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Abstract: The purpose of this work is to investigate the controllability of non-instantaneous impulsive
(NII) Hilfer fractional (HF) neutral stochastic evolution equations with a non-dense domain. We
construct a new set of adequate assumptions for the existence of mild solutions using fractional
calculus, semigroup theory, stochastic analysis, and the fixed point theorem. Then, the discussion is
driven by some suitable assumptions, including the Hille-Yosida condition without the compactness
of the semigroup of the linear part. Finally, we provide examples to illustrate our main result.
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1. Introduction

Due to their widespread applications in numerous significant applied fields, including
diffusion theory, electromagnetism, population dynamics, fluid dynamics, seepage flow in
porous media, heat conduction in materials with memory, autonomous mobile robots, and
traffic models, fractional differential equations (FDEs) have drawn a lot of attention. Clas-
sical theory and applications of FDEs are discussed in the novels [1-6] and papers [7-10].
Hilfer [11] introduced a fractional derivative, which is a generalization of both R-L and
the Caputo fractional derivatives, known as the Hilfer fractional derivative (HFD). Some
authors [12-16] examined the existence of mild solution results of FDEs by utilizing HFD.
Recently, the researcher in [17] investigated the HF neutral stochastic differential equations
(SDEs) with NII by employing the Monch fixed-point method.

The mathematical control theory includes the notion of controllability. A dynamical
system is said to be controllable if it can be guided, by the set of admissible inputs, from an
arbitrary initial state to an arbitrary final state. Several writers have explored controllability
difficulties for various types of dynamical systems (see [18-23]) and the references therein.
The researcher Wang et al. [24] established the controllability of Hilfer fractional NII
semilinear differential inclusions with nonlocal conditions. Recently, the researchers [25]
investigated the controllability of nonlocal HF delay dynamic inclusions with NII and a
non-dense domain.

Since noise and fluctuating systems are frequent and inherent in both artificial and
natural systems, stochastic models ought to be investigated rather than deterministic ones.
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SDEs capture some occurrences in a way that makes them mathematically unpredictable.
For an extensive overview of SDEs and their uses, one can refer to [26-31]. All physical
systems evolving with respect to time experience abrupt changes called impulses. These
impulses can be split into two distinct types: (i) instantaneous impulses and (ii) non-
instantaneous impulses (NII). In a system, impulse occurs for a short time period, which
is negligible when comparing the overall time period with an instantaneous impulse.
Impulsive disturbance, which starts at any time and remains active over a finite time period
is a non-instantaneous impulse. These NII are observed in lasers and in the intravenous
introduction of drugs into the bloodstream. In 2016, Gautam and Dabas [32] established
mild solutions for a class of neutral fractional functional differential equations with NII
Nowadays, most researchers [18,21,24,30,33-36] study non-instantaneous impulses with
the HFD. Researchers delve into the study of non-densely defined operators to tackle the
complexities of control and ensure the efficient operation of a wide range of systems, from
robotics and autonomous vehicles to power grids and biological networks [9,10,14,19,22,25].
As far as we are aware, no research has been published on the subject of controllability in
NII HF neutral stochastic evolution equations with a non-dense domain.

Consider the controllability of NII HF neutral stochastic evolution equations with a
non-dense domain:

"D y(@) — (@, y(@))] = #[y(@) — (@, y(@))] + Bu(@) + F(@,y(@))dW (@),

@ € (ex,@x41] € 7' =(0,c], k=0,1,2,--- N, 1)
y(@) = Gx(®,y(@)), @ € (&g, k], k=1,2,--- N, )
1 y(0) = 1(0,y(0)] = yo, 7 =+m—Im, ©

where H D([)’f stands for the HFD of order m € (0,1) and type [ € [0,1]. Here ¥ = [0, ¢], and
" = (0, c] represent the time intervals. The fixed points @k and e satisfy ex < @41 <
€11, 1=0,1,--- ,N. The operator & : D(&/) C % — % is a non-densely closed linear
operator and generates an integrated semigroup {T ()} >0 in Hilbert space (HS) % with
|| - |l and (-, -). The control function u(-) is provided in L?(¥, ), an HS of admissible control
function with { an HS, F : ¥ x & — & is the appropriate function. Let Z" be another
distinct HS with || - || and (-, -).

The primary contributions of this article are as follows:

1.  This manuscript focuses on the controllability of NII HF neutral stochastic evolution
equations with a non-dense domain.

2. To show the relatively compact requirements, the Hausdorff measure of noncompact-
ness (MNC) is used.

3.  The main result is motivated in abstract space by applying the theory of fractional
calculus, semigroup operators, and methods based on the fixed-point theorem.

4. The discussion is driven by some suitable assumptions, including the Hille-Yosida
condition without the compactness of the semigroup of the linear part.

5. An illustration has been provided to demonstrate the efficiency of the obtained
findings.

The structure of our article is as follows: A few key conclusions and terminology
related to the fixed-point theorem, stochastic analysis, semigroup theory, and fractional
calculus are found in Section 2. We develop the controllability results in Section 3. Lastly,
an example demonstrating the established results is provided in Section 4.

