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1. Introduction
In this work, we consider the controllability problem of a system of partial functional

integrodifferential equations (PFIDEs) involving nonlocal conditions of the form

ζ ′1(t) = Aζ1(t) +
∫ t

0
Υ(t − s)ζ1(s) ds + f1(t, ζ1(t), ζ2(t)) + C1u1(t), t ∈ J := [0, a],

ζ ′2(t) = Aζ2(t) +
∫ t

0
Υ(t − s)ζ2(s) ds + f2(t, ζ1(t), ζ2(t)) + C2u2(t), t ∈ J := [0, a],

ζ1(0) = ζ0,1 + H1(σ1(ζ1), ζ1),
ζ2(0) = ζ0,2 + H2(σ2(ζ2), ζ2),

(1)

where X represents a Banach space and the states ζ1(·) and ζ2(·) take values in X . The opera-
tor A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup (S(t))t≥0 on X .
(Υ(t))t≥0 denotes a family of closed linear operators, with the domain D(A) ⊂ D(Υ(t)). Ad-
ditionally, ζ0,1, ζ0,2 ∈ X . The functions fi : J × Xα × Xα → X , Hi : J × C(J;Xα) → Xα, and
σi : C(J;Xα) → J, for i = 1, 2, are given and are determined later. Ci : U → X , i = 1, 2, are bounded
linear operators. The control inputs ui(·), i = 1, 2, are given functions in L2(J; U), a Banach space
of admissible control functions, with U as a Banach space. Here, Xα denotes the domain where the
fractional power operator Aα is defined and is equipped with an appropriate norm described later.

Control theory is an interdisciplinary field within engineering and applied mathematics that
focuses on understanding the behavior of dynamic systems. Controllability is one of the vital and
important problems in control theory and engineering, enabling the control and improvement of
system performance for stability and efficiency in complex dynamic environments. The concept
of controllability originated in finite dimensions, with an extension to the infinite-dimensional case
first proposed in 1971, followed by further advancements [1,2]. Generally, controllability refers to the
ability to steer the control system from any initial state to a desired state by applying an admissible set
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of control inputs u within a finite time (see [3,4]). Numerous scholars have thoroughly examined the
controllability of diverse nonlinear dynamical systems; one can consider the papers [5–8].

In recent years, partial integrodifferential equations (PIDEs) have garnered extensive attention
as an active research area with intensive investigation. PIDEs serve as a valuable instrument for
modeling and describing complex systems in different phenomena in engineering and physics [9]. A
highly effective method for studying these equations involves transforming them into integrodiffer-
ential evolution equations within abstract spaces and studying the resulting equation using resolvent
operator theory.

Grimmer et al. [10–12] demonstrated the existence of solutions for the integrodifferential
evolution equation in the formν′(t) = Aν(t) +

∫ t

0
Υ(t − s)ν(s) ds + h(t), t ≥ 0,

ν(0) = ν0,
(2)

in Banach space X , where the function h : R+ → X is continuous. Using the resolvent operator
corresponding to the following homogeneous linear equation, they established the representation as
well as the existence and uniqueness of solutions for Equation (2)ν′(t) = Aν(t) +

∫ t

0
Υ(t − s)ν(s) ds, t ≥ 0,

ν(0) = ν0.

The resolvent operator is crucial for resolving Equation (2) in both strict and weak senses,
effectively substituting the need for the conventional C0-semigroup. Based on Grimmer’s work [10],
many authors have applied resolvent operator theory to study different topics related to nonlinear
integrodifferential evolution equations (see, for instance, [13,14]).

On the other hand, problems involving nonlocal Cauchy conditions have demonstrated better
effects and more significant applicability than conventional problems [15]. In particular, the works
proposed by Byszewski et al. [16,17] represent the first attempt to study semilinear evolution
equations with a nonlocal condition. So far, many researchers have focused on studying the different
topics of different types of evolution equations and integrodifferential evolution equations subject
to nonlocal conditions employing a variety of common methods such as fixed point theorems,
see [13,18–20].

As is well known, the controllability of PFIDEs is a challenging problem. Several authors have
extensively studied, using semigroup methods, the controllability of nonlinear systems represented
by PFIDEs particularly when Υ(·) = 0 and the nonlinear term f (·, ·) includes an integral term, and
many interesting findings have been obtained; see for instance, [21,22], and the references cited
therein. When Υ(·) ̸= 0, research on the controllability of various integrodifferential systems has
attracted great interest from mathematicians in recent years [23]. For instance, in [23], the authors
have investigated the controllability problem for a class of nonlocal PFIDEs in Banach spaces. They
achieved the controllability results through the utilization of the resolvent operator and the measure
of noncompactness (MNC), without requiring the compactness of the resolvent operator.

In recent years, coupled systems of differential equations have garnered considerable interest
from researchers for their practical importance in mathematical modeling, especially when dealing
with highly complex systems. In 2009, Precup [24] emphasized the importance of matrices con-
verging to zero and the significance of vector-valued norms in investigating semilinear operator
systems. Since then, several researchers have investigated the existence of solutions for systems of
differential equations by applying the vector version of fixed-point theorems in generalized Banach
spaces (GBSs) [25–28]. For instance, in [27,28], authors combined the approach of a measure of
noncompactness with matrices converging to zero to study coupled systems of differential equations.
Controllability of a system of differential equations is crucial in various fields of study. Attaining
controllability in these systems is advantageous, as it allows for the effective manipulation of the
dynamics of interconnected phenomena. Researchers have shown controllability properties through
investigations of systems such as coupled wave equations on manifolds [29], coupled Stokes or
Navier–Stokes systems [30], and coupled Korteweg–de Vries equations [31]. To the best of our knowl-
edge, the controllability of coupled systems of integrodifferential equations, subject to state-dependent
nonlocal conditions in GBSs, has not yet been studied.

Inspired by the works [27,28], we utilize Schaefer’s fixed point theorem to investigate the
controllability problem for system (1) via resolvent operators in the sense given by Grimmer. We
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stress here that the nonlocal condition in (1) is more general. The functions Hi(·, ·) for i = 1, 2 in the
nonlocal conditions are state-dependent, thus generalizing many nonlocal conditions mentioned in
the literature. In addition, we do not require the compactness assumption of the resolvent operator
and functions Hi(·, ·), i = 1, 2, in the nonlocal conditions. Moreover, in numerous practical models,
the nonlinear term f may incorporate spatial derivatives. In such scenarios, the problem cannot be
addressed in the whole space X , thus making the discussion in [23] invalid. To ensure that the results
are accurate for this type of system, we mainly investigate the problem by utilizing the α-norm and
fractional power operator.

We conclude this section by briefly outlining the structure of this manuscript. In Section 2, we
start by presenting some fundamental concepts and definitions necessary for deriving our findings.
Section 3 is devoted to establishing the controllability of the nonlocal system (1) in the α-norm. Lastly,
in Section 4, an illustrative example is presented to demonstrate the applicability of the proposed
theoretical findings.

2. Basic Concepts and Preliminaries
We primarily recall some notations, provide definitions, and present initial results that are

necessary to demonstrate our main findings in this section.
We begin this section by presenting some preliminaries on the fractional power operator. In this

article, let Y = D(A) be endowed with the graph norm ∥ · ∥1. The operator A : D(A) ⊂ X → X is
the infinitesimal generator of an analytic semigroup (S(t))t≥0 on X . The resolvent set of A is denoted
by ϱ(A), which includes 0 (i.e., 0 ∈ ϱ(A)). Thus, one can define the fractional power operator Aα for
α ∈ (0, 1] as a closed linear operator on its dense set D(Aα) with the following norm

∥ζ∥α = ∥Aαζ∥, for ζ ∈ D(Aα).

