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Abstract: This research project focuses on developing a mathematical model that allows us to
understand the behavior of the balancing loops in system dynamics in greater detail and precision.
Currently, simulations give us an understanding of the behavior of these loops, but under the premise
of an ideal scenario. In practice, however, accurate models often operate with varying efficiencies
due to various irregularities and particularities. This discrepancy is the primary motivation behind
our research proposal, which seeks to provide a more realistic understanding of the behavior of the
loops, including their different levels of efficiency. To achieve this goal, we propose the introduction
of fractional calculus in system dynamics models, focusing specifically on the balancing loops. This
innovative approach offers a new perspective on the state of the art, offering new possibilities for
understanding and optimizing complex systems.
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1. Introduction

System dynamics (SD), as a modeling and simulation discipline, has emerged as a
fundamental tool in solving complex and dynamic problems across various fields from
business management to environmental science. These models, grounded in systems
theory and computer simulation, empower researchers and professionals to comprehend
and analyze the behavior of dynamic systems over time [1]. The primary objective of
this technique is to capture causal relationships and mechanisms underlying observed
phenomena, providing an invaluable perspective for decision-making and addressing
complex challenges in a world characterized by interconnection and interdependence [2].

System dynamics (SD) emerges as a rigorous and systematic methodology designed
for the modeling and analysis of complex systems, enabling a profound understanding of
how interactions among their components result in dynamic behavior. Through simulation
models, this discipline facilitates the identification of long-term patterns and trends and
assesses how various actions and decisions can impact systemic behavior [3]. In this context,
sensitivity analysis emerges as a highly beneficial tool employed across various disciplines
from economics to engineering and science. Its purpose is to assess how changes in the
values of model variables influence the obtained results, providing valuable information
crucial for making informed decisions [4]. Sensitivity analysis makes it possible to identify
the relatively small set of parameters whose values significantly alter the model’s behavior
or responses to different policies. In this way, parameters worth calculating more accurately
are discovered [5].

Numerous highly relevant applications have been developed in various fields of
knowledge, such as health, the environment, education, and agriculture, that leverage the
sensitivity analysis technique in SD models. These applications have yielded positive results
in understanding behaviors and obtaining models that meet the desired expectations [6–13].

Undoubtedly, SD models pose significant challenges. Selecting the appropriate param-
eters for a sensitivity analysis is intricate and often relies on subjective judgments. This
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situation underscores the urgent need to develop a more analytical and objective approach
to identify the parameters that impact system behavior with greater clarity and simplicity.
There is a significant opportunity to enhance existing mathematical models in SD. Un-
derstanding models and, therefore, reality from a feedback structure-based perspective is
of utmost importance for the SD method. For years, the field has been developing tools
and mathematical methods to perform automated and objective loop dominance analysis
cf. [14–20].

The research conducted by [15] focuses on the “path participation” technique in
system dynamics, systematically analyzing component interactions and assessing feedback
loops’ importance. On the other hand, the paper presented by [16] explores metrics and
analysis of the elasticity of eigenvalues in SD models, highlighting how different approaches
converge inconsistent results. In addition, the study carried out by [18] extends the scope of
methods to identify structural dominance, applying these techniques in more complex and
stochastic models and providing coherent information on the system’s behavior. The three
investments focus on identifying the most dominant or contributing loop in SD models.
However, a common weakness is the need for a definite global mathematical model of the
system, which limits analysis from a different perspective. This limitation highlights the
need to approach the system from broader and more detailed approaches, as proposed in
this research.

The research conducted by [17] focuses on analyzing the internal dynamics of state
variables in dynamic systems, highlighting the importance of expressing time trajectories
through linear combinations of eigenvectors. This approach offers a valuable perspective
on the dynamics of complex systems by reducing the model to a time-invariant state space.
However, there are still opportunities to address variable efficiencies in precise models,
which motivates our research proposal. On the other hand, the article [19] addresses
the relevance of the “Loops that Matter” (LTM) approach in understanding behaviors in
SD models. Although LTM is widely applicable and easy to use, it has limitations in its
original formulation, particularly regarding the impact of a flow in an accumulator on net
flow. Although the article proposes reformulation to address this limitation, an integral
mathematical model of the system is still needed. Our proposal complements this work
by focusing on the detailed identification of balance loops, addressing the need for more
precise and complete dynamic system models.