2. Preliminaries

In this section, we introduce some fundamental terminology, definitions, and some
earlier results that are used in this manuscript.

The symbols (%, || - ||) and (., || - ||) represent the two real HS. Consider the complete
probability space (X, &, &) connected to an entire set of right continuous increasing sub
o-algebra {&p : @ € ¥} such that &, C &. Consider a Q-Wiener process W = (Wyp)wo>0,
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identified on (%, &, &), with the covariance operator Q such that Tr(Q) < co. Lp(X, %) is
the set of all square-integrable, strongly measurable % -valued arbitrary components with
a Banach space connected with (E||-, W||%,) 2, which is equal to [ly(+)[|r,(z,2)-

The space of all bounded linear operators from .#° — %, whenever % = .7, is
defined by L(.#, %), which is represented by L(.#"). One may express a non-negative self-
adjoint operator as Q € L(.%). Let LY = LQ(Q%%/ , %) be the space of all Hilbert-Schmidt

operators from Q%% — %, ¢ € LY, which is said to be a Q-Hilbert-Schmidt operator. For
a € [0,c) and v € [0,1], consider the weighted spaces of continuous functions

Cy(la,c], L2(E, %)) = {y € C([a,c], L2(%, 7)) : (@ —a)"y(@) € C([a,c], L2 (X, 7)) }.

Now, we specify C([a,c], L(X, %)) is a Banach space

Ellyllcad Laza)) = ( SITP](@ —a)"ly(@)|).
@€lac

Let AVm - (8771/@111—',-]]/ 77111 - [Sﬂl/wm—&-l](m - O/ 1/2/"' /N)r gk == ((Dklek]l g_k -
[(Dk,c‘lk](k =12, - ,N) Let H = PC1,7(”7, Lz(z,@)) = {y : ((D — Em)liryy € Y,
limwﬁﬁ (@ — sm)1’7y(a7), y € C(Gx, Lr(X, %)) and lim (@) exists, m=0,1,2,-- - ,N,

k=1,2,---,N, with

o—af Y

1
I Wl = {EIY(@)pe, (7,102}

= max max sup E||(@ — &) Ty(@ 2%, max sup E||ly(@ 23 .
{(moa,z,..-,Nwe% I m @) (k:1,2,~»-,Nw€gk ly(@)[I%)

Now, we introduce some assumptions for further analysis:

(A1) & : D(o/) C % — % fulfils the Hille-Yosida presumption, i.e., there exists My > 0
and v € R such that v € (0, +00) C p(«/) and

My

[(al —=)7"|| < m,

n>1.

Set D(&7) = %. Assume 7 to be a part of &7 in D(&/) classified as sy = &y, {y € D(&) :
oy € D(<7)} as the domain of .«%. Subsequently, by referring to [4], the component < of
</ represents a strongly continuous semigroup {T(®@) }o>0 on %y with || T(®@)| < Me"®,
where M and v are constants. Describe sup,, €lo,] T(w) < M.

Assume %, = aR(a, o) := a(al — /)~ with I, the identity operator on %, then
for any y € %, we obtain %,y = y as « — o0 and limy ;e || Bay|| < Mp]ly||. Assume
¥ =Il4+m—Im, then (1 —-7) = (1 —1)(1 —m). Describe C, (¥, %) : {y € C(¥, %) :
limp 0 @1~y (@) exist and finite} equipped with {|ly|, = SUP e (0, |@=Vy(@)] :
v = [+ m — Im}. Undoubtedly, C, (¥, %) is a HS. Note y(@) = @1"Vy(®) for @ € (0, c]
andy € C, (¥, %) iffy € Cy (¥, %).

The Wright function is explained as follows

(—6")
(n—1)'T(1 —mn)

Wm<6) = i

n=1

,0<m<1,0€eC,

which fulfils
TA+7 4o,

© T —
/OQW“‘(Q)"ZQ_F(HM)' >
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Definition 1. [17,24] An &p-adapted stochastic process y() is called a mild solution of the
system (1)—(3) if the succeeding integral equation is fulfilled:

Sim(@)yo + (@, y(@)) + [o’ Qm(@ — e)a(al — o)~ Bu(e)de
+ Jo" Qu(@ —e)a (M— )V F (e,y(e))dW(e), for @ € [0,1],
Gx(@,y(®)), for @ € (ex, x|,

(@) = { Sim(@ — €x)[Gx(@, y(ex))] + (@, y(ex)) + [o* Qm(ex — €)a(al — o)1 Bu(e)de
-l-fOka ex —e)a(al — o)1 F(g,y(e))dW (e)

—i—fo Qu (@ — &)a(al — o)1 Bu(e)de

+ [ Qm(@ — e)a(al — o)1 F(e,y(e))dW(e), for @ € (ex, @x11),

where S (@) = I} ™ Qm (@), Qu (@) = @™ 'K (@), Kin(@) = [5> mOWin (6) T(@™6)d6.