Let Xα denote the space (D(Aα), ∥ · ∥α); clearly, Xα is a Banach space for every α ∈ (0, 1]. In
addition, C(J;Xα) denotes the Banach space of all continuous functions from J to Xα with the norm

∥ζ∥C = sup
t∈J

∥Aαζ(t)∥, ζ ∈ C(J;Xα).

Next , we recall well-known basic definitions and essential facts of GBS.

Definition 1 ([32]). Let X be a vector space on K = R or C. A mapping ∥ · ∥ : X → Rn
+ is called a

vector-valued norm on X if it satisfies the subsequent conditions:

(c1) ∥ζ∥ ≥ 0 for all ζ ∈ X ; if ∥ζ∥ = 0, then ζ = (0, . . . , 0);
(c2) ∥λζ∥ = |λ|∥ζ∥ for all ζ ∈ X , and λ ∈ K;
(c3) ∥ζ1 + ζ2∥ ≤ ∥ζ1∥+ ∥ζ2∥ for all ζ1, ζ2 ∈ X .

We point out that a generalized normed space is denoted by the pair (X , ∥ · ∥X ). Moreover,
when the generalized metric induced by ∥ · ∥X (i. e., d(ζ1, ζ2)= ∥ζ1 − ζ2∥X ) is complete, the space
(X , ∥ · ∥X ) is referred to as a GBS, where

∥ζ1 − ζ2∥X =

 ∥ζ1 − ζ2∥1
...

∥ζ1 − ζ2∥n

.

Remark 1. The notions of Cauchy sequence, convergent sequence, continuity, completeness, open subsets, and
closed subsets in a GBS in the sense of Perov are similar to those for standard metric spaces.

Throughout this article, let Cα := C(J;Xα)× C(J;Xα) be equipped with the vector norm ∥ · ∥Cα

defined as
∥u∥Cα

=
(
∥u1∥C, ∥u2∥C

)
,

for all u = (u1, u2). Thus, clearly,
(
Cα, ∥ · ∥Cα

)
is a GBS.

Lemma 1 ([33]). A square matrix M of real numbers is said to be convergent to zero if and only if its spectral
radius ϱ(M) is strictly less than 1. In other words, this means that all the eigenvalues of M are in the open
unit disc, i.e., |λ| < 1; for every λ ∈ C with det(M− λI) = 0, where I denotes the unit matrix of Mn×n(R).
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Lemma 2 ([34]). Let

Ξ =
( ξ11 −ξ12

−ξ21 ξ22

)
,

where ξ11, ξ12, ξ21, ξ22 ≥ 0 and det(Ξ) > 0. Thus, Ξ−1 is order-preserving.

In the sequel, we introduce some fundamental results and definitions related to the theory of
resolvent operators [10,11].

Definition 2 ([10]). A family (R(t))t≥0 of bounded linear operators on X is called a resolvent operator for

ζ ′(t) = Aζ(t) +
∫ t

0
Υ(t − s)ζ(s) ds, for t ≥ 0,

ζ(0) = ζ0 ∈ X ,
(3)

if

(a) R(0) = I and ∥R(t)∥ ≤ Meωt for some constants M ≥ 1 and ω ∈ R.
(b) For each ζ ∈ X and t ≥ 0, the function R(t)ζ is continuous.
(c) R(t) ∈ L (Y) for t ≥ 0. For any ζ ∈ Y , R(·)ζ ∈ C1(J;X ) ∩ C(J;Y) such that for each t ≥ 0, we

have

R′(t)ζ = AR(t)ζ +
∫ t

0
Υ(t − s)R(s)ζ ds

= R(t)Aζ +
∫ t

0
R(t − s)Υ(s)ζ ds.

Next , we impose the following assumptions on the operators A and (Υ(t))t≥0 for Equation (3),
as introduced in [12]:

(V1) An analytic semigroup on X is generated by the operator A. Let (Υ(t))t≥0 be a closed operator
on X , with a domain at least D(A) for almost every t ≥ 0, with Υ(t)ζ is strongly measurable for
every ζ ∈ D(A), and ∥Υ(t)ζ∥ ≤ η(t)∥ζ∥ for η ∈ L1

loc(0,+∞) with η∗(λ) absolutely convergent
for Re(λ) > 0.

(V2) There exists a bounded operator ϱ(λ) := (λI − A − Υ∗(λ))−1 on X , which is analytic for λ in
the region Λ defined as

Λ =
{

λ ∈ C : | arg(λ)| < π

2
+ b

}
,

for b ∈ (0, π/2). In Λ, if 0 < ε ≤ |λ|, there is a constant M = M(ε) > 0 such that ∥ϱ(λ)∥ ≤
M|λ|−1.

(V3) Aϱ(λ) ∈ L (X ) for λ ∈ Λ, and is analytic from Λ to L (X ). Furthermore, for λ ∈ Λ, Υ∗(λ)
belongs to L (Y ,X ), and Υ∗(λ)ϱ(λ) ∈ L (Y ,X ). Given ε > 0, there is M = M(ε) > 0 so that
ζ ∈ D(A) and λ ∈ Λ with |λ| ≥ ε, ∥Aϱ(λ)ζ∥+ ∥Υ∗(λ)ϱ(λ)ζ∥ ≤ M|λ|−1∥ζ∥1 and ∥Υ∗(λ)∥ → 0
as |λ| → +∞ in Λ. Additionally, ∥Aϱ(λ)ζ∥ ≤ M|λ|−n∥ζ∥ for some n > 0, and λ ∈ Λ with
|λ| ≥ ε. Moreover, there is D ⊂ D(A2) that is dense in Y such that A(D) and Υ∗(λ)(D) are
contained in Y and ∥Υ∗(λ)ζ∥1 is bounded for every ζ ∈ D and λ ∈ Λ with |λ| ≥ ε.

Based on [12], it can be deduced that under the mentioned hypotheses (V1)–(V3), there is a
resolvent operator (R(t))t≥0 for the system (3) defined by

R(t) =

(2πi)−1
∫

Γ
eλtϱ(λ) dλ, t > 0,

I, t = 0.

where ϱ(λ) = (λI − A − Υ∗(λ))−1 and Γ denotes a contour type employed to acquire an analytic
semigroup. We can select a contour Γ to be included in the region Λ formed by Γi, i = 1, 2, 3, where

Γ1 =
{

reiϕ : r ≥ 1
}

,

Γ2 =
{

eiθ : −ϕ ≤ θ ≤ ϕ
}

,

Γ3 =
{

re−iϕ : r ≥ 1
}

,
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for ϕ ∈
(

π
2 , π

2 + b
)

and b > 0. The above curves are oriented so that the imaginary part of λ is
increasing on Γ1 and Γ2. Furthermore, the operator R(t) is analytic, and there are some constants
M, Mα > 0 such that

∥R(t)∥ ≤ M and ∥AαR(t)∥ ≤ Mαt−α, t ∈]0, a], α ∈ [0, 1].

We point out that, in general, R(t) and Aα do not necessarily commute. Fortunately, this
commutative condition can be achieved in many cases. For instance, consider the case where Υ(t) can
be expressed as Υ(t) = β(t)A, with β representing a scalar function given over the interval ]0,+∞[.
In such instances, the linear Equation (3) transforms intoζ ′(t) = Aζ(t) +

∫ t

0
β(t − s)Aζ(s) ds, for t > 0,

ζ(0) = ζ0 ∈ X .
(4)

If we impose some conditions (V′
1)− (V′

3) in [13] on the system (4), then, according to [12], the
conditions (V1)− (V3) are satisfied, and hence R(t) is analytic. In this scenario, AαR(t)ζ = R(t)Aαζ

for any ζ ∈ D(Aα). For the sake of simplicity, this condition is always considered to be valid.