The authors of [14,20] propose innovative methodologies for transforming system
dynamics simulation models into mathematical models expressed as system transfer func-
tions. While [14] uses the Laplace transform to represent the system in the frequency
domain and thus expands the understanding of models by introducing differential equa-
tions, Ref. [20] employs state space control and representation engineering to obtain a
linear and time-invariant mathematical model. Both contributions strengthen simulation
models in dynamic systems by offering analytical alternatives through modern control
engineering, enabling more informed and appropriate decision-making. However, there is
a complementary area to strengthen SD models where rolling loops are present, which is
the focus of this research project that seeks to understand the behavior of equilibrium loops
in greater detail and precision by introducing fractional calculus.

Current research focuses on balancing loops, also known as negative loops. These
components are fundamental in the search for balance within the system, as they are
designed to adjust the system’s state toward a desired objective or state. Its primary
function is to counteract any disturbance that may divert the system from that objective,
thus ensuring stability and optimal operation.

Negative feedback loops operate by detecting deviations from the desired state and
implementing corrective actions to restore balance. This self-regulation capability allows
systems to maintain stable and predictable behavior over time. All negative feedback loops
share a standard structure, as illustrated in Figure 1, which facilitates their understanding
and analysis in various contexts and disciplines cf. [21].
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Figure 1. Diagram causal of a balancing loop.

Figure 2 illustrates the typical behavior of a rolling model, where a production target
for parts in the textile industry is established. The curve represents the system’s monitoring
of this target, reflecting the ideal and desired behavior.
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Figure 2. Graph of the typical balancing loop in a textile application.

The main objective of this research project is to develop a mathematical model that
allows a more detailed and precise understanding of the behavior of equilibrium loops
in SD. These loops are vital to maintain stability and meet specific objectives within a
simulation model.

The behavior of these balancing loops is usually based on ideal scenarios that do not
fully reflect the complexity of reality. In practice, precise models can operate with varying
efficiencies due to various irregularities and particularities. This discrepancy is the main
engine of our research proposal, which seeks to offer a more realistic understanding of the
behavior of the loops, considering their different levels of efficiency.

To achieve this objective, we propose the introduction of fractional calculation in SD
models, with a specific focus on equilibrium loops. This innovative approach opens up
new perspectives on the state of the art by offering a more accurate way to model and
understand complex systems. By including fractional calculation, we can better capture the
nonlinear nature and temporal dynamics of equilibrium loops, allowing us to effectively
address efficiency variations and other irregularities in practice.

In this research, we focus on two departments of the textile process, which we represent
as two balance loops. To obtain accurate and applicable data, we collaborate with a
company in the southern state of Guanajuato. By analyzing these loops, we evaluate
the efficiencies of the Overall Equipment Efficiency (OEE) model, providing valuable
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information for business managers’ decision-making. The final objective is to contribute to
developing methodologies and tools that allow more effective and efficient management of
complex systems in the industrial field and, in general, to the dynamics of systems.

Fractional calculus (FC) is a branch of mathematics based on the concept of derivatives
and integrals of non-integer or fractional orders. This mathematical discipline has found
a wide range of applications in various fields of knowledge from physics and biology to
engineering and economics. One of the most prominent features of fractional calculus is its
ability to model and understand complex phenomena that exhibit long-term dependencies
and nonlinear behaviors.

In the realm of modeling physical systems, fractional calculus has been used to describe
phenomena such as anomalous diffusion in porous media, particle dynamics in fractal
media, and wave propagation in dispersive media. For example, in a study conducted
by Podlubny [22], fractional calculus was applied to model contaminant diffusion in
aquifers, allowing for a more accurate capture of contaminant propagation in complex
hydrogeological systems.

