ϑ∗

1(σ)−
σ℘θΦ∗

1(σ),

ZRes1(Θ∗(σ)) = Θ∗
1(σ)− σ2Θ0 + σ℘δ1Z

[
Z−1

[ϑ∗
1(σ)]Z

−1
[Θ∗

1(σ)]
]
+ σ℘δ2Z

[
Z−1

[Ψ∗
1(σ)]Z

−1
[Θ∗

1(σ)]
]
+

(ζ2 + ϖ)σ℘Θ∗
1(σ),

ZRes1(Ψ∗(σ)) = Ψ∗
1(σ)− σ2Ψ0 − σ℘δ2Z

[
Z−1

[Ψ∗
1(σ)]Z

−1
[Θ∗

1(σ)]
]
+ σ℘(Υ + ζ3 + ϖ)Ψ∗

1(σ), (A1)

ZRes1(Φ∗(σ)) = Φ∗
1(σ)− σ2Φ0 − σ℘ΥΨ∗

1(σ) + σ℘(θ − ζ4 + ϖ)Φ∗
1(σ),

ZRes1(Ω∗(σ)) = Ω∗
1(σ)− σ2Ω0 + σ℘(β − ϖ)Ω∗

1(σ) + σ℘
(
ζ1ϑ∗

1(σ) + ζ2Θ∗
1(σ)− ζ3Ψ∗

1(σ) + ζ4Φ∗
1(σ)

)
.
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Further, ϑ∗
1(σ) = ϑ0σ2 + ϑ1σ2+℘, Θ∗

1(σ) = Θ0σ2 + Θ1σ2+℘, Ψ∗
1(σ) = Ψ0σ2 + Ψ1σ2+℘,

Φ∗
1(σ) = Φ0σ2 + Φ1σ2+℘, and Ω∗

1(σ) = Ω0σ2 + Ω1σ2+℘,
By utilizing the above-obtained results, we obtain the following outcomes:

eq(A2)ZRes1(ϑ
∗(σ)) =

(
ϑ0σ2 + ϑ1σ2+℘

)
− ϑ0σ2 − σ℘β

(
Ω0σ2 + Ω1σ2+℘

)
+ σ℘δ1Z

[
Z−1

[ϑ0σ2 + ϑ1σ2+℘]

Z−1
[Θ0σ2 + Θ1σ2+℘]

]
+ σ℘(ζ1 + ϖ)

(
ϑ0σ2 + ϑ1σ2+℘

)
− σ℘θ

(
Φ0σ2 + Φ1σ2+℘

)
,

ZRes1(Θ∗(σ)) =
(
Θ0σ2 + Θ1σ2+℘

)
− σ2Θ0 + σ℘δ1Z

[
Z−1

[ϑ0σ2 + ϑ1σ2+℘]Z−1
[Θ0σ2 + Θ1σ2+℘

]
+

σ℘δ2Z
[
Z−1

[Ψ0σ2 + Ψ1σ2+℘]Z−1
[Θ0σ2 + Θ1σ2+℘]

]
+ (ζ2 + ϖ)σ℘

(
Θ0σ2 + Θ1σ2+℘

)
,

ZRes1(Ψ∗(σ)) = Ψ0 + Ψ1σ2+℘ − σ2Ψ0 − σ℘δ2Z
[
Z−1

[Ψ0σ2 + Ψ1σ2+℘]Z−1
[Θ0 + Θ1σ2+℘]

]
+

σ℘(Υ + ζ3 + ϖ)
(
Ψ0σ2 + Ψ1σ2+℘

)
, (A2)

ZRes1(Φ∗(σ)) = Φ0σ2 + Φ1σ2+℘ − σ2Φ0 − σ℘Υ
(
Ψ0σ2 + Ψ1σ2+℘

)
+ σ℘(θ − ζ4 + ϖ)

(
Φ0σ2 + Φ1σ2+℘

)
,

ZRes1(Ω∗(σ)) = Ω0σ2 + Ω1σ2+℘ − σ2Ω0 + σ℘(β − ϖ)
(
Ω0σ2 + Ω1σ2+℘

)
+ σ℘

(
ζ1
(
ϑ0σ2 + ϑ1σ2+℘

)
+

ζ2
(
Θ0σ2 + Θ1σ2+℘

)
− ζ3

(
Ψ0σ2 + Ψ1σ2+℘

)
+ ζ4

(
Φ0σ2 + Φ1σ2+℘

))
.

By using values of ZRes1(ϑ
∗(σ)), ZRes1(Θ∗(σ)), ZRes1(Ψ∗(σ)), ZRes1(Φ∗(σ)), and

ZRes1(Ω∗(σ)) in Equation (14), we obtain the desired values of ϑ1, Θ1, Ψ1, Φ1, and Ω1,
as provided in Equation (15). In the same way, we obtained the remaining coefficient of
FPS by repeating the procedure for κ = 2, 3, 4, 5 , and 6. The values are provided in
Equations (16)–(20).
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