Lemma 1. [13]

(i) T(w) is continuous in the uniform operator topology for @ > 0.
(ii)  Sim(@) and Qu(@)are strongly continuous for @ > 0.
(iii) For the linear operators Sy (@) and Qu (@), @ > 0 and for every y € %, we obtain

m—1 M(D'y—l

Q@ < “rs= ¥l 1Sum(@l < Sty

LA

Now, we introduce the definition and some basic characteristics of Hausdorff MNC [37,38].

Definition 2. [39] The Hausdorff MINC y of the set & in the HS %' is specified as
w(2) =inf{e > 0: 2 has a finite € — net in %'},
for each bounded subset & in the HS ¥ .

Definition 3. [37] A continuous and bounded map ¥ : D C X — X is said to be p-contraction if
there exists a constant 0 < x < 1 such that

n(¥(2)) < xu(2),
for every noncompact bounded subset 9 C D, where X is a Banach space.

Lemma 2. [37] If {yn}>y : ¥ — % is a series of Bochner integrable functions with the
measurement ||y, | < B(@), for all @ € ¥ and for n > 1, where B € L'(¥,R), then the function

(@) = u({yn}y) in LY(7,R) and fulfils

u({/@wyn(e)de:n > 1}) §2/0w1p(8)de.

Lemma 3. [37] Let 2 — X be a bounded set; then, a countable set 9y — P exists such that
w(2) < 2u(%).

Definition 4. [24] System (1)—(3) is said to be controllable on the interval ¥ = |0, c| if for each
Yo, Y1 € ¥, there exists a control function u € L2(¥, ) such that any corresponding mild solution

of y(@) for the system (1)—(3) must satisfy the condition 151_7) [y(0) —1(0,y(0))] = yo and
y(¢) =y

Theorem 1. (Darbo-Sadovskii) [37] If 2 C X be closed, bounded and convex. If the continuous
map ¥ : X — Xis a py-contraction, then Y has a fixed-point in 9.
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3. Controllability

In this section, we will demonstrate the existence result, which is based on the Darbo-
Sadovskii fixed-point method; for this, we have the succeeding presumptions:

(H;) The operator T(), @ > 0in & such that || T(@)|| < M where, M > 0 is a constant.
(Hy) (@) The function i : ¥ X % — % is continuous and there exists constants M;, > 0
forallw e ¥,y,ze ¥

El[n(@,y(@)) = h(@,2(@))|* < My(lly - z[?),
E|[n(@,y(@))[I* < Ma(1+ [ly[I*).

(b) There exists a function ®; € L(¥,R*) and i > 0 with sup,, ®1(®@) = 1"
such that for each bounded subset E C %/,

p((@,y)) < @1(@)[sup p(E(@))].
eV
(H3) The function F : ¥ x % — % satisfies

(@) y— F(w,y) is continuous for a.e @ € ¥, and @ — F(w,y) is strongly measur-
able fory € #.

(b) There exists a function M (@) € L(#,R") and a continuous increasing function
P, : [0,00) — (0,00) such that foreveryy € # and @ € ¥,

E|lF(@,y(@)lI? < Mr(@)®2(]ly(@)]?).

(c) There exists a function ®3 € L(¥,R") and 7* > 0 with sup,., P3(@) = F*
such that for every bounded subset E C %/,

w(F(@,y)) < P3(@)[sup u(E(@))].

ey
(Hy4) The functions Gy : (@x,ex] X % — #, k = 1,2, -+ ,N are continuous and fulfil the
preceding requirements:

(@) Fort > 0, there exists positive functions gk (t), k = 1,2,--- ,N dependent on ¢
such that

E||Gx(@, y(@))|I* < 0x(v)-

(b) There exists constants ¢gx > 0 such that for any bounded subset E C %/,

w(Gx(@,y)) <ox sup pu(E(w)), k=12---,N.

@€y ex]
(Hs) (a) The function & : L2(¥,4) — L(¥,%) is bounded, # : L?(¥,4) — ¥ rep-
resented by #'u = Alim foc Qu(c — €)PByu(e)de, and it has an inverse operator
—00
w1l — L2(¥,4)/ker#, and there exist two positive constants M4 and
My such that || 2| ) < M, |7 L@ s/kerny < My

(b) There exists a function @4 € L(¥,R*) and #* > 0 with sup ., P4(@) = #*
such that for each bounded subsetE C %/,

w(771Q)(@)) < @4(@)[sup p(Q(@))].

wey

Theorem 2. If (Hy)-(Hs) holds, then the noninstantaneous impulsive HF neutral stochastic
evolution of Equations (1)—(3) has a mild solution on ¥
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Proof. Depending on hypothesis Hs(a), we can define the control function u(w@), as follows:

u(@) = wl{yl ~ Sym(c — ) [Gri(e,y(en))] — Rl y(en))