Lemma 3 ([35]). R(t) is continuous for t > 0 in the uniform operator topology of L (X ).

Lemma 4 ([19]). AR(t) is continuous for t > 0 in the uniform operator topology of L (X ).

Now, we present the notion of a generalized measure of noncompactness (MNC).

Definition 3 ([27]). Let X be a GBS and (A,≤) be a partially ordered set. A mapping ϑ : P(X ) →
A×A× . . . ×A is referred to as a generalized MNC on X , if for every D ∈ P(X ), the following condition
holds:

ϑ(coD) = ϑ(D),

where

ϑ(D) :=

 ϑ1(D)
...

ϑn(D)

.

An illustration of an MNC is the Kuratowski MNC µ, established for Θ ⊂ X as follows:

µ(Θ) := inf
{

ε ∈ Rn
+ : there are n ∈ N such that Θ is included in a finite cover

of sets, each having diameters less than or equal to ε
}

.

Lemma 5 ([36]). Let Π ⊂ C(a, b) be bounded and equicontinuous. Then, c̄o(Π) ⊂ C(a, b) is also bounded
and equicontinuous.

Definition 4 ([27]). Let X ,Y be two generalized normed spaces and a map N : X → Y . N is said to be
an Ξ-contraction (with respect to ϑ) if there exists Ξ ∈ Mn×n(R+) converging to zero such that, for every
D ∈ P(X ), we have

ϑ(N(D)) ≤ Ξϑ(D).

Finally, to prove our result, we conclude this section by stating a version of Schaefer’s fixed-point
theorem for ϑ-condensing operators in a GBS.

Theorem 1 ([27]). Let X be a GBS, and let N : X → X be a continuous and ϑ-condensing operator. Suppose
that the set

Aλ :=
{

ζ ∈ X : ζ = λN(ζ), λ ∈ (0, 1)
}

is bounded. Then, N possesses a fixed point.
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3. Controllability Results
Our focus in this section is on investigating the controllability of the nonlocal system (1). We

impose some conditions guaranteeing the controllability of the mild solution. We begin by defining
the mild solution for system (1) as follows.

Definition 5. A mild solution of the coupled system (1) is a function (ζ1, ζ2) ∈ Cα such that
ζ1(t) = R(t)(ζ0,1 + H1(σ1(ζ1), ζ1)) +

∫ t

0
R(t − s) [ f1(s, ζ1(s), ζ2(s)) + C1u1(s)] ds, t ∈ J.

ζ2(t) = R(t)(ζ0,2 + H2(σ2(ζ2), ζ2)) +
∫ t

0
R(t − s) [ f2(s, ζ1(s), ζ2(s)) + C2u2(s)] ds, t ∈ J.

(5)

Definition 6. The nonlocal system (1) is said to be controllable on the interval J if for any ζ0,1, ζ0,2, ζ1,a, ζ2,a ∈
X , there are a pair of controls u1, u2 ∈ L2(J; U) such that the mild solution (ζ1(·), ζ2(·)) of (1) satisfies the
terminal condition (ζ1(a), ζ2(a)) = (ζ1,a, ζ2,a).

We impose the following sufficient assumptions to guarantee the controllability of the coupled system (1):

(H1) The operator resolvent is continuous in the uniform topology.
(H2) The functions fi : J ×Xα ×Xα → X , for i = 1, 2, satisfy the following:

(i) The functions fi(t, ·, ·) : Xα ×Xα → X are continuous for every t ∈ J, and the functions
fi(·, ζ1, ζ2) : J → X are measurable for every ζ1, ζ2 ∈ Xα.

(ii) There exist 0 ≤ q < 1 − α and functions Pi(·) ∈ L
1
q (J,R+), Qi(·) ∈ L

1
q (J,R+) for i = 1, 2,

such that for every t ∈ J and ζ1, ζ2 ∈ Xα, we have

∥ fi(t, ζ1, ζ2)∥ ≤ Pi(t)∥ζ1∥α +Qi(t)∥ζ2∥α.

(iii) For i = 1, 2, there are functions ℓ fi
∈ L1(J,R+) such that, for any bounded set D× D̃ ⊂

Xα ×Xα and every t ∈ J, we have

µ
(

fi(t,D, D̃)
)
≤ ℓ fi

(t)
(

µ(D) + µ(D̃)
)

.

(H3) The nonlocal functions Hi(·, ·) : J × C(J;Xα) → Xα and the function σ(·) : C(J;Xα) → J are
both continuous and satisfy the following:

(i) For each i = 1, 2, there are positive constants ℵi and h̄i such that

∥H1(σ1(ζ1), ζ1)∥α ≤ ℵ1 + h̄1∥ζ1∥C, ζ1 ∈ C(J;Xα),

and
∥H2(σ2(ζ2), ζ2)∥α ≤ ℵ2 + h̄2∥ζ2∥C, ζ2 ∈ C(J;Xα).

(ii) There exist ℓHi > 0 such that for any bounded Πi ⊂ C(J;Xα), i = 1, 2, we have

µ
(

Hi(σi(Πi), Πi)
)
≤ ℓHi sup

t∈J

{
µ(Πi(t))

}
.

(H4) (i) The linear operators Wi : L2([0, a]; U) −→ X , i = 1, 2, are defined as follows

Wiui =
∫ a

0
R(a − s)Ciui(s) ds (6)

such that these operators have bounded inverse operators (Wi)
−1 taking values in L2(J; U)

/KerWi.
(ii) There are positive constants Mwi and Mci , i = 1, 2, satisfying

∥Wi
−1∥ ≤ Mwi , and ∥Ci∥ ≤ Mci .

(iii) There exist kwi (·) ∈ L1(J;R+) and kci ≥ 0 such that for any bounded sets D1 ⊂ X and
D2 ⊂ U,

µ(W−1
i (D1)(t)) ≤ kwi (t)µ(D1), µ(Ci(D2)(t)) ≤ kci µ(D2(t)).
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Lemma 6. If the hypotheses (H2)(ii), (H3)(i), and (H4)(i)− (ii) are satisfied. Then, the following bounds
hold for the control inputs u1(t) and u2(t) of the system (1):

Mu1 = Mw1

[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+M

( q − 1
q

)1−q
a2−q

(
∥P1∥

L
1
q
∥ζ1∥C + ∥Q1∥

L
1
q
∥ζ2∥C

)]
,

Mu2 = Mw2

[
∥ζ2,a∥+ M

[
∥ζ0,2∥+ ∥A−α∥

(
ℵ2 + h̄2∥ζ2∥C

)]
+M

( q − 1
q

)1−q
a2−q

(
∥P2∥

L
1
q
∥ζ1∥C + ∥Q2∥

L
1
q
∥ζ2∥C

)]
,

(7)

where 
u1(t) = W1

−1
{

ζ1,a − R(a)ζ1(0)−
∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

u2(t) = W2
−1

{
ζ2,a − R(a)ζ2(0)−

∫ a

0
R(a − s) f2(s, ζ1(s), ζ2(s)) ds

}
(t)

(8)

for t ∈ J.

Proof. Indeed, for t ∈ [0, a], we have

∥u1(t)∥ =
∥∥∥W−1

1

{
ζ1,a − R(a)

[
ζ0,1 + H1(σ1(ζ1), ζ1)

]
−

∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

∥∥∥
=

∥∥∥W−1
1

{
ζ1,a − R(a)

[
ζ0,1 + A−α Aα H1(σ1(ζ1), ζ1)

]
−

∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

∥∥∥
≤ Mw1

[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+ M

∫ a

0

(
P1(s)∥ζ1∥α +Q1(s)∥ζ2∥α

)
ds
]

≤ Mw1

[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+ M

(
∥ζ1∥C

∫ a

0
P1(s) ds + ∥ζ2∥α

∫ a

0
Q1(s) ds

)]
≤ Mw1

[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+ M

( q − 1
q

)1−q
a2−q

(
∥P1∥

L
1
q
∥ζ1∥C + ∥Q1∥

L
1
q
∥ζ2∥C

)]
= Mu1 .