Fractional calculus has proven helpful in understanding biological phenomena such
as population dynamics, substance diffusion in biological tissues, and neuronal activity
modeling. In a landmark paper by Mainardi [23], the applications of fractional calculus
in modeling population dynamics were explored, highlighting its ability to capture the
complexity of evolving biological systems.

In signal processing, fractional calculus has been used to model and analyze non-
stationary signals and stochastic processes. For instance, in a study by Magin [24], frac-
tional calculus was applied to develop nonlinear time series models, leading to a better
understanding of temporal variability in experimental data.

Another innovative approach in fractional calculus is used to improve the accuracy of
wind energy prediction [25], which is crucial for optimizing the operation of the electrical
grid and harnessing renewable resources. Researchers propose a short-term memory model
to forecast missing wind speed and direction data, and a fractional-order neural network
(FONN) with a fractional activation function to enhance the prediction of generated wind
energy. Through two case studies, the predictive effectiveness of the FONN model in wind
power prediction is demonstrated. This hybrid approach improves forecast accuracy and
addresses data gaps evaluated through mean errors and R2 values.

Another innovation involves presenting a new approach to numerically solving sys-
tems of fractional integro-differential equations [26]. Vieta–Fibonacci polynomials are used
as essential functions, and the projection method for the fractional Caputo order is derived
for the first time. This innovative approach involves an efficient transformation that re-
duces the problem to a system of two independent equations whose solution approximates
the original problem. The efficiency and accuracy of the proposed method are validated,
demonstrating the existence of a solution to the approximate problem and performing an
error analysis. Numerical tests support theoretical interpretations.

Currently, FC is applied in a wide range of knowledge areas, including the analysis of
viscoelastic models [27,28], fractional models of anomalous diffusion cf. [29], analysis of
fractional-order electrical circuits as in [30], and medical image processing [31,32]. Addi-
tionally, the study of the role of vaccines in controlling the spread of COVID-19 involves
fractional models of COVID-19 behavior when vaccines are applied [33]. These are just a
few examples of applications.

Introducing fractional calculus into SD models represents a significant advancement
with essential implications across various fields, including industrial engineering. This
innovation enables a more precise description of complex systems, addressing nonlinear
phenomena and long-term dependence. It results in a deeper understanding of constantly
changing systems and more effective solutions in various disciplines.

In this study, we focused on using fractional calculus to describe the behavior of equi-
librium loops in the presence of irregularities and particularities that hinder ideal behavior.
However, it is essential to note that fractional models present an inherent limitation: they
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do not provide a precise definition of differential or geometry, which raises questions about
their effectiveness. Several proposals have been made in recent years that attempt to give
a physical and geometric interpretation to derivatives and integrals of non-integer order.
Although there is no unified criterion, as in the case of integer operators, some phenomena,
such as viscoelasticity, could not be explained in terms of whole operators. Moreover,
violating the Leibniz rule allows fractional operators to be used in practical applications. In
our work, fractional models seek to interpret the model’s efficiency (balancing loop) where
the ideal case would correspond to an order of derivative equal to 1. Although there is
no unified criterion regarding fractional calculus’s physical and geometric interpretation,
some proposals have been made, such as [34–36]. On the other hand, Tarasov [37] proposes
that one of the rules that fractional operators must meet is violating the Leibniz rule; this
allows fractional calculation to be used in various physical applications.

Significant studies have focused on studying systems of integral-differential fractional
equations in fractional calculus. These investigations stand out for their resolution through
innovative numerical methods, simplifying the search for solutions [38,39]. However, the
main strength of our research project lies in the fact that we offer an analytical solution to
this type of equation, which represents a remarkable advance over previous approaches
mainly focused on numerical strategies.

It is a versatile tool with multidisciplinary applications ranging from modeling physi-
cal and biological systems to process optimization. It has already been successfully applied
in areas such as viscoelastic model analysis, anomalous diffusion, electrical circuits, and
the study of COVID-19 propagation when vaccines are applied. This approach not only
enriches the field of dynamic systems but also significantly impacts various areas of science
and technology.

