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Abstract: On the basis of the chaotic system proposed by Wang et al. in 2023, this paper constructs a
5D fractional-order memristive hyperchaotic system (FOMHS) with multiple coexisting attractors
through coupling of magnetic control memristors and dimension expansion. Firstly, the divergence,
Kaplan–Yorke dimension, and equilibrium stability of the chaotic model are studied. Subsequently,
we explore the construction of the 5D FOMHS, introducing the definitions of the Caputo differen-
tial operator and the Riemann–Liouville integral operator and employing the Adomian resolving
approach to decompose the linears, the nonlinears, and the constants of the system. The complex
dynamic characteristics of the system are analyzed by phase diagrams, Lyapunov exponent spectra,
time-domain diagrams, etc. Finally, the hardware circuit of the proposed 5D FOMHS is performed by
FPGA, and its randomness is verified using the NIST tool.

Keywords: memristor; fractional-order memristive hyperchaotic system; coexisting attractors; FPGA

MSC: 37D45; 34C28; 37N30; 65P20

1. Introduction

Chaos, also known as nonlinear dynamics, is characterized by its significant sensi-
tivity to initial conditions in deterministic systems, quasi-random attributes, and unique,
non-repeating trajectories. Nonlinear science is theoretically significant and promising for
practical applications across various life aspects. Over the past decade, researchers have
extensively applied it in fields such as image encryption [1–5], electronic circuits [6–10],
chaos synchronization [11–15], pseudo-random number generators [16–20], and neural
networks [21–25], among others. The complex structure of chaotic attractors enhances
their dynamic properties. Researchers have introduced a variety of chaotic systems with
intricate dynamic behaviors, incorporating unique nonlinear terms, extending dimension-
ality, and constructing functions. These include hyperchaotic attractors [26–30], hidden
attractors [31–35], conservative chaotic attractors [36–39], and multi-wing and multi-scroll
attractors [40–43]. High-dimensional chaotic systems offer a more complex structure,
intricate dynamic behavior, and greater randomness than low-dimensional ones, making
hyperchaotic systems increasingly interesting to researchers. The main characteristic of
hyperchaotic systems is that they have two or more Lyapunov exponents, which enhances
their security relative to traditional chaotic systems. System structures have evolved itera-
tively, showing greater application potential. For example, a new 2D hyperchaotic system
based on Schaffer mapping is introduced in [44], exhibiting optimal ergodic and uncertain
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characteristics. Al proposed a hyperchaotic system without equilibrium points in [45],
characterized by high Lyapunov exponents and complex dynamical behaviors. Based
on the 5D Euler equation, Huang et al. [46] proposed a 5D non-equilibrium Hamiltonian
conservative chaotic system with multiple coexisting attractors and hyperchaotic attractors.

The memristor is an electronic device whose resistance varies with the direction and
magnitude of current flow. It possesses characteristics such as nanometer-scale size, au-
tomatic memory, low power consumption, and nonlinearity, making it highly suitable
as a nonlinear component in chaotic circuits. Compared to traditional chaotic circuits,
memristor-based chaotic circuits are extremely sensitive to circuit parameters, with subtle
differences in memristor initial values having significant impacts. Additionally, chaotic
circuits can generate numerous intriguing and more complex chaotic phenomena. Based
on this, researchers have proposed various complex chaotic systems based on memristors.
Kong et al. introduced a new memristor model in [47]. Then, the authors constructed a
6D fractional-order memristive Hopfield neural network system based on the memristor
model, which has multiple steady-state characteristics and good randomness. Sun et al. [48]
applied memristors to pavlov associative memory, achieving multiple generalization and
differentiation processes. Yu et al. [49] designed a novel locally active non-volatile mem-
ristor and constructed a 4D memristive Hopfield neural network by introducing this
memristor. Yao et al. developed a new memristor model in [50] and constructed an
asymmetric memristive Hopfield neural network using this memristor model.