Similarly, we can demonstrate that

∥u2(t)∥ =
∥∥∥W−1

2

{
ζ2,a − R(a)

[
ζ0,2 + H2(σ2(ζ2), ζ2)

]
−

∫ a

0
R(a − s) f2(s, ζ1(s), ζ2(s)) ds

}
(t)

∥∥∥
≤ Mw2

[
∥ζ2,a∥+ M

[
∥ζ0,2∥+ ∥A−α∥

(
ℵ2 + h̄2∥ζ2∥C

)]
+ M

( q − 1
q

)1−q
a2−q

(
∥P2∥

L
1
q
∥ζ1∥C + ∥Q2∥

L
1
q
∥ζ2∥C

)]
= Mu2 .

Theorem 2. Assume that the hypotheses (H1)–(H4) are valid. Then, the coupled system (1) is controllable
on J given that

max
{

G∆
1 ; G̃∆

2

}
< 1,
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where

G∆
1 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P1∥

L
1
q
+ Mh̄1

+ Mα Mc1 Mw1 h̄1

( a1−α

1 − α

)
+ Mα Mc1 Mw1 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P1∥

L
1
q

,

G̃∆
2 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q2∥

L
1
q
+ Mα Mc2 Mw2 M∥A−α∥h̄2

( a1−α

1 − α

)
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1( a3−α−q

1 − α

)
∥Q2∥

L
1
q

.

Proof. Before proceeding with the proof, using techniques from [27], we consider an example of
MNC in Cα := C(J;Xα)× C(J;Xα) defined as

µC(Θ1 × Θ2) =
(
µ1(Θ1), µ1(Θ2)

)T

=


wT

0 (Θ1) + sup
t∈J

{
e−η

∫ t
0 ℓ f1 (τ) dτµ(Θ1(t))

}
wT

0 (Θ2) + sup
t∈J

{
e−η

∫ t
0 ℓ f2 (τ) dτµ(Θ2(t))

}
,

for Θ = Θ1 × Θ2 ⊂ Cα, where µ is the Kuratowski MNC in Xα, Θ(t) =
{

υ(t) ∈ Xα; υ ∈ Θ
}

, and
for a nonempty bounded subset Θ of the space C(J;Xα), u ∈ Θ, ε > 0, the modulus of continuity,
denoted by wT(u, ε), is defined as

wT(u, ε) = sup
{
∥u(s)− u(t)∥; t, s ∈ [0, a] and |t − s| ≤ ε

}
.

For any Θ ⊂ Xα, we set

wT(Θ, ε) = sup
{

wT(u, ε); u ∈ Θ
}

, and wT
0 (Θ) = lim

t→ε
wT(Θ, ε).

Now, we introduce the operator N : Cα → Cα in the following manner:

(N(ζ1, ζ2))(t) =
(

N1(ζ1, ζ2)(t)
N2(ζ1, ζ2)(t)

)
, t ∈ J,

where
N1(ζ1, ζ2)(t) = R(t)(ζ0,1 + H1(σ1(ζ1), ζ1)) +

∫ t

0
R(t − s) [ f1(s, ζ1(s), ζ2(s)) + C1u1(s)] ds.

N2(ζ1, ζ2)(t) = R(t)(ζ0,2 + H2(σ2(ζ2), ζ2)) +
∫ t

0
R(t − s) [ f2(s, ζ1(s), ζ2(s)) + C2u2(s)] ds.

One can see that the fixed points of N correspond to mild solutions of nonlocal system (1). We
shall prove that N fulfills all hypotheses stated in Theorem 2.

Let us consider a subset Bδ ⊆ Cα such that

Bδ := {(ζ1, ζ2) ∈ Cα : ∥(ζ1, ζ2)∥ ≤ δ},

where δ = (δ1, δ2) > 0. Clearly, Bδ is a closed, bounded, and convex set in Cα.

Initially, we show that N(Bδ) ⊂ Bδ. Clearly, it suffices to establish that for any δ, there exists a
positive constant ℘ = (℘1;℘2) such that for every (ζ1, ζ2) ∈ Bδ, the following holds

∥N(ζ1, ζ2)∥Cα
≤ (℘1,℘2) := ℘.
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In fact, for each (ζ1, ζ2) ∈ Bδ and t ∈ [0, a], it yields that

∥N1(ζ1, ζ2)(t)∥α ≤
∥∥R(t)[ζ0,1 + H1(σ1(ζ1), ζ1)]

∥∥
α
+

∫ t

0
∥R(t − s) f1(s, ζ1(s), ζ2(s))∥α ds

+
∫ t

0
∥R(t − s)∥α∥C1∥∥u1(s)∥ ds.

From the assumptions (H2)(ii), (H3)(i), (H4)(i)− (ii), and Lemma 6, we obtain

∥N1(ζ1, ζ2)(t)∥α

≤ M
[
∥ζ0,1∥α +

(
ℵ1 + h̄1∥ζ1∥C

)]
+ Mα

∫ t

0
(t − s)−α

(
P1(s)∥ζ1(s)∥α +Q1(s)∥ζ2(s)∥α

)
ds

+ Mα Mc1

∫ t

0
(t − s)−α∥u1(s)∥ ds

≤ M
[
∥ζ0,1∥α +

(
ℵ1 + h̄1∥ζ1∥C

)]
+ Mα

( 1 − q
1 − α − q

)1−q
a1−α−q

(
∥P1∥

L
1
q
∥ζ1∥C + ∥Q1∥

L
1
q
∥ζ2∥C

)
+ Mα Mc1 Mw1

( a1−α

1 − α

)[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+ M

( q − 1
q

)q−1
a2−q

(
∥P1∥

L
1
q
∥ζ1∥C + ∥Q1∥

L
1
q
∥ζ2∥C

)]
≤ M

(
∥ζ0,1∥α + ℵ1

)
+ Mα Mc1 Mw1

( a1−α

1 − α

)[
∥ζ1,a∥+ M∥ζ0,1∥+ M∥A−α∥ℵ1

]
+

[
Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P1∥

L
1
q
+ Mh̄1

+ Mα Mc1 Mw1

( a1−α

1 − α

)(
M∥A−α∥h̄1 + M

( q − 1
q

)1−q
a2−q∥P1∥

L
1
q

)]
∥ζ1∥C

+
[

Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q1∥

L
1
q

+ Mα Mc1 Mw1

( a1−α

1 − α

)(
M
( q − 1

q

)1−q
a2−q∥Q1∥

L
1
q

)]
∥ζ2∥C

≤ M
(
∥ζ0,1∥α + ℵ1

)
+ Mα Mc1 Mw1

( a1−α

1 − α

)[
∥ζ1,a∥+ M∥ζ0,1∥+ M∥A−α∥ℵ1

]
+

[
Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P1∥

L
1
q
+ Mh̄1

+ Mα Mc1 Mw1 M∥A−α∥h̄1

( a1−α

1 − α

)
+ Mα Mc1 Mw1 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P1∥

L
1
q
)
]
δ1

+
[

Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q1∥

L
1
q

+ Mα Mc1 Mw1 M
( q − 1

q

)q−1( a3−α−q

1 − α

)
∥Q1∥

L
1
q

)]
δ2.