EN

~ Qu(en —e)a(al — o) "LF (e, y(e))dW(e)
c
- [ Qnle=enta =) Feyenawe) @
Using this control, we will show that the operator ¥ : X — X is defined by:

Stm(@)yo +71(@,y(@)) + [ Qm(@ — e)a(al — o) "' Bu(e)de

+ [ Qu(@ — e)a(al — /)1 F(e,y(e))dW(e), for@ € [0,1],

Ox(w@,y(@)), forw € (ex, @], k=1,2,..N,
() (@) = { Stm(@ — €x) [Gx (@, y(ex))] + (@, y(ex)) + [o* Qu(ex — e)a(al — o7 )~ Bu(e)de
+ JoF Qulex —e)a(al — o)L F (e, y(e) ) dW(e)

+ [ Qm(@ — e)a(al — o) 7' Bu(e)de

+ [ Qm(@ — e)a(al — o)1 F(e,y(e))AW(e), for @ € (ex, @yi1), k =1,2,..N.

Let us show that using the control function defined by (4), any fixed point for ¥ is a mild
solution for (1)-(3) and satisfies y(0) = yp and y(c) = y;. Infact, if y is a fixed point for ¥,
then from (4), we have

y(c) =Si,m(c —en)[Gn(c y(en))] + e, y(en))
+ [ Qulen — eJalal = o) 1 F e y(e)aW )
+ [ Qnle — e)alal = o) 1 F (e y(e)aw(e)
+ [ Qulen — e)a(al - ) 1 Bu(e)de
+ [ Qnle = oalal o)1 Bu(e)de
=Sim(c—en)[In(c,y(en))] +Ti(c,y(en))
+ [ Qulen — e)alal = o) 1 F (e y(e)aW )
+ [ Qnle -~ e)alal - ) F e y(@)aW(e) + #u(@)
=Sim(c — &) [Gni(e,y(en))] + hle, y(en))
+ [ Qulen — oalal - ) (e y(e)aW )
+ [ Qnle = oaal — ) F (e y(@)aW(e) + 31
—Sim(c—en)[Gn(c y(en))] —h(c y(en))
~ [ Qulen — eutal - ) 1 F (e y(e)aW e
- [ Qnle - eutal - o) L F (e y(e))aw(e)
.

We now prove, using Theorem 1, that ¥ has a fixed point.
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Step1: ¥ : B, = B in X.

Indeed, it is enough to demonstrate for every t > 0, there exists P > 0 such that for
y € Be={y€X, [ly|% <}, wehave |[¥y|% < L.

For @ € [0, @],

sup @2 VE||(¥y)(@)|k <4 sup wf“”{Ens[,m(w)m2+E||h<w,y<w>>||2

@€e[0,] @€e[0,m]
2

E ‘ /0@ Qu (@ — e)a(al — o)~ Bu(e)de

)

4
<4)Y In. )

@ —¢&)a(al — ) L F (e, y(e))dW ()

By Lemma 1, we have

I} = E||Sim(@)yol?

M 2 1)
< 2(y—1 2
- (F(I(l —m) —i—m)) @ Ellyol

According to Lemma 1 and (H;), we obtain

I, = E||i(,y(@))]?
< M1+ ly[1?)
< My(1+rv).

According to Lemma 1 and (Hs)(a), we have
2

I = EH /Ow Qu (@ — &)a(al — o)~ Bu(e)de

< EH /Ow Qun(@ —e)a(al — o) L BW ! (y1 — Sim(c)yo — (e, y(c))

2

/ Qu(c — w)a(al — o) Flw, y(w))dW (w)) de

< 4f|a(al — )" 1|| 121217 1 1211Qum (@ — &)1 (Elly1|I* + EllStm ()yoll* + Ell(e, (<)) I

+E| /OC Qu(c—w)a(al — d)_lf(w,y(w))dW(w)\|2)de
2, mn\2 2
13§4M(2JM,2%M§/<1~?4“1)> (%) {||Y1||2+<1~<[(1_Mm)+m)> @* T VE|yo ?
+Mh(1+t)+Tr(Q)(]l\,/I(ﬁf;]> <) (/ Mz ( )dw)q>2( )}
By using Lemma 1 and (H3)(b), we obtain
_E’ O
MM,

< 1@ (M) (Y [° myeyte st

2
@ —e)a(al — o)L F (e,y(e))dW (e)
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From the above, (5) becomes,

sup @1 VE((¥y) (@)1

@€[0,1]

2
<4 sup " {( o )w2<v-1>E||yo||2+Mh<1+r>

@€[0,m1]

([
vama i () (f) [||y1|2 e I
+ My(141) + Tr(Q <F ( ) (/CMf(w)dw)Cbz(t)}
a8 ([ v

=L,.

