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Abstract: In this article, we introduce the multifractal conditional diffusion entropy method for
analyzing the volatility of financial time series. This method utilizes a q-order diffusion entropy
based on a q-weighted time lag scale. The technique of conditional diffusion entropy proves valuable
for examining bull and bear behaviors in stock markets across various time scales. Empirical findings
from analyzing the Dow Jones Industrial Average (DJI) indicate that employing multi-time lag scales
offers greater insight into the complex dynamics of highly fluctuating time series, often characterized
by multifractal behavior. A smaller time scale like t = 2 to t = 256 coincides more with the state of
the DJI index than larger time scales like t = 256 to t = 1024. We observe extreme fluctuations in the
conditional diffusion entropy for DJI for a short time lag, while smoother or averaged fluctuations
occur over larger time lags.

Keywords: multifractal entropy analysis; diffusion entropy analysis; conditional diffusion entropy;
financial time series

1. Introduction

Practitioners, researchers, and regulators across the domains of economics, mathe-
matics, and physics increasingly prioritize understanding the stability of financial systems
in response to the subprime crisis [1]. This heightened importance extends to asset and
derivative pricing, asset allocation, and risk management. Concepts and techniques de-
rived from complex systems and econophysics drive investigations into anomalous, chaotic,
and non-stationary behavior within economic systems, with entropy playing a crucial role.
The literature abounds with examples showcasing abrupt transitions from stable states
to radically different ones, building upon prior studies that frame the financial crisis as a
complex dynamical system.

In [2], the authors focus on examining scaling and memory phenomena within the
context of return intervals associated with stock and currency data. Their findings reveal
that a singular scaling function can effectively approximate the distribution function of
return intervals. Furthermore, the study underscores robust memory effects, indicating
that shorter return intervals are more likely to succeed other short intervals. In contrast,
longer intervals tend to be followed by similarly extended periods.

Siokis (2012) analyzes the distribution of the magnitude of significant stock market
shocks [3]. The study models the behavior of market index returns before and after
significant crashes, aiming to identify statistical patterns. The analysis reveals that, for a
considerable number of market crashes, the distribution of market volatility before and after
the crash follows the Gutenberg-Richter law, signifying the presence of scale-invariance
and self-similarity in the underlying dynamics through a robust power-law relationship.

In [4], Wang et al. examine volatility return intervals for the most heavily traded
stocks in the United States markets. The study reveals that the scaling exponent exhibits
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dependence on the threshold value q, indicating the presence of a multiscaling nature
in the distribution of return intervals. They delve into the multiscaling exponent, which
characterizes the multiscaling behavior of individual stocks.

The author in [5] investigates the impact of an entropy disturbance in the United States
on the entropy levels of other financial markets by employing singular value decomposition
on the constituents of stock market indices from different economies.

In [6], the author discusses whether uncertainty and disorder in the stock market
reflect entropy. In [7], the authors investigate the volatility of seven stock market indices
based on Tsallis and Shannon entropy. Compared to other methods, such as convexity,
variance, and vector autoregression (VaR), the authors in [8] find that the information
entropy method is a better way to quantify the risk associated with bonds. Therefore,
identifying potentially significant factors to reduce the negative consequences on economic
systems has received attention recently, even though global financial crises usually result
from events generated in the financial industry sectors.

This study aims to extend the Conditional Diffusion Entropy Analysis developed
in [9,10] to a Multi-scale Conditional Diffusion Entropy (MS-CDE) as another pertinent
method. Our proposed model serves as the multifractal extension of the CDE. It emphasizes
the role of Shannon entropy (SE) and Rényi entropy (RE). The monofractal approach utilizes
the SE of Scafetta et al. [11] while the multifractal approach employs a combination of SE
and RE for different q weights to estimate scaling exponents [12,13]. The study proposes
the examination of bull and bear markets using multi-time lag scales to determine MS-CDE.
It leverages the study on optimal bin-width in empirical histograms by Jizba et al. [14] to
evaluate the underlying probability density function (PDF).

This paper presents the following structure: Section 2 briefly reviews the founda-
tions of the diffusion entropy analysis (DEA) required for determining CDE and MS-CDE.
We also provide a brief overview of the q-order DEA, which facilitates the calculation of
MS-CDE. Section 3 introduces the time series from the DJI market index sampled daily
from April 2013 to April 2021, which we use to generate empirical results. Section 4 show-
cases the results from the experiment, and corresponding discussions occur in Section 5.
Finally, Section 6 concludes the paper.