In the latter half of the twentieth century, fractional calculus emerged as an abstract
mathematical theory. Fractional calculus is an extension of traditional calculus to arbi-
trary real or complex orders of differentiation and integration. Compared to integer-order
calculus, fractional calculus provides a more accurate description of memory effects and
historical dependencies in many complex systems, making it more aligned with the real
world. In recent years, scientists from various fields and backgrounds have been studying
this theory and its applications from different perspectives, including nonlinear dynamics.
Scientists can use fractional calculus to model and analyze the dynamics of systems related
to anomalous phenomena. Therefore, fractional calculus theory can be applied to chaotic
systems. Initially, by introducing fractional differentiation operators to integer-order chaotic
systems, the system remains chaotic with rich dynamic characteristics and potential appli-
cations. More and more researchers have joined the study, proposing chaotic systems with
fractional operators exhibiting diverse characteristics. Matouk [51] conducted reasoning
and inference based on gamma functions and left-right Caputo fractional differentiation op-
erators, deriving some secondary properties. They constructed a new fractional parameter
with higher degrees of freedom compared to ordinary operators, exhibiting more complex
dynamic behavioral characteristics. Lei et al. [52] established a new fractional-order model
based on Hindmarsh Rose neurons in an electric field environment. Throughthe Adomian
resolving approach, they decomposed each nonlinear term and analyzed the firing behavior
of the neuron model. Zeng [53] applied fractional calculus to a fractional-order infectious
disease model, and the authors used the Laplace Adomian solution method to effectively
obtain approximate solutions with fewer iterations.

This paper proposes a 5D fractional-order memristive hyperchaotic system (FOMHS)
with only three nonlinear terms and investigates its nonlinear dynamic behavior. The
system exhibits complex dynamic behavior, including extreme multistability phenomena
such as the coexistence of periodic and chaotic states. Secondly, we use the Adomian
decomposition method to decompose the nonlinear, linear, and constant terms of the system,
in order to provide a more comprehensive observation of its physical structure. Finally,
we implemented 5D FOMHS on FPGA hardware to verify its functionality. In addition,
we also tested the components of the system against NIST standards, demonstrating its
potential for secure communication.

The remaining work is scheduled as follows: In Section 2, we compute the equilibrium
points and analyze the divergence of the integer-order system, demonstrating its properties
characteristic of hyperchaotic systems. In Section 3, we utilize the Adomian resolving
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approach to obtain various numerical solutions for the 5D FOMHS system and investigate
its dynamic characteristics through diverse simulations. Subsequently, in Section 4, we
design and implement the digital circuit for the 5D FOMHS. In Section 5, we assess the
randomness of sequences generated by the system using the NIST suite and visualize the
results with histograms and tables. Finally, we summarize the research findings of the
entire project and discuss potential areas for future investigation in Section 6.

2. A 5D Integer-Order Memristive Hyperchaotic System

Recently, Wang et al. [54] proposed a simple hyperchaotic system. This paper trans-
forms it into a 5D hyperchaotic system. The mathematical model is as follows:

ẋ = a(w − x),
ẏ = −w,
ż = xw − bz,
ẇ = −xz + cw + dy,
u̇ = −w + kx(m + 3nu2),

(1)

where x, y, z, w, u are system state variables and a, b, c, k, m, n are coupling parameters. W(u)
is the memristor, and the memristor function is w(u) = e + 3nu2. The system (1) exhibits
rich dynamic characteristics as self-excited chaotic attractors, and the shape and extent of
attractors are influenced by initial conditions (ICs), periods, and control parameters. The
system (1) divergence is:

∇V =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

+
∂ẇ
∂w

+
∂u̇
∂u

= −a − b + c + 6nkxu. (2)

when −a − b + c + 6nkxu = 1, the system (1) is a conservative chaotic system; when
−a − b + c + 6nkxu < 1, the system (1) is a dissipative chaotic system.

Take a = 20, b = 2, c = 10, d = 4, k = 10, m = 0.1, n = 0.01, and set the IC to
[1, 1, 2, 1, 1]. When the calculation time is 1000 seconds and the iteration step is 0.01, the
Lyapunov exponent spectrum of the system (1) is shown in Figure 1. The final Lyapunov
exponents are: 

LE1 = 0.312401
LE2 = 0.117056
LE3 = −0.006177
LE4 = −0.415351
LE5 = −11.822570

5

∑
i=1

LEi =≈ −12.5741. (3)

The Kaplan–York dimension provides a method for quantifying the self similarity of
chaotic systems. It is obtained by correlating and calculating the trajectory of the system in
phase space. Given the aforementioned conditions for Lyapunov exponents, The Kaplan–
York dimension of system (1) can be calculated as follows:

DLE = j + 1
|LEj+1| ∑

j
i=1 LEi,

DLE = 4 + LE1+LE2+LE3+LE4
|LE5|

≈ 4.00067.
(4)

From Figure 1, it can be seen that there are two positive Lyapunov exponents, indicat-
ing the existence of hyperchaotic phenomena in system (1). Furthermore, the calculated
Kaplan–Yorke dimension exceeds 4, which is the dimensionality of the system as indicated
by the result in the Kaplan–Yorke dimension formula. This result substantiates the system’s
chaotic state under these conditions.