Next, for @ € (ex, @k, k=1,2,--- N,

sup E|[(¥y)(@)[% < sup {Ellgk(c@,y(@))lz}
we[ek,wk] (DE[Sk,(Dk]

< ex(v)

— L,

Similarly, for every @ € (ex, @x+1]k =1,2,-- -, N, one can estimate,

sup (@ — Ek)z(l_nr)E” (Yy) (w)H%g

@E [ex,0x]

<6 sup (@— e {EHS[,m(@ — ex) (G (ex, y(ex))] | + E[| (@, y(@)) ||
(DE[Sk,wk]
2

+E /OSk Qum(ex — &)a(al — o)L Bu(e)de

£x 2
+E /0 Ou (ex — e)a(al — o7) "\ F(e,y(e)) AW e)

2

+E /Ow Qu(@ —&)a(al — o) L Bu(e)de

}
2
<6 swp (@ a0 () (@ - s Vo) + M1+

@E [ex,0x] -
2
2002 ag2 M 22(m—1) 2 M o N2(y=1) 2
a0, () & i+ (e ) (@ — eV E Dol

 My(1+1) + TH(Q) (?%})zeﬁm” ([ Mr@i)ox(6)]

+THQ) (ﬁﬁff)zei“‘” ([ Mree)@aro

- /Ow O (@ — &)a(al — o)~ F(e, y(e)) dW(e)
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L AMEME M2, (r(MMY(DﬂmU [|y1||2 n (r([(l_Man))zw — e 2T DE lyo 2
e (e
+Tr(Q)(MM0> ( d€>q>2( )}

) 2= 1)Qk( )+ Mj(1+7)

+ My (1+7)+ Tr(Q )(

< 6¢21-7)

- {<F((1—)+m)
+2 [ 4MEME M (F?ﬁ))zcﬂm—” Il + (MM)ZCZW—UEHW

4+ My(1+1) + TH(Q) (ﬁfg)zcﬂm—l) ( / ‘ M;(w)dw) <I>2(t)]

+Tr(Q)<ﬁf§)2CZ(ml)</°C Mf(g)ds)cbz(r)n

= L.

Let L = max{Ly, L, L3} then for any y € B, we obtain ||(¥y)(@)||% < L
Step 2: ¥ is continuous on B..

Let {y"(®@)}>; C By with @" — y, (n — o) in B.. Therefore, the continuous
functions are fi, # and F for every € > 0, and there exists N such that for any n € N,

E|li(e,y" (e)) — (e, y(e))|I* < e
E||%u" (¢) — %’u(s)”z <€
E|F(ey"(e)) — Fley(e)|* < e
For each @ € ¥, we obtain

M 2
r((1—m)+ m)>

+ My(1+1) + T+(Q) (%)2 (‘i:)z ( /O M;(w)dcu) cpz(t)}
E||F(ey"(e)) — F(e,y(e))|* < 3Tr(Q) My (e) P (x)de.

E|l 20" (¢) — 2ue) |2 < 12M3M2, M3, [||y1||2 T ( 2OV E|lyo 2

By (H1) — (Hs) Lebesgue Dominated Convergence Theorem, for @ € [0, @],

sup @*VE(|(Fy") (@) - (¥y) (@)

<3 sup coz(l7){E||h(£,y"(£))—h(SIY(S))Hz
@€(0,001]
2

E ’ /‘D O (@ — &)a(al — 7)) V[ Bu" (&) — Bu(e) de

}

+E| [ Qu(@ - atal ) [F ey (0) - Fle ()W ()

— 0asn — oo.
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Next, for every @ € (@, ex], k=1,2,--,N,
sup E[[(¥y")(@) — (¥y)(@)|? < sup  E[|Ge(@,y"(@)) — Ge(@,y(@))]*
weY¥ @€ @y, x]

— 0asn — oo.
For any(D € (gkrwk+1]r k= 1/21’ o rN/

sup @*VE| (¥y") (@) — () (@)

<6 s[up ]((D — sk)2(17){E|S[,m(@ — ) [Gr(ex, " (ex)) — G (e, y(ex))] ||
+E[n(@,y"(@)) — (@, y(@))]

Ex 2

+E /0 Qum(ex — &)a(al — o) Bu"(e) — Bu(e)]de

€k 2
+E /0 Qu(ex — )a(al — ) [Fle,y"(e) — Fle y(e))]dW(e)

VE /0°D On(@ — eaal — o)\ [Bu(e) — Bu(e)de]|

)

+E /O‘D Qu(@ —e)a(al — ) [Fle,y"(e)) — Fle, y(e))]dW(e)

— 0asn — oo.

Then,
sup @*1VE||(¥y") (@) — (Py)(@)|? — 0 as n — oo.
e

Therefore, ¥ is continuous.

Step 3: ¥ maps bounded sets into equicontinuous sets of Bs.

Let0 < <13 < @;. Foreveryy € By,

sup @ "VE[|(¥y) () — (¥y) ()2

@€[0,1]

<4 sup wf“‘”{fsn[s[,moz) — S (11)lyol® + El|[f(i2, y(12)) — B2, y(12))] |

CUE[O,LO]]

+E ‘ /011 [Qm(lz —8) — Qm(ll _ €)]0¢(0€I _ %)—ll%)u(e)dg

1) 2
+/ Qu (2 — e)a(al — o7 ) L Bu(e)de

+EH [ Qa2 &) ~ Quln — Olalal ) Fle,y(e)aw(e)
)

E[[(¥y)(2) = (¥ () I> = sup  ElGk(i2,y(12)) = Gu(on,y(1n)) .