2. Materials and Methods

Fractional calculus (FC) is a discipline that studies fractional order integration and
differentiation operators, meaning operators of non-integer order. Its origin dates back
to the beginnings of conventional calculus when the first notations for derivatives were
proposed [40]. Over the years, different definitions of fractional derivative have emerged,
some based on the generalization of the limit definition of differentiation, such as the
definition by Lacroix, the fractional derivative [41], and in recent years, the conformable
derivative [42]. Others are based on the generalization of multiple integrations and the
properties of semigroup, namely, the Riemann–Liouville fractional integral (IRL) and
derivatives: Riemann–Liouville (DRL), Caputo derivative [43], Caputo–Fabrizio derivative
(DCF) proposed in 2015 [44], and the Atangana–Baleanu derivative (AB) from 2016 [45].

2.1. Gamma Function

The factorial of an integer number n is defined as the product of all consecutive
integers from 1 to n and is expressed:

n! = 1 · 2 · 3···(n − 1)· n, (1)

where zero factorial is defined as 0! = 1. For an extension for values other than integers, use
the Gamma function defined by the integral [46]:
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where again,  , β, and γ C are arbitrary parameters, and the expression is called the 

Mittag-Leffler function of three parameters. When γ = 1, the equation becomes Equation 
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𝑧𝑘

𝛤(𝑘  +  1)
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The aforementioned is why the ML function and its generalizations are called 

generalized Mittag-Leffler functions. Research into the properties of the ML function has 

continued [50,51]. Let us consider the Laplace transforms of the following functions: 
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𝑠𝛼+1
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When applied to integer real values, we have the relation:

n! =
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2.2. Mittag-Leffler Function

Just as the exponential function plays a fundamental role in solving many ordinary
differential equations, the Mittag-Leffler function (ML) [47], defined in 1903, consistently
appears in the solution of fractional differential equations.

Eα(z) =
∞

∑
k=0

zk
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where α, z ∈ C, α is an arbitrary parameter; subsequently, a generalization was proposed in
1905, and other updates in [48,49]. The function is

Eα,β(z) =
∞

∑
k=0

zk
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where e α, β ∈ C are also arbitrary parameters, and the expression is called a two-parameter
ML function.
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where again, α, β, and γ C are arbitrary parameters, and the expression is called the Mittag-
Leffler function of three parameters. When γ = 1, the equation becomes Equation (6). In
addition, it can be observed that Equation (5) is a special case when β = 1 in the Equation (5).
Therefore, the exponential function is considered a special case of ML when α = 1, that is:

E1
1,1(z) =

∞

∑
k=0

zk
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The aforementioned is why the ML function and its generalizations are called gen-
eralized Mittag-Leffler functions. Research into the properties of the ML function has
continued [50,51]. Let us consider the Laplace transforms of the following functions:
Equations (9) and (10) in terms of the Mittag-Leffler function [52]:

L{tα} =
Γ[α + 1]

sα+1 , (9)

L{[1 − Eα(ωtα)]} =
ω

s(sα + ω)
, (10)

where ω ∈ R y α ∈ C, with R(α) > 0.

2.3. Caputo Derivative

The fractional Caputo derivative was proposed in 1971 [43] to avoid the fractional
order initial conditions of the Riemann–Liouville derivative. It is defined as follows: see
Equation (11).