Thus, we have

∥N1(ζ1, ζ2)∥C ≤ ℘1.
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Similarly, we have

∥N2(ζ1, ζ2)(t)∥α

≤
∥∥∥R(t)[ζ0,2 + H2(σ2(ζ2), ζ2)]

∥∥∥
α
+

∫ t

0
∥R(t − s) f2(s, ζ1(s), ζ2(s))∥ ds

+
∫ t

0
∥R(t − s)∥α∥C2∥∥u2(s)∥ ds

≤ M
(
∥ζ0,2∥α + ℵ2

)
+ Mα Mc2 Mw2

( a1−α

1 − α

)[
∥ζ2,a∥+ M∥ζ0,2∥+ M∥A−α∥ℵ2

]
+

[
Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P2∥

L
1
q
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P2∥

L
1
q
)
]
δ1

+
[

Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q2∥

L
1
q
+ Mα Mc2 Mw2 M∥A−α∥h̄2

( a1−α

1 − α

)
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1( a3−α−q

1 − α

)
∥Q2∥

L
1
q

)]
δ2.

Thus,

∥N2(ζ1, ζ2)∥C ≤ ℘2.

Consequently,

∥N(ζ1, ζ2)∥Cα
≤ (℘1,℘2) := ℘.

We further verify that N is continuous. To do so, let {ζn
1}n∈N ⊂ Bδ and {ζn

2}n∈N ⊂ Bδ be a
couple of sequences such that ζn

1 −→ ζ∗1 and ζn
2 −→ ζ∗2 in Cα for some ζ∗1 , ζ∗2 ∈ Bδ, as n −→ ∞. Then,

we have
lim

n−→∞
ζn

1 (t) = ζ1
∗(t), lim

n−→∞
ζn

2 (t) = ζ2
∗(t), t ∈ J.

Combining this with the conditions (H2)(ii) and (H3)(i), one obtains that

lim
n−→∞

H1(σ1(ζ
n
1 ), ζn

1 ) −→ H1(σ1(ζ
∗
1), ζ∗1), (9)

and
lim

n−→∞
f1(s, ζn

1 (s), ζn
2 (s)) −→ f1(s, ζ∗1(s), ζ∗2(s)), a.e. s ∈ [0, a]. (10)

By (H2)(ii), it yields that for a.e. s ∈ [0, t], t ∈ [0, a],

(t − s)−α∥ f1(s, ζn
1 (s), ζn

2 (s))− f1(s, ζ∗1(s), ζ∗2(s))∥ ≤ 2(t − s)−α
(

δ1P1(s) + δ2Q1(s)
)

. (11)

Moreover, by virtue of the definition of N1, it follows that

∥N1(ζ
n
1 , ζn

2 )(t)− N1(ζ
∗
1 , ζ∗2)(t)∥α

≤ M∥H1(σ1(ζ
n
1 ), ζn

1 )− H1(σ1(ζ
∗
1), ζ∗1)∥α

+
∫ t

0
∥AαR(t − s)∥∥ f1(s, ζn

1 (s), ζn
2 (s))− f1(s, ζ∗1(s), ζ∗2(s))∥ ds

+
∫ t

0
∥C1∥∥AαR(t − s)∥∥un

1 (s)− u∗
1(s)∥ ds.

Therefore, given the Lebesgue integrability of the function s −→ 2(t− s)−α
(

δ1P1(s)+ δ2Q1(s)
)

for a.e. s ∈ [0, t], t ∈ [0, a] and by (9)–(11) and the Lebesgue dominated convergence theorem, we
obtain that, for t ∈ [0, a],

∥N1(ζ
n
1 , ζn

2 )− N1(ζ
∗
1 , ζ∗2)∥C −→ 0 as n −→ ∞.

Similarly, we obtain

∥N2(ζ
n
1 , ζn

2 )− N2(ζ
∗
1 , ζ∗2)∥C −→ 0 as n −→ ∞.

Hence, it follows that the operator N is continuous on Cα.
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Now, we need to demonstrate that the operator N maps bounded sets into equicontinuous sets
in Cα. To do so, we show that the set {N(ζ1, ζ2), (ζ1, ζ2) ∈ Bδ} ⊂ Cα is equicontinuous on [0, a]. Let
0 < t1 < t2 ≤ a and ε be small enough, such that 0 < ε < t1 < t2 ≤ a, then

∥N1(ζ1, ζ2)(t2)− N1(ζ1, ζ2)(t1)∥α

≤ ∥R(t2)− R(t1)∥
(
∥ζ0,1∥α + ∥H1(σ1(ζ1), ζ1)∥α

)
+

∫ t2

t1

∥AαR(t2 − s)∥
[
∥ f1(s, ζ1(s), ζ2(s))∥+ ∥C1∥∥u1(s)∥

]
ds

+
∫ ε

0
∥AαR(t2 − s)− AαR(t1 − s)∥

[
∥ f1(s, ζ1(s), ζ2(s))∥+ ∥C1∥∥u1(s)∥

]
ds

+
∫ t1

ε
∥AαR(t2 − s)− AαR(t1 − s)∥

[
∥ f1(s, ζ1(s), ζ2(s))∥+ ∥C1∥∥u1(s)∥

]
ds.

Using assumptions (H2)(ii), (H3)(i), we obtain

∥N1(ζ1, ζ2)(t2)− N1(ζ1, ζ2)(t1)∥α

≤ ∥R(t2)− R(t1)∥
(
∥ζ0,1∥α + (ℵ1 + h̄1δ1)

)
+ Mα

( 1 − q
1 − α − q

)1−q
(t2 − t1)

1−α−q
[
δ1∥P1∥

L
1
q
+ δ2∥Q1∥

L
1
q

]
+ Mα∥C1∥∥u1(s)∥

(t2 − t1)
−α+1

−α + 1

+ 2M
[
δ1∥P1∥

L
1
q

( q − 1
q

)1−q
ε2−q + δ2∥Q1∥

L
1
q

( q − 1
q

)1−q
ε2−q + ∥C1∥∥u1(s)∥

]
+ sup

s∈[ε,t1]

∥AαR(t2 − s)− AαR(t1 − s)∥
[
δ1∥P1∥

L
1
q

( q − 1
q

)1−q
(t1 − ε)2−q

+ δ2∥Q1∥
L

1
q

( q − 1
q

)1−q
(t1 − ε)2−q

]
; (12)

by virtue of Lemmas 3 and 4, we readily obtain that the right-hand term of the inequality (12) tends to
zero as t2 −→ t1 and ε −→ 0. As a consequence, we can conclude that N1 maps Bδ into an equicontin-
uous family of functions. Similarly, we can establish that N2 maps Bδ into an equicontinuous family
of functions. Consequently, we infer that the set N(Bδ) is equicontinuous in Cα, which implies that
w0(N(Bδ)) = 0.