@€ (@D, €x)

n / ? Qun (12 — e)a(al — ) F (e, y(e))dW (e)

For 11,1y € (@x, ex|, 1 <1, k=1,2,---,N,
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Similarly, for 11,1, € (ex, @y 1), 11 <12, k=1,2,--- N,

sup ;' VE||(Fy) () — (¥y) ()]

@€(0,001]

<6 S[UP ]((D — )27 {EH[SLm(lz — k) — Spm (1 — ex)]Gr (ex, y(ex)) |12
+ E||[1(r2, y(12)) = (11, y(n))]|?
2

+E|| [M1Qml2 =) = Qu(n — e)lalal ~ ) Bu(e)de

%) 2
+E / Qu (i —e)a(al — o) 1 Bu(e)de

2

+E /Oll [Qu(t2 —€) — Qm(ny —&)]a(al — 7)1 F(e,y(e))dW(e)

)
The RHS of the aforementioned inequalities — 0 as 1 — 11, and since the operators
Sim(+), Om(+) are continuous, we obtain that || (¥y)(12) — (¥y)(11)[|% — 0 independently

of y € B, as 1p — 11, for € sufficiently small. Moreover, Yy, y € B, is equicontinuous. Thus,
Y maps B, into a set of equicontinuous.

VE / ? Qi — e)a(al — o)~ F(e,y(e) )W (e)

Step 4: Prove that ¥ : B, — B, is a p-contraction operator.

Let E C B, then by Lemma 3, there exists a countable set Ey = {y,}5_; C E such
that u(Y(E)(@)) < 2u({yn};"). By the equicontinuousness of B, we know that [E is also
equicontinuous. Then, by Lemma 3, we have

pe(¥(Eo)) = max p(¥(Eo)).

@€[0,c]
Now, define
Sim(@)yo + (@, y(@)) + [3° Qum(@ — e)a(al — /)1 Ru(e)de
+Jy Qu(@ —e)a (061* )1 F(e,y(e))dW(e), for@ € [0,@1], i =0,
Gx(@,y(@)), for@ € (ex, @k, i > 1,

(YE)(@) = { Stm (@ — ex)[Ge(@, y(ex))] + (@, y(ex)) + [ Qu (ex — e)a(al — o) "' Bu(e)de
+ Jo Qu(ex —e)a(al — o)1 F(e,y(e))dW (¢)

+ f5" Qum(@ — e)a(al — /)~ Bu(e)de

+ Jo’ Qu(@ — e)a(al — )1 F (e,y(e))dW(e), for @ € (ex, @yy1], i > 1.

First, we estimate ¥ (E), for @ € [0, @], and we obtain
pe(Y1(E)) < 2puc(¥1(Eo))
— 2 max (¥ (Eo)(@))

@€(0,c]

<2 max} {y (S[,m( )yo + 1@, Eo(w —i—/ Qu(®—e)u (al—d)*lﬂulgo(s)ds

@el0,c

+ /Ow Qu(@ — e)a(al — )1 F (e, Eo@))dw(”ﬂ
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+/Ow Qu(® —s)a(wl—;z%)_ly(%’ulgo(e))de
+ [ Qn(@ - ntat - ) Fle Eofe)) ) aw(e)

<oz o)

/OQmw e)alal = of) Bz, () ) de

| [ @ut@ —etatar ) (Fte Bate)) )awee) |

<491 (@) sup u(Eo(@))]

ocl0@]
+4MM%§MW< = )cp4( )[@1@)[@:&1]#(1@0(@))]
14Ty (Q)];/I(Z:;’( 1 )cl>3( )N s ;1; ]H(Eo(w))]

< 4{1 n MM%I(\:I{”;”MW ( 1 )q>4( )} q>1(w)[wes[1$§oﬂu(Eo<w>)]
+4[1+MM%§M’”( L)o@

MM

)

Q) s (- )@s(@)] sup p(Eofe))]
[ MMOM@MW<‘1“

@€[0,01]

H (@) sup_ p(Eo())

€[0,m1]
m
w3

m

@

><D3(w)[ sup  j(Eo(@))]

€l0,@]
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=i e ()7 e ()7

For @ € (ex, @x], k =1,2,- -+ ,N, we obtain

ue(F2(E)) < 2pc(F2(Eo))
=2 max]y(‘Pz(Eo)( )

@el0,c

<2 max_u[Gk(@, (Ep)(@))]

@e[0,c]
20xp((Eo) (@)

<
< 25 u((Eo)(@)),

where ¢ = 257.
For @ € (ex, @x11], k =1,2,- - ,N, we obtain

He(Y3(E)) < 2pc(¥3(Eo))
= 2(;2@3;] 1(¥3(Eo)(@))