Phase diagrams can describe complex dynamic behaviors, including periodic orbits
and chaotic attractors. The phase diagrams of (1) are shown in Figure 2a–d. The time series
of x is depicted in Figure 2e.
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Figure 1. Lyapunov exponent spectrum of system (1).

(a) (b)

(c) (d)

Figure 2. Cont.
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(e)

Figure 2. Phase diagrams and time series of the system (1). (a) x− y plane, (b) x− z plane, (c) x− y− z
space, (d) y − z − w space, (e) time series of x.

2.1. Equilibrium Stability Analysis

For the system (1), when ẋ = ẏ = ż = ẇ = u̇ = 0, the equilibrium points can be
expressed as:

E = (x∗ = 0, y∗ = 0, z∗ = 0, w∗ = 0, u∗ = 0). (5)

The Jacobian matrix of the response is:

J =


−a 0 0 a 0
0 0 0 −1 0
w −b 0 x 0
−z d −x c 0

k(m + 3nuu) 0 0 −1 6knxu

. (6)

Substitute the conclusion of Equation (5) into Equation (6), and we can obtain:

J =


−a 0 0 a 0
0 0 0 −1 0
0 0 −b 0 0
0 d 0 c 0

km 0 0 −1 0

. (7)

J has the characteristic equation:

(−λ)(−λ − a)(−λ − b)
(

λ2 − cλ + d
)
= 0, (8)

the final root is: 

λ1 = 0,
λ2 = −a,
λ3 = −b,
λ4 = c+

√
c2−4d
2 ,

λ5 = c−
√

c2−4d
2 .

(9)

If all eigenvalues of an equilibrium point have negative real parts, then the equilibrium
point is stable. On the contrary, if at least one eigenvalue contains a positive real part, then
the equilibrium point is unstable. For example, setting the parameters to a = 20, b = 2,
c = 10, d = 4, k = 10, m = 0.1, and n = 0.01 results in the system exhibiting a hyperchaotic
state with eigenvalues λ1 = 0, λ2 = −20, λ3 = −2, λ4 = 5 +

√
21, and λ5 = 5 −

√
21,
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indicating two positive eigenvalues. Hence, the equilibrium point is a saddle node of
index 2.

2.2. Nonlinear Dynamic Behavior Analysis

When the parameters are fixed at a = 25, c = 10, d = 4, k = 10, m = 0.1, n = 0.01, and
the initial conditions (ICs) are set to [1, 1, 1, 1, 1], the control parameter b is varied within the
interval [0.6, 1.5]. Simulations are conducted using Matlab2017a over an iteration time of
3000 s. To more clearly observe changes in the system state, after disregarding the negligible
Lyapunov exponents in the fifth dimension, the Lyapunov exponent spectrum is displayed
in Figure 3a. The bifurcation diagram is shown in Figure 3b. The exponent spectrum
reveals that the system exhibits a rich array of dynamic behavior changes. Although a
positive Lyapunov exponent appears in Figure 3a when b = 0.6, in the context of chaotic
systems, a Lyapunov exponent with an absolute value closest to zero is conventionally
considered as zero. Thus, for b ∈ [0.6, 0.81), the system (1) displays no positive Lyapunov
exponents and remains in a periodic state. The bifurcation diagram in Figure 3b indicates
that for b ∈ [0.7, 0.77], the system (1) undergoes periodic doubling bifurcation before
returning to a periodic state. For b ∈ [0.81, 0.88), the system exhibits a positive Lyapunov
exponent, as shown in Figure 3a, and the bifurcation diagram in Figure 2b indicates that
the system transitions into a chaotic state. At b = 0.88, the system reenters a periodic state;
for b ∈ (0.87, 1], it transitions back to chaos; and for b ∈ (1, 1.5), the exponent spectrum in
Figure 3a shows two positive values for the first time, marking the system’s entry into a
hyperchaotic state through iteration.