Next, we show that N is generalized µC-condensing operator. To prove this, let Ω = Ω1 × Ω2
be a bounded equicontinuous subset of Bδ. It follows that N : Ω → Ω is a continuous and bounded
operator and that NiΩ, for i = 1, 2, are bounded and equicontinuous (see, Lemma 5). By (H2)(iii),
(H3)(ii), and (H4)(iii), for t ∈ [0, a], we have

µ(N1(Ω)(t)) ≤ µ
({

R(t)
[
ζ0,1 + H1(σ1(ζ1), ζ1)

]
; ζ1 ∈ Ω1

})
+ µ

({∫ t

0
R(t − s)

[
f1(s, ζ1(s), ζ2(s)) + C1u1(s)

]
ds; (ζ1, ζ2) ∈ Ω

})
,

where

µ({u1(t)})

= µ

(
W−1

1

{
ζ1,a − R(a)

[
ζ0,1 + H1(σ1(ζ1), ζ1)

]
−

∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

)
≤ kw1 (t)µ

({
ζ1,a − R(a)

[
ζ0,1 + H1(σ1(ζ1), ζ1)

]
−

∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

)
≤ kw1 (t)µ

({
ζ1,a − R(a)

[
ζ0,1 + H1(σ1(ζ1), ζ1)

]}
(t)

)
+ kw1 (t)µ

({ ∫ a

0
R(a − s) f1(s, ζ1(s), ζ2(s)) ds

}
(t)

)
≤ kw1 (t)MℓH1 sup

t∈J

{
µ(Ω1(t))

}
+ 2kw1 (t)M

∫ t

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds
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Thus, we have

µ((N1Ω)(t)) ≤ MℓH1 sup
t∈J

{
µ(Ω1(t))

}
+ 2M

∫ t

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

+2Mkc1

∫ t

0

[
kw1 (s)MℓH1 sup

t∈J

{
µ(Ω1(t))

}
+2kw1 (s)M

∫ a

0
ℓ f1

(w)
(

µ(Ω1(w)) + µ(Ω2(w))
)

dw
]

ds

≤ MℓH1 sup
t∈J

{
µ(Ω1(t))

}
+ 2M

∫ t

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

+2M2kc1ℓH1 sup
t∈J

{
µ(Ω1(t))

} ∫ a

0
kw1 (s) ds

+4M2kc1

( ∫ a

0
kw1 (s) ds

)( ∫ a

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

≤ MℓH1 sup
t∈J

{
µ(Ω1(t))

}
+ 2M

∫ t

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

+2M2kc1ℓH1∥kw1∥L1 sup
t∈J

{
µ(Ω1(t))

}
+4M2kc1∥kw1∥L1

( ∫ a

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

≤ MℓH1

(
1 + 2Mkc1∥kw1∥L1

)
sup
t∈J

{
µ(Ω1(t))

}
+2M

(
1 + 2Mkc1∥kw1∥L1

) ∫ t

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

Set ℓ1 = 1 + 2Mkc1∥kw1∥L1 , we obtain

µ((N1Ω)(t)) ≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+ 2Mℓ1

∫ a

0
ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds

≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+

∫ a

0
2Mℓ1ℓ f1

(s)
(

µ(Ω1(s)) + µ(Ω2(s))
)

ds.

Set K1(t) = 2Mℓ1ℓ f1
(t), we have

µ((N1Ω)(t)) ≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+

∫ a

0
K1(s)

(
µ(Ω1(s)) + µ(Ω2(s))

)
ds

≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+

∫ a

0
K1(s)eη

∫ t
0 K1(τ)dτe−η

∫ t
0 K1(τ)dτ

(
µ(Ω1(s))

+µ(Ω2(s))
)

ds

≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+
(

µ1(Ω1) + µ1(Ω2)
) ∫ t

0

( eη
∫ s

0 K1(τ) dτ

η

)′

ds

≤ MℓH1ℓ1 sup
t∈J

{
µ(Ω1(t))

}
+

(
µ1(Ω1) + µ1(Ω2)

) eη
∫ s

0 K1(τ) dτ

η
.

Thus,

µ1(N1(Ω)) ≤
(

MℓH1ℓ1 +
1
η

)
µ1(Ω1) +

1
η

µ1(Ω2)

Similarly, we obtain

µ1(N2(Ω)) ≤ 1
η

µ1(Ω1) +
(

MℓH2ℓ2 +
1
η

)
µ1(Ω2).
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Since N(Ω) is equicontinuous, we obtain

µC(NΩ) ≤ W̃
(

µ1(Ω1)
µ1(Ω2)

)
,

such that

W̃ =

 MℓH1ℓ1 +
1
η

1
η

1
η

MℓH2ℓ2 +
1
η

.

Now, let us check if W̃ converges to zero. To do so, let ℓ = max
(
ℓH1ℓ1; ℓH2ℓ2

)
; we calculate

det
(

W̃ − λI2×2

)
=

(
λ −

(
Mℓ+

1
η

))2
− 1

η2

=
(

λ − Mℓ− 2
η

)(
λ − Mℓ

)
.

Thus, we obtain λ1 = Mℓ +
2
η

and λ2 = Mℓ. Since Mℓ < 1, there exists η > 0 such that(
Mℓ+

2
η

)
< 1. Hence, ϱ(W̃) < 1, which follows that W̃ converges to zero. Thus, we conclude that

N is a generalized µC-condensing operator.

Finally, it remains to show the priori bounds on solutions. In fact, let (ζ1, ζ2) ∈ Aλ with
(ζ1, ζ2) = λN(ζ1, ζ2). Then, ζ1 = λN1(ζ1, ζ2) and ζ2 = λN2(ζ1, ζ2). From the assumptions (H2)(ii),
(H3)(i), and (H4)(i)− (ii), for t ∈ J and each (ζ1, ζ2) ∈ Aλ, we have

∥ζ1(t)∥α ≤ λ∥N1(ζ1, ζ2)(t)∥α

≤
∥∥R(t)

[
ζ0,1 + H1(σ1(ζ1), ζ1)

]∥∥
α
+

∫ t

0

∥∥R(t − s) f1(s, ζ1(s), ζ2(s))
∥∥

α
ds

+
∫ t

0

∥∥R(t − s)C1u1(s)
∥∥

α
ds

≤ M
[
∥ζ0,1∥α +

(
ℵ1 + h̄1∥ζ1∥C

)]
+ Mα

∫ t

0
(t − s)−α

(
P1(s)∥ζ1(s)∥α +Q1(s)∥ζ2(s)∥α

)
ds

+ Mα Mc1 Mw1

∫ t

0
(t − s)−α

[
∥ζ1,a∥+ M

[
∥ζ0,1∥+ ∥A−α∥

(
ℵ1 + h̄1∥ζ1∥C

)]
+ M

( q − 1
q

)1−q
a2−q

(
∥P1∥

L
1
q
∥ζ1∥C + ∥Q1∥

L
1
q
∥ζ2∥C

)]
ds.

Then,

∥ζ1∥C ≤ M
(
∥ζ0,1∥α + ℵ1

)
+ Mα Mc1 Mw1

( a1−α

1 − α

)[
∥ζ1,a∥+ M∥ζ0,1∥+ M∥A−α∥ℵ1

]
+

[
Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P1∥

L
1
q
+ Mh̄1

+ Mα Mc1 Mw1 h̄1

( a1−α

1 − α

)
+ Mα Mc1 Mw1 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P1∥

L
1
q

]
∥ζ1∥C

+
[

Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q1∥

L
1
q

+ Mα Mc1 Mw1 M
( q − 1

q

)q−1( a3−α−q

1 − α

)
∥Q1∥

L
1
q

]
∥ζ2∥C

≤ G∆
0 + G∆

1 ∥ζ1∥C + G∆
2 ∥ζ2∥C,
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where

G∆
0 = M

(
∥ζ0,1∥α + ℵ1

)
+ Mα Mc1 Mw1

( a1−α

1 − α

)[
∥ζ1,a∥+ M∥ζ0,1∥+ M∥A−α∥ℵ1

]
,

G∆
1 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P1∥

L
1
q
+ Mh̄1

+ Mα Mc1 Mw1 h̄1

( a1−α

1 − α

)
+ Mα Mc1 Mw1 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P1∥

L
1
q

,

G∆
2 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q1∥

L
1
q
+ Mα Mc1 Mw1 M

( q − 1
q

)q−1( a3−α−q

1 − α

)
∥Q1∥

L
1
q

.