< 2 max [y (S[/m((D —ex) [Gx(@, Eo(ex))] + (@, Eo(@))

@€(0,c]
+ ng Qu (@ — ex)a(a] — o)~ Bug, (ex)dex
n /O Q@ — ex)a(al — o)~ F (e, Bo(ex) ) AW (ex)

+ /Ow Qu(@ — e)a(al — o)~} Bug, (e)de

+./(;me(@—£)1)¢(0¢[— “LF (e, Eole) ]
<2 max [1(Sim(@ - ) lGula y(skm) (@ Ea(e)) )

+y(/ Qu (@ — ex)a(al — o)~ Bug, (ex)dex
([ Qn@ - exalal - o) 1 F(ew e AW (er)

+y(/ Qu(@—¢e)a(al — o)~ 1%UEO()ds>

(

o / Qu (@ — e)a(al — o)\ F(e, Eo(e))dW e ))]
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nax 1 Sum(@ ~ e0Gel@,v(e] ) + (e, Zo(@)) )

el
/Sk O (@ —ex)a(al — d)*lﬂqu (sk)dsk>

0

/ek Qe (@ — ex)a(al — ) Fex, Eo(ek))dW(sk)>
@ —e)a(al — o)1 Bu ug, (e )d)

© — e)a(al — o) F (e, Eo(e))dW e >)

(Mo )]

4M

S Mm@ ) o #((Eo)(@))
+ 49 ()| Sup ]V(]Eo(@))]
MMoMgMy (€7 .
P ()o@ [on@swp (B
MM, [ &®
Tr(Q — | ®3(@)[  su (Eo(@))]
+ Q) e (£) @) sup ulEo }
+4TQ) Fot ()@@ sup u(E(@)]
ratate ()o@ [ @ sup (E(@)
MMy (@™
+Tr(Q)r(m)(m ) we(iw |
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<M o)l sup p((E)(@) +40i(@)] sup  p(Eo(@))]
~T((1-m)+m) @€ (ex, @ i1] @€ (e, @y 1]

MMoMgMy (@™ su
+8 ['(m) ( m )me) {q)l(w)[we(ek,gkﬂ]MEO((D))]
MM, [ o™
+ Q) (m)%(w)[%&gm M(Eo(@))]]
+STHQ) s (f)%(w)[@eézgm u(Eo(@))
4M _
S T ) ) (@ )" e ol H(Eo)(@)
MMoMzMy [ @™
# 12 R (T ) et [gon@) s p(Ea(a)
MMoMzMy [ @™ MM, [ @™
+ (14 oMM (90 (@) () P <m)¢3(‘v”we£§§m #(Eo(@))]
A4M _
= {r(t<1 S e LA
MMoMgzMy (O™ * *
+ [1+2F(m) (m)V/ ]47’1
n [1 + 2 Mgty (‘fu)w] Q) ot (ﬂ)f*}y((l@oxw))
4M _
< {F([(l ") +m) (@~ ex)" o
+ [1 +2MM§](\:%MW <‘*;) W] [zm* + Tr(Q)]}/I(ﬁf)O (i)f*}y((]}io)(w))
< B5((Eo) (@),
where
Y aM _
=~ {0 e
MMoMaMy (@™ T .., MMy (@™ .
[ () o e ()7 ]
H(YE)(@) = p(Y1E) (@) + u(¥2E) (@) + p(¥3E) (@)
< B p((Bo) (@) + E3u((Eo) (@) + E3u((Eo) (@)
< B} + &} + &4]u((Eo) (@)
< B ((Eo) (@)).

Thus, by Definition 1, ¥ is a p-contraction operator. Hence, ¥ has at least one fixed-point
from Theorem 1, and the mild solution also exists.
The results are proved. 0O
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4. Examples
4.1. Example |
Consider the partial Hilfer fractional derivative system,
Lm _ @l _ & _ Iy(@,9)]
p—20
y(@, &
y(@,0) = | (562@”, e (1/3,2/3],

y(®@,0) =y(w, ) =0, @€][0,7],
[y(0) —1:(0,y(0))] = vo, 6)

where D([)’f1 is the HFD of order [ = %,m = %. Let W(@) be a one-dimensional standard
Brownian motion in # represented by || - || on the filtered probability space (%, &, 2).
Consider = [([0, 7], R) equipped with the uniform topology, and let the operator
o :D(o) C ¥ — ¥ be classified by

D(«/) = {y € C([0, 7], R) : y(0) = y(n) = 0}, &7y ="

Then, we have

D(/) = {y € C([0, 7, R) : y(0) = y(7) = 0} # ¥
As we know from [40], &7 fulfils the Hille-Yosida condition with (0,c0) C p(</) and for
a>0,[|R(a, )| < 1. Also,if oy = /yis taken fory € D(<7), by Hille-Yosida condition,
) produces a Cyp-semigroup T(-), which is evidenced by

[0.0)