(a) (b)

Figure 3. Lyapunov exponent spectrum and phase diagram of the system (1). (a) Lyapunov exponent
spectrum, (b) bifurcation diagram.

2.3. Coexisting of Attractors

In chaotic systems, an attractor is a state in which the system tends to stabilize after
a long period of evolution. Coexisting attractors are a complex dynamic property of
chaotic systems. This indicates that dissipative systems with the same control parameters
but different ICs can exhibit partially overlapping trajectories and potentially different
stable states.

For the system (1), with parameters set as a = 20, c = 11, d = 3, m = 0.1, n = 0.01,
and k = 6, two states are defined: State 1 with y1 = [1, 1, 1, 1, 1] is represented in blue,
and State 2 with y2 = [−1,−1,−1,−1,−1] is represented in red. When b = 6, 2D phase
diagrams present a symmetrical state, and the 3D phase diagrams do not interfere with
each other. States 1 and 2 exhibit chaotic coexistence. The phase diagrams on the x − w
plane and the x − y − z space are shown in Figures 3b and 4a, respectively. When the
parameter b is adjusted to 13, the phase diagrams show periodic cycles and do not interfere
with each other. States 1 and 2 transition to periodic coexistence, represented by green and
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black colors, respectively. The corresponding phase diagrams on the x − w plane and the
x − y − z space are presented in Figure 4c,d.

(a) (b)

(c) (d)

Figure 4. The coexisting phase diagrams of State 1 and State 2. (a) Chaotic coexistence on the x − w
plane, (b) chaotic coexistence on the x − y − z space, (c) periodic coexistence on the x − w plane,
(d) periodic coexistence on the x − y − z space.

3. 5D FOMHS
3.1. System Decomposition

In Ref. [55], the definition of Caputo differentiation is determined by Equation (10).

∗Dq
t0

x(t) = Jm−q
t0

Dm
t0

x(t) =

{
1

Γ(m−q)

∫ t
t0
(t − τ)(m−q−1)x(m)(τ)dτ, m − 1 < q < m,

dm

dtm x(t), q = m,
(10)

Γ(.) is the gamma function. ∗Dq
t0

is Caputo differential operator, its order is q, q ∈ R+,
m ∈ n.

The Riemann–Liouville fractional integral can be defined as:

Jq
t0

x(t) =
∫ t

t0

(t − τ)(q−1)x(τ)dτ, (11)
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Jq
t0

x(t) is an integral operator of q order, q ∈ R+, t ∈ [t0, t1]. When m − 1 < q < m, the
Caputo differentiation and Riemann–Liouville fractional integration will have some special
properties, such as:

∗Dq
t0

x(t) = Jq
t0

x(t) = x(t), (12)

Jq
t0
(∗Dq

t0
)x(t) = x(t)−

m−1

∑
k=0

x(k)(t+0 )
(t − t0)

k

k!
). (13)

Based on the above definition and special properties, for fractional-order systems:

∗Dq
t0

x(t) = f (x(t) + g(t)), (14)

x(t) = [x1(t), x2(t), x3(t), ..., xn(t)]T represents the given function variable in compound
function f ; g(t) = [g1(t), g2(t), g3(t), ..., gn(t)]T represents a constant. Finally, the fractional-
order system can be decomposed into three parts using the Adomian resolving approach:

∗Dq
t0

x(t) = Lx(t) + Nx(t) + g(t),

x(k)(t0)
+ = bk, k = 0, ..., m − 1,

m ∈ N, m − 1 < q ≤ m,

(15)

Lx(t) is a linear term of the fractional-order system, and Nx(t) is a nonlinear term of the
fractional-order system. The ICs integrate with Equation (15) and bring it into the ICs and
finally decompose the nonlinear term into:

Ai
j =

1
i!
[

di

dλi N(vi
j(λ))]λ=0 vi

j(λ) =
i

∑
k=0

(λ)kxk
j . (16)

The non-linear term is written as:

Nx =
∞

∑
i=0

Ai(x0, x1, ..., xi), (17)

since the solution of the equation is x = ∑∞
i=0 xi based on Equation (16), the solution of the

equation can be written as:

x0 = Jq
t0

g + ∑m−1
k=0 bk

(t−t0)
k

k! ,
x1 = Jq

t0
Lx0 + Jq

t0
A0(x0),

x2 = Jq
t0

Lx1 + Jq
t0

A1(x0, x1),
x3 = Jq

t0
Lx2 + Jq

t0
A2(x0, x1, x2),

...
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, ..., xi−1).