Similarly, we obtain

∥ζ2(t)∥α ≤ λ∥N2(ζ1, ζ2)(t)∥α

≤
∥∥R(t)

[
ζ0,2 + H2(σ2(ζ2), ζ2)

]∥∥
α
+

∫ t

0

∥∥R(t − s) f2(s, ζ1(s), ζ2(s))
∥∥

α
ds

+
∫ t

0

∥∥R(t − s)C2u2(s)
∥∥

α
ds

≤ M
[
∥ζ0,2∥α +

(
ℵ2 + h̄2∥ζ2∥C

)]
+ Mα

∫ t

0
(t − s)−α

(
P2(s)∥ζ1(s)∥α +Q2(s)∥ζ2(s)∥α

)
ds

+ Mα Mc2 Mw2

∫ t

0
(t − s)−α

[
∥ζ2,a∥+ M

[
∥ζ0,2∥+ ∥A−α∥

(
ℵ2 + h̄2∥ζ2∥C

)]
+ M

( q − 1
q

)1−q
a2−q

(
∥P2∥

L
1
q
∥ζ1∥C + ∥Q2∥

L
1
q
∥ζ2∥C

)]
ds.

Then,

∥ζ2∥C ≤ M
(
∥ζ0,2∥α + ℵ2

)
+ Mα Mc2 Mw2

( a1−α

1 − α

)[
∥ζ2,a∥+ M∥ζ0,2∥+ M∥A−α∥ℵ2

]
+

[
Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P2∥

L
1
q

+ Mα Mc2 Mw2 M
( q − 1

q

)q−1 a3−α−q

1 − α
∥P2∥

L
1
q

]
∥ζ1∥C

+
[

Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q2∥

L
1
q
+ Mα Mc2 Mw2 M∥A−α∥h̄2

( a1−α

1 − α

)
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1( a3−α−q

1 − α

)
∥Q2∥

L
1
q

]
∥ζ2∥C

≤ G̃∆
0 + G̃∆

1 ∥ζ1∥C + G̃∆
2 ∥ζ2∥C,

where

G̃∆
0 = M

(
∥ζ0,2∥α + ℵ2

)
+ Mα Mc2 Mw2

( a1−α

1 − α

)[
∥ζ2,a∥+ M∥ζ0,2∥+ M∥A−α∥ℵ2

]
,

G̃∆
1 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥P2∥

L
1
q
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1 a3−α−q

1 − α
∥P2∥

L
1
q

,

G̃∆
2 = Mα

( 1 − q
1 − α − q

)1−q
a1−α−q∥Q2∥

L
1
q
+ Mα Mc2 Mw2 M∥A−α∥h̄2

( a1−α

1 − α

)
+ Mα Mc2 Mw2 M

( q − 1
q

)q−1( a3−α−q

1 − α

)
∥Q2∥

L
1
q

.

Hence, [
∥ζ1∥C
∥ζ2∥C

]
≤ Z̃

[
∥ζ1∥C
∥ζ2∥C

]
+

[
G∆

0
G̃∆

0

]
,
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where

Z̃ =

[
G∆

1 G∆
2

G̃∆
1 G̃∆

2

]
.

It implies that

(I − Z̃)

[
∥ζ1∥C
∥ζ2∥C

]
≤

[
G∆

0
G̃∆

0

]
. (13)

Since (I − Z̃) satisfies all conditions of Lemma 2, (I − Z̃)−1 is order-preserving. Applying
(I − Z̃)−1 to both parts of the inequality (13) yields[

∥ζ1∥C
∥ζ2∥C

]
≤ (I − Z̃)−1

[
G∆

0
G̃∆

0

]
.

As a result of Theorem 1, we conclude that N has at least one fixed point, thereby implying the
controllability of the coupled system (1).

4. An Example
To illustrate the applicability of the theoretical findings, we consider in this section the following

system of PFIDEs with state-dependent nonlocal conditions:

∂z1(t, ξ)

∂t
=

∂2z1(t, ξ)

∂ξ2 +
∫ t

0
η(t − s)

∂2z1(s, ξ)

∂ξ2 ds + h1

(
t,

∂z1(t, ξ)

∂ξ
,

∂z2(t, ξ)

∂ξ

)
+κ1u1(t, ξ), ξ ∈ [0, π], t ∈ [0, 1],

∂z2(t, ξ)

∂t
=

∂2z2(t, ξ)

∂ξ2 +
∫ t

0
η(t − s)

∂2z2(s, ξ)

∂ξ2 ds + h2

(
t,

∂z1(t, ξ)

∂ξ
,

∂z2(t, ξ)

∂ξ

)
+κ2u2(t, ξ), ξ ∈ [0, π], t ∈ [0, 1],

z1(t, 0) = z1(t, π) = 0, 0 ≤ t ≤ 1,

z2(t, 0) = z2(t, π) = 0, 0 ≤ t ≤ 1,

z1(0, ξ) = z0,1(ξ) +
∫ 1

0

∫ π

0
ψ1(s)ϕ1

(
ξ,

∂z1
∂x

(s, x)
)

dx ds, 0 ≤ ξ ≤ π,

z2(0, ξ) = z0,2(ξ) +
∫ 1

0

∫ π

0
ψ2(s)ϕ2

(
ξ,

∂z2
∂x

(s, x)
)

dx ds, 0 ≤ ξ ≤ π,

(14)

where z1(t, ξ) and z2(t, ξ) represent the state variables, z0,1(ξ), z0,2(ξ) ∈ X := L2([0, π]) represent
the initial functions, ui ∈ L2([0, π]) for i = 1, 2, η : [0, a] → R, κi > 0 for i = 1, 2. The description of
the functions ψi and ϕi is provided below.

Now, we assume the following conditions, for i = 1, 2:

(a1) The functions hi : [0, a]×R×R → R are continuous for i = 1, 2; there exists 0 ≤ q < 1 − α and

functions ai(·), bi(·) ∈ L
1
q such that for any x1, x2 ∈ R

|hi(t, x1, x2)| ≤ ai(t)|x1|+ bi(t)|x2|.

(a2) The functions ψi ∈ C([0, 1],R) and satisfies for i = 1, 2; there exists some positive constant ci
such that |ψi(t)| ≤ ci.

(a3) The functions ϕi ∈ C1([0, π]×R) for i = 1, 2 and satisfy that, there exist ki, ki > 0 such that, for
x ∈ R and ξ ∈ [0, π], ∣∣∣ ∂

∂ξ
ϕi(ξ, x)

∣∣∣ ≤ ki|x|+ ki.

(a4) η(·) satisfies g1(λ) := 1 + η∗(λ) ̸= 0 with λg1(λ) ∈ Λ, for λ ∈ Λ, and moreover, if η∗(λ) → 0,
as |λ| → +∞, λ ∈ Λ.

It is worth mentioning that the nonlocal system (14) can describe and model systems that
have frequently arisen in the context of heat flow in materials [37]. The controllability of such
coupled systems is of great practical significance, as external control inputs are applied to steer the
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system to any desired temperatures. First, we are required to rewrite this system in the form of
(1) to apply our controllability results. To do so, let X = U := L2([0, π]). We define the operator
A : D(A) ⊂ X → X by

Azi = z′′i , i = 1, 2,

with
D(A) =

{
zi(·) ∈ X : z′i , z′′i ∈ X , zi(0) = zi(π) = 0

}
.

It is clear that the operator A generates a strongly continuous C0-semigroup (S(t))t≥0 on X ,
which is analytic and compact [38]. Moreover, A has a discrete spectrum given by its eigenvalues,

which are
{
−n2, n ∈ N

}
. The related normalized eigenvectors are en(ξ) =

√
2
π sin(nξ), for n ∈ N.