T(@)y = Z e*”Z‘D(y, en)en,

n=1

where ¢, = \/% sin(ny), n € Nis a complete orthonormal basis in #. Clearly, | T(@)| < 1.
Now, define an infinite dimensional space 4l by

[ee) [ee)
Ll—{u|u—2unenwith Zu%<oo}.
n n

=2 =2

2
We shall define a norm in 4 by |lul|y = (Zf:z u%) .
Define a mapping # € L(4, %) as follows:

Pu =2uer + Y uuey, foru € .
n=2

Obviously, H‘@”L(Ll,@) S \@
Now, we represent the system (6) in the abstract form (1)—(3) by setting

M@, (@)() = 155 (@. 0,
e—2cv

F(w,y(@))(¢) = WW(@C)L

Gul(@,(@))(0) = 555 v(@, D).
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Then, for any bounded set B, C X, we estimate

Ih(@,y(@) = 155 1@, )]l
—2w
1@ y@)l = gy V@l
1

19x(@,y(@)) ]| = 5oz ly(@, &)l

Also, it is easy to verify that,

H(h(@,Eo(@))) = 1551(Eo),
672@
u(F(@,Eo(@))) = WV(EO),
1

H(Gi(@, Bo(®@))) = 230 1(Eo).

Hence, we have that the functions 7, F, G satisfy the hypotheses (Hy) — (Hy). Further, we
assume that the linear operator # : L2(#,41) — % defined by

A—o00

#u= lim /OCQ%(C—S)%’AU(e)ds,

admits an invertible operator and satisfies (Hs).

Hence, all the requirements of Theorem 2 are fulfilled. Therefore, system (6) has at
least one mild solution. Furthermore, system (6) can be steered from the initial state y; to
the final state y;. Thus, system (6) is controllable.

4.2. Example 11

Consider the following partial non-instantaneous impulsive Hilfer fractional neutral
stochastic evolution system of the form

sin 2 sin
D7 [y, 0) - S| - v, ) - SR | 4 sute)

+e “sinwdW(w), @€ (0,1/3]U(2/3,1],

_ cos@ly(@, )|
Y(‘Drg) = W,

y(@,0) =y(@w,7) =0, @e€]0,n],
I "y(0) = 1(0,y(0))] = yo, 7)

@ € (1/3,2/3],

where Dé’fl is the HFD of order [ = 1,m = 1. Let W() be a one-dimensional standard
Brownian motion in ¢ represented by || - || on the filtered probability space (X, &, 2).
Consider # = (([0, 7], R) equipped with the uniform topology and the operator < :
D(«) C % — % to be classified by

D(«) = {y € B3([0, ], R) : y(0) = y(r) = 0}, &y =y".

Then, we have

D(«/) = {y € B([0, 7], R) : y(0) = y(7r) = 0} # &.
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We know from [40] that < fulfils the Hille-Yosida condition with (0, c0) C p() and for
a>0,[|R(e, )| < 1. Also,if @y = /yis taken fory € D(<7), by Hille-Yosida condition,
) produces a Cyp-semigroup T(-), which is evidenced by

X 2
T(@)y = Z e w<y/3n>en/
n=1

where e, = \/% sin(ny), n € Nis a complete orthonormal basis in %'.

Clearly, |[T(@)|| <e!<1=M, @ >0.
Now, define an infinite dimensional space 4l by

Ll:{u|u:2unenwith Zu%<oo}.

n=2 n=2

We shall define a norm in 4 by |lul|y = (220—2 u%)
Define a mapping # € L(4, %) as follows:

PBu = 2uze; + Z uge,, foru € 4.
n=2

Now, E is any bounded subset B, C X. Define

7

M@,y (@)E) = h@, (@) - 2@

F(@,y(@))(0) = F(@,y(@,0)) = e “sine,

Gk(@,y(@))(g) = Gk(@,y(@,)) = M

Hence, we have that the functions 1, F, Gx satisfy the hypothesis (H) — (Hy). Further, we
assume that the linear operator # : L2(¥,41) — % defined by

C
#u= lim / Qi1 (c—e)Byu(e)de,
A—00 /0 8
admits an invertible operator and satisfies (Hs).
Hence, all the requirements of Theorem 2 are fulfilled. Therefore, system (7) has at
least one mild solution. Furthermore, system (7) can be steered from the initial state y; to
the final state y;. Thus, system (7) is controllable.

5. Conclusions

This manuscript deals with the controllability results for NII HF neutral stochastic
evolution equations, which are defined in the non-dense domain. The primary outcomes
are obtained by employing semigroup theory, fractional calculus, stochastic analysis, and
the fixed-point theorem. At the end, we provided an illustration to explain our results.
In the future, we will investigate the optimal control of the Sobolev-type hemivariational
stochastic HF NII differential system with Poisson jumps and a non-dense domain.
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The following abbreviations are used in this manuscript:

FDEs Fractional differential equations
R-L Riemann-Liouville

HF Hilfer fractional

HFD Hilfer fractional derivative
SDEs stochastic differential equations
NII non-instantaneous impulse
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