(18)

So as to increase the flexibility and complexity of the system, a fractional-order is
introduced to the system (1):

∗Dq
t0

x = a(w − x),
∗Dq

t0
y = −w,

∗Dq
t0

z = xw − bz,
∗Dq

t0
w = −xz + cw + dy,

∗Dq
t0

u = −w + kx(m + 3nu2),

(19)
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where q is a fractional-order, and the ICs are:
x0 = x(t0) = c0

1,
y0 = y(t0) = c0

2,
z0 = z(t0) = c0

3,
w0 = w(t0) = c0

4,
u0 = u(t0) = c0

5.

(20)

According to Equations (19) and (20) and the properties of fractional integral, we
can obtain: 

x1
1 = (a(c0

4 − c0
1))

t−tq
0

Γ(q+1) ,

y1
2 = (−c0

4)
t−tq

0
Γ(q+1) ,

z1
3 = (c0

1c0
4 − bc0

3)
t−tq

0
Γ(q+1) ,

w1
4 = (−c0

1 + cc0
4 + dc0

2)
t−tq

0
Γ(q+1) ,

u1
5 = (−c0

4 + kc0
1(m + 3nc0

5c0
5))

t−tq
0

Γ(q+1) .

(21)

Variables are assigned to corresponding coefficients:
c1

1 = a(c0
4 − c0

1),
c1

2 = −c0
4,

c1
3 = c0

1c0
4 − bc0

3,
c1

4 = −c0
1 + cc0

4 + dc0
2,

c1
5 = −c0

4 + kc0
1(m + 3nc0

5c0
5).

(22)

So, x1 = c1
t−tq

0
Γ(q+1) . Based on this, we calculate the coefficients of other terms:



c2
1 = a(c1

4 − c1
1)

c2
2 = −c1

4
c2

3 = c1
1c0

4 − bc1
3 + c0

1c1
4

c2
4 = −c1

1c0
3 −−c0

1c1
3 + cc1

4 + dc1
2

c2
5 = −c1

4 + kmc1
1 + 3nkc0

5(c
1
1c1

5 + c0
1c1

5)
Γ(2q+1)
Γ(q+1) ,

(23)

and

c3
1 = a(c2

4 − c2
1),

c3
2 = −c2

4,
c3

3 = c2
1c0

4 + c1
1c1

4
Γ(2q+1)
Γ(q+1) + c0

1c2
4 − bc2

3,

c3
4 = −c2

1c0
3 −−c1

1c1
3

Γ(2q+1)
Γ(q+1) − c0

1c2
3 + cc2

4 + dc2
2,

c3
5 = −c2

4 + kmc2
1 + 3nk[c1

5c1
5(c

1
1 + c0

1
Γ(2q+1)
Γ(q+1) ) + c0

5c1
5(c

2
1 + c1

1
Γ(2q+1)
Γ(q+1) + c0

5c2
5(c

1
1 + c0

1
Γ(2q+1)
Γ(q+1) ].

(24)

Finally, the system solution is obtained:

x(t) = c0
1 + c1

1
t−tq

0
Γ(q+1) + c2

1
t−t2q

0
Γ(2q+1) + c3

1
t−t3q

0
Γ(3q+1) ,

y(t) = c0
2 + c1

2
t−tq

0
Γ(q+1) + c2

2
t−t2q

0
Γ(2q+1) + c3

2
t−t3q

0
Γ(3q+1) ,

z(t) = c0
3 + c1

3
t−tq

0
Γ(q+1) + c2

3
t−t2q

0
Γ(2q+1) + c3

3
t−t3q

0
Γ(3q+1) ,

w(t) = c0
4 + c1

4
t−tq

0
Γ(q+1) + c2

4
t−t2q

0
Γ(2q+1) + c3

4
t−t3q

0
Γ(3q+1) ,

u(t) = c0
5 + c1

5
t−tq

0
Γ(q+1) + c2

5
t−t2q

0
Γ(2q+1) + c3

5
t−t3q

0
Γ(3q+1) .