2. Methodology
2.1. Diffusion Entropy Analysis (DEA)

Let N be the length of a financial time series {Yi}N
i=1. The process is as follows [11].

1. Transform the series {Yi}N
i=1 into a diffusion process. Consider the series such that it

can be written as:
{Yi, Yi+1, Yi+2, · · · , Yi+t−1}

where i = 1, 2, . . . , N − t + 1 and t ∈ [1, N] is the time scale. The matrix ψ
j
i defined as

ψ
j
i = Yi+j − Yi+j−1, j = 0, 1, · · · , N − t (1)

can be regarded as sub-sequences for any given diffusion time t with initial state
ψ0

i = 0. Next, construct a diffusion trajectory for each of these sub-sequences using
the stochastic process

η
j
t =

t

∑
i=1

ψ
j
i , (2)

where η
j
t is the new position of the jth particle in the diffusion process.

2. Compute the diffusion entropy. First, partition the x-axis into bin size B(t) and
assume that Ni(t) represents the number of particles falling in each bin at time t where
i = 1, 2, · · · , B(t).

3. Determine the optimal bin size B. We note that there is no “best” number of bins,
and different bin sizes B reveal different data features. Wider bins are utilized when
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the density of the underlying data points is low, reducing sampling-related noise.
Conversely, narrower bins are employed when the density is high, enhancing the
precision of density estimation. Hence, it proves advantageous to adjust the bin size
within a histogram. For our calculations, we utilize the Freedman-Diaconis’ rule [15]
to determine the bin size B, which is defined as:

B = 2
Interquartile range

3
√

n
. (3)

Freedman-Diaconis’ rule is less sensitive to outliers in data compared to the standard
deviation, rendering it more robust. Another approach is the Scott’s rule [16]. It is
defined as B = 3.5σ̂

3√n
, where σ̂ denotes the sample standard deviation. Scott’s rule

works best with data that follows a Gaussian distribution.
4. We approximate the probability density function (PDF) of a particle falling into a bin

at time t using the relative frequency as:

p(i, t) =
Ni(t)

N − t + 1
. (4)

At each time t, we calculate the diffusion (Shannon) entropy as follows:

S(t) = −
B(t)

∑
i=1

p(i, t) ln[p(i, t)]. (5)

Normalizing the diffusion entropy at time t results in:

S̄(t) =
S(t)

t
. (6)

We obtain the linear-log relationship between entropy S(t) and time t [17,18] as:

S(t) = A + δln(t). (7)

2.2. Conditional Diffusion Entropy (CDE)

Conditional Diffusion Entropy, C(t), provides a framework for distinguishing between
bear and bull markets. In a bull market, the market expands, and economic conditions are
typically favorable. In contrast, a bear market develops when the economy contracts and
most stocks and equities lose value. The CDE, C(t), as shown in [9,10], is defined as:

C(t) = 1 + α [1 − S̄(t)]. (8)

Here, S̄(t) is the normalized entropy as shown in Equation (6). The coefficient α is
defined by:

α =


−1, p < q
0, p = q
1, p > q

. (9)

In Equation (9), p and q denote the number of negative and positive values in the series,
respectively. Thus, during a bear market, α > 0, while during a bull market, α < 0. When
the market is indifferent or random, α = 0, indicating neither a bull nor a bear market.

2.3. q-Order Diffusion Entropy Analysis (Q-DEA)

As multifractality presents a continuous property of time series, techniques that ad-
dress problems concerning discretization and finite size of histograms employ interpolation
approaches, rendering them susceptible to bias. When determining the optimal bin size B for
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different values of q, the Rényi entropy incorporates both the probabilities pi and their q-th
powers pq

i for different q. The q-order Scott’s rule for determining bin size Bq is given as:

Bq = (24
√

π)1/3
√

q
6
√

2q − 1

(
∑m

k=1 σ
2(1−q)
sk /Nsk

∑m
k=1 σ

−(1+2q)
sk

)1/3

,

where q = 0, 1, 2, 3, 4 and scale sk = 2k, k = 1, 2, 3, · · · , m = f loor(log N).
We substitute the theoritical standard deviation σ with the empirical standard devia-

tion σ̂ to get

B̂q = (24
√

π)1/3
√

q
6
√

2q − 1

(
∑m

k=1 σ̂
2(1−q)
sk /Nsk

∑m
k=1 σ̂

−(1+2q)
sk

)1/3

. (10)

≡ (24
√

π)1/3
√

q
6
√

2q − 1
Nσ̂

q,m,

where

Nσ̂
q,m =

(
∑m

k=1 σ̂
2(1−q)
sk /Nsk

∑m
k=1 σ̂

−(1+2q)
sk

)1/3

.

For Freedman-Diaconis’ rule, replace the estimated standard deviation with the IQR to get

B̂q = 2.6
√

q
6
√

2q − 1
N

ˆIQR
q,m . (11)

Please see the reference [14] for more details.
To analyze multifractal scaling properties of a time series, we use the q-order entropy,

which is a family of Shannon and Rényi entropies defined as:

Sq(t) =


− ∑

Bq(t)
i=1 p(i, t) ln[p(i, t)], q = 1

1
1−q ln ∑

Bq(t)
i=1 pq(i, t), q ̸= 1, q ∈ R+

. (12)

Here, q ∈ R+ denotes the weight assigned to different probabilities of a particle falling
in a bin. We constrain q ≥ 0 because information extraction is compromised for q < 0 [19].
This method is called the multifractal diffusion entropy analysis (MFDEA). The DEA
corresponds to the q-order DEA where q = 1. We express the linear-log relationship
between the q-order diffusion entropy Sq(t) and time t as:

Sq(t) = A + δq ln(t). (13)

2.4. Multi-Scale Conditional Diffusion Entropy (MS-CDE)

The q-order Conditional Diffusion Entropy (MS-CDE) serves as the multifractal exten-
sion of the CDE, offering a means to distinguish between bear and bull situations in the
market at various q-weights, representing different probabilities of a particle falling in a
bin. MS-CDE is defined as:

Cq(t) = I + α [I − S̄q(t)], (14)

where I is a vector of ones and S̄q(t) is the q-order vector of normalized entropy from
Equation (12) and

α =


−1, p < q
0, p = q
1, p > q

. (15)
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3. Data

Table 1 displays the start-date and end-date of data used in this paper. We adopt
the daily close prices of the Dow Jones Industrial Average (DJI) from April 2013 to April
2021, amounting to 2028 data points. As illustrated in Figure 1, market prices tend to fall
during a financial crisis, while they rise during the market recovery period following a
crisis. The highlighted portion of the graph in Figure 1 indicates the crash.

Table 1. Close Prices from DJI index.

Data Start Date End Date Median Mean Standard Deviation

DJI 5 April 2013 23 April 2021 20,812 21,555 4853.5

Figure 1. Daily Close Prices Plot of DJI. The grey area corresponds to a period of a financial crash.

4. Results

In this section, we present results by examining the stock market’s stability during
the COVID-19 pandemic stock market crash using the multi-scale conditional diffusion
entropy. The analyzed crash period is highlighted in Figure 1.

4.1. q-Order DEA for Dow Jones Industrial Average

Figure 2 below shows a plot of diffusion entropy versus scale for q weighted in the
range 0 to 4 for DJI from April 2013 to April 2021. At certain diffusion times t, entropy
decreases with the increase in q weights, whereas entropy increases with the rise in q
weights at other diffusion times. This phenomenon occurs because the Rényi entropy
changes more rapidly at large q than small q weights.
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Figure 2. q-order Diffusion Entropy as a function of diffusion time constructed based on different
q values of Rényi family of entropies using DJI.

4.2. Multi-Scale Conditional Entropy of DJI from April 2013 to April 2021

Figures 3–12 show the monthly conditional diffusion entropy Cq(t) at different time
scales from April 2013 to April 2021. In this representation, Cq(t) = 1 signifies random
behavior in the financial market, Cq(t) > 1 indicates a bull market, and values less than
1 denote a bear market.

Figure 3. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).
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Figure 4. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 5. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 6. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).
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Figure 7. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 8. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 9. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).
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Figure 10. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 11. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).