Consequently, the following well-known properties hold for i = 1, 2:

(p1) If zi ∈ D(A), then (−A)zi =
∞

∑
n=1

n2 < zi, en > en.

(p2) If α = 1
2 and zi ∈ X , (−A)−

1
2 zi =

∞

∑
n=1

1
n
< zi, en > en. Particularly, ∥A−1∥ ≤ 1 and ∥A− 1

2 ∥ ≤ 1.

(p3) The operator A
1
2 is defined as

(−A)
1
2 zi =

∞

∑
n=1

n < zi, en > en, zi ∈ X on D(A
1
2 ),

with

D(A
1
2 ) =

{
zi(·) ∈ X :

∞

∑
n=1

n < zi, en > en ∈ X
}

=
{

zi(·) ∈ X , z′i ∈ X , zi(0) = zi(π) = 0
}

.

Lemma 7 ([39]). If z ∈ X 1
2
, then z is absolutely continuous, z′ ∈ X , and

∥z∥ 1
2
= ∥z′∥ = ∥A

1
2 z∥.

Next, set 
ζ1(t)(ξ) = z1(t, ξ), 0 ≤ t ≤ 1, 0 ≤ ξ ≤ π,

ζ2(t)(ξ) = z2(t, ξ), 0 ≤ t ≤ 1, 0 ≤ ξ ≤ π,

ζ1(0)(ξ) = z1(0, ξ), 0 ≤ ξ ≤ π,

ζ2(0)(ξ) = z2(0, ξ), 0 ≤ ξ ≤ π.

We define also the operator(
Υ(t)w

)
(ξ) = B(t)w′′(ξ), t ∈ [0, a] and ξ ∈ [0, π].

First, we know that for the operator (A, D(A)), there exists b ∈ (0, π
2 ) such that

Λ =
{

λ ∈ C : | arg λ| < π

2
+ b

}
⊂ ϱ(A),

where ϱ(A) represents the resolvent set of the operator A. Thus, based on (a1), the assumptions
(V′

1)− (V′
3) stated in [13] are satisfied. Consequently, the linear system associated with (14) possesses

an analytic resolvent operator denoted by (R(t))t≥0, with R(0) = I, and

R(t)z =
1

2πi

∫
Γ

eλt(λI − A − Υ∗(λ))−1z dλ, λ > 0,

for z ∈ X , where Γ is specified in Section 2.

Since the nonlinear function f includes a term involving the partial derivative, we should discuss
it in the space Xα. For this purpose, we select α = 1

2 . We define the functions fi : [0, 1]×X 1
2
×X 1

2
→ X ,

for i = 1, 2, by

fi(t, ζ1, ζ2)(ξ) = hi(t, ζ1
′(ξ), ζ2

′(ξ)),
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and the functions Hi : [0, 1]× C([0, 1],X 1
2
) → X 1

2
, i = 1, 2, be defined as

H1(σ1(ζ1), ζ1)(ξ) =
∫ 1

0

∫ π

0
ψ1(s)ϕ1

(
ξ, ζ ′1(x)

)
dx ds,

H2(σ2(ζ2), ζ2)(ξ) =
∫ 1

0

∫ π

0
ψ2(s)ϕ2

(
ξ, ζ ′2(x)

)
dx ds,

and also σi(·) : C([0, 1];X 1
2
) → [0, 1], for i = 1, 2, be defined as

σ1(ζ1)(t) = ψ1(t) and σ2(ζ2)(t) = ψ2(t).

Thus, following these notations and definitions, we may rewrite system (14) in the abstract
form (1).

Now, it can readily be checked that the above functions fi(·, ·, ·), Hi(·, ·), σi(·), for i = 1, 2,
satisfy the conditions stated in Theorem 2.
First, assumption (a1) ensures that the functions fi meet the hypothesis (H2)(i) − (ii). In fact, by
applying Lemma 7 and the Cauchy-Schwarz inequality, for ζ1, ζ2 ∈ X 1

2
, i = 1, 2, and t ∈ [0, 1], we have

∥ fi(t, ζ1, ζ2)∥2 =
∫ π

0

∣∣∣hi(t, ζ ′1(ξ), ζ ′2(ξ))
∣∣∣2 dξ

≤
∫ π

0

(
ai(t)|ζ ′1(ξ)|+ bi(t)|ζ ′2(ξ)|

)2
dξ

≤
(
|ai(t)|2

∫ π

0
|ζ ′1(ξ)|2 dξ + 2|ai(t)||bi(t)|

∫ π

0
|ζ ′1(ξ)||ζ ′2(ξ)| dξ

+|bi(t)|2
∫ π

0
|ζ ′2(ξ)|2 dξ

)
≤

(
|ai(t)|2∥ζ1∥ 1

2

2 + 2|ai(t)||bi(t)|∥ζ1∥ 1
2
∥ζ2∥ 1

2
+ |bi(t)|2∥ζ2∥ 1

2

2
)

≤
(
|ai(t)|∥ζ1∥ 1

2
+ |bi(t)|∥ζ2∥ 1

2

)2
.

Thus, we obtain

∥ fi(t, ζ1, ζ2)∥ ≤ Pi(t)∥ζ1∥ 1
2
+Qi(t)∥ζ2∥ 1

2
,

where
Pi(t) = |ai(t)|, Qi(t) = |bi(t)|.

Moreover, the state-dependent functions Hi, i = 1, 2, clearly satisfy the hypothesis (H3), which
is guaranteed by the conditions (a2) and (a3). Now, it remains to verify that the matrix (I − Z̃)−1 is
order-preserving to draw our conclusions. To do so, let

P1(t) =
1

100
e−t2

, Q1(t) =
1

500(
√

t + 1)
e−t2

,

P2(t) =
1
94

( ln(t + 1)
1 + t2

)
, Q2(t) =

1
94

( sin(t)
1 +

√
t

)
.

For q = 2
5 , we calculate

∥P1∥
L

1
q
≃ 0.00785, ∥Q1∥

L
1
q
≃ 0.001062,

∥P2∥
L

1
q
≃ 0.003165, ∥Q2∥

L
1
q
≃ 0.003134.

Additionally, by setting Mα = M = Mci = Mwi = 1, i = 1, 2, we obtain

G∆
1 ≃ 0.02592, G∆

2 ≃ 0.003505,

G̃∆
1 ≃ 0.010451, G̃∆

2 ≃ 0.010351.
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Therefore, we have

(I − Z̃)−1 =

(
1.026569 0.003635
0.010841 1.010272

)
,

which implies that (I − Z̃)−1 is order-preserving. Hence, all conditions (H1) − (H3) stated in
Theorem 2 hold.

Furthermore, we define the operators Ci : L2([0, π]) → L2([0, π]) for i = 1, 2 by Ciui =
κiui(t, ξ), for ξ ∈ [0, π], the operators Wi are defined by

(Wiui)(ξ) =
∫ 1

0
R(1 − s)κiui(s, ξ) ds.

We assume that the operators Wi fulfill the hypothesis (H4); thus, all hypotheses of Theorem 2
hold. Hence, it can be inferred that the coupled system (14) is controllable on the interval [0, 1].

5. Conclusions
This paper presents novel sufficient conditions for establishing controllability in the α-norm

for a system of PFIDEs with nonlocal conditions in GBS. To derive our findings, we employ the
resolvent operator as defined by Grimmer, generalized measures of noncompactness, fractional
power operators, and Schaefer’s fixed-point theorem for condensing operators. We emphasize that
the issue addressed in the current setting is novel and contributes additional insight into studying
nonlocal and nonlinear coupled problems. In forthcoming research, we aim to extend these findings
to systems with discrete nonlocal initial conditions on an infinite interval.
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