(25)



Fractal Fract. 2024, 8, 271 10 of 19

The parameters are set to a = 25, b = 2, c = 10, d = 4, k = 10, m = 0.1, and n = 0.01.
With the IC = [1, 1, 2, 1, 1], the order set at 0.7, and the number of iterations set at 10,000,
the 2D phase diagrams on the x − y and x − z planes are presented in Figures 5a and 5b,
respectively. Additionally, the 3D phase diagrams on the x − y − z space and y − z − w
space are illustrated in Figure 5c,d. The final time series diagram of x is depicted in
Figure 5e.

(a) (b)

(c) (d)

(e)

Figure 5. Phase diagrams and time series of the system (19). (a) x − y plane, (b) x − z plane,
(c) x − y − z space, (d) y − z − w space, (e) time series of x.
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3.2. Dynamic Analysis of the 5D FOMHS

The Lyapunov exponent spectrum, consisting of three lines, represents the system’s
characteristics and is calculated with the ICs set to [1, 1, 1, 1, 1]. The parameters are as
follows: b = 2, c = 7, d = 4, k = 5, m = 0.1, n = 0.01. The fractional-order system,
denoted as (19), is characterized by an order of e = 0.7, with 20,000 iterations and a step
size of 0.005, operating within the parameter range of [10, 14]. The Lyapunov exponent
spectrum, depicted in Figure 6a, shows that when a varies within the interval [10, 11], the
three lines consistently remain close to or below zero, indicating no positive Lyapunov
exponents and positioning the system (19) in a periodic state. When a lies within [12.5, 12.8]
or [13.2, 13.4], a positive Lyapunov exponent emerges, signaling a chaotic state for the
fractional-order system. When d is within [13.5, 14], the green line stays closer to zero
compared to the blue and red lines, resulting in two positive Lyapunov exponents and
suggesting that the system consistently exhibits hyperchaotic behavior within this interval.
This demonstrates that the fractional-order system retains the hyperchaotic characteristics
of its integer-order counterpart while still exhibiting complex dynamic changes. The dense
clustering of points in the bifurcation diagram, shown in Figure 6b, further illustrates
this phenomenon.

(a) (b)

Figure 6. Lyapunov exponent spectrum and bifurcation diagram of system (19) with a in [10, 14].
(a) Lyapunov exponent spectrum, (b) bifurcation diagram.

The IC remains unchanged, with the system parameters for the system (19) set as
follows: a = 15, c = 7, d = 4, k = 5, m = 0.1, n = 0.01, order e = 0.7, the number
of iterations at 20,000, and the step size at 0.005. As shown in Figure 7a, the Lyapunov
exponent spectrum with b ranging from 1 to 4 reveals complex dynamics. For b ∈ [3, 3.9],
all exponent lines are close to or below zero, indicating a periodic state, especially as the
red line—despite being above zero—is closer to it than the blue line, thus considered
as zero. In the ranges b ∈ [1, 1.2] and [1.3, 1.6], the system enters a hyperchaotic state
with the whole spectrum showing this characteristic. For b ∈ [2, 2.7], the system is in a
chaotic state, characterized by a positive Lyapunov exponent. Figure 7b, the bifurcation
diagram, corresponds to the behaviors depicted in Figure 7a, highlighting the system (19)’s
complex dynamics.
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(a) (b)

Figure 7. Lyapunov exponent spectrum and bifurcation diagram of the system (19) about b in [1, 4].
(a) Lyapunov exponent spectrum, (b) bifurcation diagram.

The IC is still [1, 1, 1, 1, 1], and the system (19) parameter settings are a = 15,
b = 2, d = 4, k = 5, m = 0.1, n = 0.01, and order e is 0.7. System (19) parameter c
is changed within [4, 8]. As can be seen from Figure 8a, when c ∈ [4, 4.8], the system (19) is
in a periodic state; when c ∈ [4.8, 7.1], the system (19) is in a chaotic state; when c ∈ [7.1, 8],
the system (19) is in a hyperchaotic state. These dynamic behaviors can also be observed
by bifurcation of Figure 8b.

(a) (b)

Figure 8. Lyapunov exponent spectrum and bifurcation diagram of the system (19) about c in [4, 8].
(a) Lyapunov exponent spectrum, (b) bifurcation diagram.