Figure 12. Monthly Conditional Entropy of DJI at Different Time Scales. The grey area are periods of
the financial crisis (or bear market).
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5. Discussion

Figure 1 displays instances of bull and bear markets in the DJI index. The highlighted
portion represents the period from late February 2020 to early April 2020, depicting the
2020 coronavirus stock market crash. During this period, the COVID-19 pandemic spread
globally from February 24 to 28, causing a significant decline in global stock markets.
The DJI drops 11–12%, marking the most significant weekly decline since the 2007/2008
financial crisis. On March 12, a day after the announcement of a travel ban from Europe,
the DJI fell sharply again by 10%. After it became clear that a recession was inevitable,
the DJI dropped another 12.93% on March 16. Stock market indices briefly recover to their
levels at the end of February 2020 by early June 2020.

Figure 1 shows the fluctuations in the series over time. Many values of the conditional
diffusion entropy at time scale t = 2 are larger than 1 during bull market periods. In con-
trast, they are less than 1 during periods of the financial crisis (or bear market), as shown by
the grey highlighted part of Figure 3. Observe that, as the time scale increases from t = 2
to t = 256, the conditional diffusion entropy approach is a random behavior where most
of the Cq(t) ≈ 1 as shown in Figures 4–10. During this period, the market is indifferent.
Beyond the time scale of t = 256, conditional diffusion entropy is less than 1, as shown
in Figures 11 and 12, indicating that the bear market is dominant. Hence, the conditional
diffusion entropy value coincides with the state of the stock market but at different time
lags, and the conditional diffusion entropy depicts the various states of the stock market.
A smaller time scale like t = 2 to t = 256 coincides more with the state of the stock market
than larger time scales like t = 256 to t = 1024. This is because we observe extreme
fluctuations in the conditional diffusion entropy for a short time lag. In contrast, smoother
(or averaged-out) fluctuations are observed in larger time scales, resulting in lower values
of the conditional diffusion entropy. Comparing the Conditional Diffusion Entropy method
developed in [9,10] to our model’s results, we observe that Multiscale Conditional Diffu-
sion Entropy Analysis is less prone to incorrectly classifying a bullish market as neutral
or bearish. This is because MS-CDE assesses market volatility across multiple time scales,
unlike CDE. Thus, MS-CDE conditional diffusion offers a more insightful analysis of stock
market volatility. However, one limitation of using MS-CDE is its computational intensity,
which is due to the use of multiple time scales in our analysis.

6. Conclusions

This paper investigates the stability of the Dow Jones Industrial Average (DJI) in the
US stock markets utilizing multi-scale normalized and conditional diffusion entropy. We
discover that conditional diffusion entropy is valuable for analyzing market fluctuations
and discerning bear and bull markets. However, careful interpretation of its results is
necessary. We illustrate that conditional diffusion entropy offers diverse insights into the
market’s state at different time lag scales. Hence, employing a multi-time lag scale enhances
the analysis of financial market time series, especially considering their often multifractal
nature. As a future direction, we plan to extend our inquiry to volatility in other financial
securities, such as bonds and cryptocurrency markets, using our innovative approach.
Moreover, implementing the method in parallel will mitigate the computational intensity of
the model. Additionally, we aim to compare our technique with other multiscale techniques
like the wavelet approach or scale-space filtering.

Author Contributions: Conceptualization, W.K., M.C.M. and O.K.T.; methodology, M.C.M., W.K.,
P.K.A. and O.K.T.; software, W.K.; validation, O.K.T.; formal analysis, W.K.; data curation, W.K. and
P.K.A.; writing—original draft preparation, W.K.; writing—review and editing, O.K.T.; visualization,
W.K.; supervision, M.C.M. and O.K.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding



Fractal Fract. 2024, 8, 274 11 of 12

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
List of Acronyms.

Acronyms Definition
DJI Dow Jones Industrial Average
SE Shannon Entropy
RE Rényi Entropy
VaR Vector Autoregression
CDE Conditional Diffusion Entropy
MS-CDE Multi-Scale Conditional Diffusion Entropy
PDF Probability Density Function
DEA Diffusion Entropy Analysis
FD Freedman-Diaconis Rule
Q-DEA q-Order Diffusion Entropy Analysis
IQR Inter quartile Range
MFDEA Multifractal Diffusion Entropy Analysis
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