The IC remains the same, and the parameters are established as follows: a = 15,
b = 2, c = 6, k = 5, m = 0.1, n = 0.01, order e is 0.7. Parameter d in the system (19)
varies within the range [3, 6]. According to the exponential spectrum in Figure 9a, when d
is between [3, 3.2], the system (19) is in a hyperchaotic state; when d is within (3.5, 4.3), the
system shows a hyperchaotic to a chaotic state; when d is between [4.5, 6], the system is in a
periodic state. These dynamic behaviors are also visible in the bifurcation diagram shown
in Figure 9b.
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(a) (b)

Figure 9. Lyapunov exponent spectrum and bifurcation diagram of the system (19) about d in [3, 6].
(a) Lyapunov exponent spectrum, (b) bifurcation diagram.

3.3. Coexisting of Attractors

Set the order of the fractional-order system to 0.8. The parameters were set: a = 23.1,
b = 5, c = 10, d = 3, k = 5, m = 0.1, and n = 0.01. Two states were established: State 1,
where the IC of the system was set to[1, 1, 1, 1, 1] and represented by the color blue, and
State 2, where the IC of the system was [−1,−1,−1,−1,−1] and represented by the color
red. Figure 10a,b are the phase diagrams of State 1 and State 2 on the x − w plane and the
x − y − z space, respectively. The system (19)’s 2D phase diagram presents a symmetrical
state, and the 3D phase diagrams do not interfere with each other. The diagrams depict
the chaotic coexistence of States 1 and 2. With all other conditions unchanged and the
order set to 0.7, State 3 was introduced with the only change being the color shift from
blue to green, maintaining all other conditions identical to State 1. Similarly, State 4 was
introduced with the color shifting from red to green, with all other conditions unchanged
from State 2. The phase diagrams show periodic cycles and do not interfere with each
other. The periodic attractors of State 3 and State 4 were found to coexist. Figure 10c,d
are the x − w plane and the x − y − z space, respectively. Compared with integer-order
chaotic systems, fractional-order chaotic systems also exhibit the phenomenon of multiple
coexisting attractors.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. The coexisting phase diagrams of State 1 and State 2 on the x − w plane and the x − y − z
plane. (a) Chaotic coexistence on the x − w plane, (b) chaotic coexistence on the x − y − z space,
(c) periodic coexistence on the x − w plane, (d) periodic coexistence on the x − y − z space.

4. FPGA Implementation

Compared with analog circuits, digital circuits can better avoid environmental effects
such as aging and temperature variations. Memristor-based chaotic systems are usually
implemented in hardware using breadboards and amplifiers. Furthermore, hardware
implementations of chaotic systems typically rely on integer-order chaotic systems.

This paper decides to implement the the system (19) by field-programmable gate
array (FPGA). In this paper, a high-precision fourth-order Runge–Kutta (RK) method is
used to discretized the Adomian resolving approach obtained in the above paper, as can
be seen from the decomposition of the solution in Section 3.1. For the consideration of
insufficient chip resources and other factors, after testing, this paper only realizes the
solution of the first two items x0 and x1. Finally, we chose Vivado as the experimental
development tool because it can provide a floating-point IP core. The FPGA chip used
is the XC7Z0202CLG400I, manufactured by Xilinx, while the development board is the
AX7020pro, made by ALINX Company. For the floating-point standard, we have selected
IEEE754 with a specific precision of 32 bits, comprising 1 bit for the sign, 8 bits for the
exponent, and 23 bits for the mantissa.

Through numerical simulation and comparison, it is confirmed that the system meets
the hardware implementation standards. In order to synthesize the code into logic gates
and perform layout and routing using the synthesis tools provided by the FPGA vendor,
we first construct a stable chaotic signal, and the clock module is set to output a stable
clock signal so as to ensure that the original calculation module of the register module
will be updated continuously with the iterative calculation results. The digital signal
produced is subsequently transformed into an analog signal through a digital-to-analog
converter (DAC) and relayed to an oscilloscope. Following these procedures, the Vivado
simulation platform is utilized for synthesis and implementation. The bitstream file is
generated and burned into the chip within the development board. The chaotic attractor
phase diagram is generated successfully by connecting the development board to the
oscilloscope. Using the control parameters in Figure 5, the simulation consequences are
shown in Figure 11a,b, which are the phase diagrams on the x − y and x − z planes of
the hyperchaotic attractor, and the corresponding Figure 11c,d show the oscilloscope
results. Based on the experimental consequences, the hardware experimental consequences
coincide with the MATLAB simulation consequences in Figures 5a and 11b. Table 1 lists the
resource utilization required to implement the system project according to Vivado2018.3. It
shows that implementing this chaotic system requires considerable resource overhead.
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Table 1. Resource utilization efficiency in implementing chaotic system using FPGA.

Resource Utilization Available Utilization

LUT 34212 53200 64.30
LUTRAM 1634 17400 9.39

FF 45313 106400 42.58
DSP 165 220 75
IO 34 125 27.20

BUFG 1 32 3.13

(a) (b)

(c) (d)

Figure 11. FPGA oscilloscope result diagrams and device diagrams. (a) Oscilloscope result diagram
on the x − y plane, (b) device diagram on the x − y plane, (c) oscilloscope result diagram on the x − z
plane, (d) device diagram on the x − z plane.

5. NIST Test

The technology of pseudo-random number generators is a fundamental technology in
fields such as national defense security, privacy protection, encrypted communication, in-
strument and equipment manufacturing, and so on. PRNGs based on chaos have ergodicity
and random behavior characteristics, which can avoid the shortcomings of a short period
or correlation in general generators and have been widely used [16–20]. To utilize the
proposed 5D FOMHS for pseudo-random generation, it is imperative to verify and assess
the randomness and statistical properties of the purported randomness markers and actual
randomness. Accordingly, this paper will conduct NIST testing using a statistical package
comprising fifteen tests to quantify and evaluate the randomness of the digital sequence
generated by an encrypted random or pseudo-random number generator. Following this,
an analysis of chaotic sequences generated by fractional hyperchaotic systems will be
provided. These sequences, spanning 100 million bits, are partitioned into n = 100 groups,
each containing 1 million bits. The evaluation outcomes from NIST are summarized in
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Table 2, indicating that the p-values of a total of fifteen statistical tests are greater than 0.01.
Additionally, the formula for computing p-valuesT is as follows:

P − valuesT = igamc(
9
2

,
x
2
), (26)

where

x =
10

∑
i=1

(Fi − (s/10)2)

s/10
, (27)

where Fi represents the figure of p-values in the subinterval i, while s is the sample ca-
pacity. Evaluation criteria: The sequence is considered uniformly distributed when total
p-values > 0.0001.

Table 2. NIST test results.

No. Statistical Test p-Value Proportion p-ValueT

1 Frequency 0.051942 0.98 0.0645
2 Block Frequency 0.657933 0.99 0.7642
3 Cumulative Sums 0.534146 0.98 0.6577
4 Runs 0.275709 0.98 0.3781
5 Longest Run 0.534146 0.99 0.6577
6 Rank 0.383827 1 0.5055
7 FFT 0.759756 0.98 0.8406
8 Non-Overlapping Template 0.883171 1 0.9217
9 Overlapping Template 0.021999 0.99 0.0223

10 Universal 0.678686 0.98 0.7805
11 Approximate Entropy 0.262249 1 0.3611
12 Random Excursions 0.883171 1 0.0243
13 Random Excursions Variant 0.574903 1 0.0118
14 Serial 0.455937 1 0.5819
15 Linear Complexity 0.883171 0.98 0.9217

The histogram of non-overlapping templates provides a visual representation of the
distribution and allows for a straightforward assessment of the sequence’s uniformity.
Histogram Figure 12 demonstrates that the allocation of the sequence is uniform. The
consequences indicate that the fractional-order hyperchaotic model has passed all tests.
Therefore, the proposed 5D FOMHS exhibits excellent random characteristics, meeting the
application standards of pseudo-random generators.

Figure 12. p-values histogram of non-overlapping templates.
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6. Conclusions

This paper proposes a 5DFOMHS with multiple coexisting attractors by coupling a
memristor to an integer-order system. Firstly, based on the definition of calculus, we use the
Adomian decomposition method to decompose the terms in fractional-order differential
equations for simulation and discretization purposes. In addition, we also used phase
diagrams, time-domain diagrams, bifurcation diagrams, and Lyapunov exponent spectrum
to study the dynamic motion characteristics of the system, discovering rich dynamic
characteristics and application potential. Specifically, the system can generate multiple
coexisting attractors with constant parameters. Subsequently, we implemented the first
two items of 5D FOMHS on FPGA and obtained results consistent with the simulation
phase diagram in Matlab. Finally, we evaluated 5D FOMHS using NIST tools, confirming
its good randomness and potential for secure communication applications. Future work
may explore applications in fields such as deep learning and biomedical research.
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