Definition 1. Let f (t) : t → t be a continuous function (a, b)

C
0 Dα

t f (t) =
1

Γ(n − α)

∫ t

a

f (n)(τ)
(t − τ)α dτ, (11)
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where a ∈ R, n − 1 < α < n, y f ∈ Hn(a, b), b > a. And his Laplace transform is given by:

L
{

C
0 Dα

t f (t)
}
= sαF(s)−

n−1

∑
k=0

sα−k−1 f (k)(0), (12)

where L{ f (t)} = F(s), f (m)(0) = dm f (t)
dtm

∣∣∣
t=0

and m ∈ [0, n]. for n = 1 the Laplace transform is
given by:

L
{

C
0 Dα

t f (t)
}
= sαF(s)− sα−1 f (0). (13)

3. Methodology

In this investigation, the process begins with creating the system dynamics model,
which is based on identifying and analyzing equilibrium loops and sets a specific goal to
achieve. Then, we formulate the system of differential equations that govern the system’s
behavior. Ordinary differential equations initially solve this system to obtain an initial
solution. The OEE method is proposed, and the efficiencies of each department, which
relate to alphas, are obtained. Later, fractional calculus is implemented using the Caputo
method to solve fractional differential equations, allowing a more accurate description
of the system’s behavior. Simulations are performed using these mathematical models
for both the Tissue and Threading departments, providing a thorough evaluation of the
system’s performance in different operating scenarios and conditions. This comprehensive
methodological approach ensures a thorough and detailed understanding of the dynamics
of the industrial processes studied, as shown in Figure 3.
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Figure 3. System dynamics methodology introducing fractional calculation.

3.1. System Dynamics Model

The Forrester diagram, as shown in Figure 4, represents the dynamics of the textile
production process through an SD model. This model shows the two fundamental de-
partments of the textile process: Weaving and Basting. It comprises two state variables, x
and y, representing these departments, respectively. These state variables are the system’s
central axis, reflecting each department’s cumulative production. The diagram also incor-
porates six auxiliary variables and two flow variables, forming the system, interactions,
and feedback mechanisms.
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The auxiliary variables, Xd1 and Xd2, are particularly prominent as they mean the
system objectives or the target number of parts (for example, parts of a specific sweater
model) that each department seeks to produce. These goals are not static; they guide
operational dynamics, shaping workflow and production efforts within each department.
The diagram also introduces adders 1 and 2, which calculate the discrepancy between
the actual production and the targets set for each department, highlighting areas where
adjustments may be needed to align with production targets.

The constant k, assigned to each department, represents the ideal rate at which the
desired production level can be reached, expressed in units of (1/min). These constants
are essential to calibrate the system to optimal performance, ensuring that production
targets are met efficiently. Table 1 describes these variables’ specific values and roles in the
Forrester diagram, providing a clear framework for understanding the dynamics at play.

Table 1. Variables of the Forrester diagram.

State Variable Notation of the
Variable Xd (Goals) Adder Differential Equation

Weaving X Xd1 = 72 Xd − x Ed1 = (Xd1 − x)k1
Basting Y Xd2 = 72 Xd2 − y Ed2 = (Xd2 − y) k2 − Ed1

3.2. System of Differential Equations

It is important to note that a system dynamics model has been developed to repre-
sent the production process in two departments. From this model, the two fundamen-
tal differential equations that describe the behavior of these departments, presented as
Equations (14) and (15), have been identified and formulated. These equations form the
analysis’s backbone, providing a detailed understanding of production dynamics in these
specific contexts.

The proposed system, with initial conditions x(0) = 0, y(0) = 0,

dx
dt

= k1(xd1 − x), (14)

dy
dt

= k2(xd2 − y)− k1(xd1 − x). (15)

3.3. Solution Ordinary Differential Equation

Equations (16) and (17) are obtained by solving the whole system of differential equations.

x = xd1

(
1 − e−k1t

)
, (16)

y = xd2(1−e−k2t) +
xd1k1

k2 − k1

(
e−k2t − e−k1t

)
(17)

To obtain the values of k, the solution of each of the state variables must be equal;
it is equal to the operating time of each department, where they are 480 and 100 min,
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respectively; the value of k is sought, where 98% of the goal is obtained, obtaining a value
of k1 = 0.009541 for the Weaving department and k2 = 0.12 for the Basting department.

3.4. OEE Methodology

The methodological approach of this study focuses on the Weaving and Basting
departments, which are fundamental segments of the textile production chain. Working
with a company located in the southern part of Guanajuato, real-world data were collected
to assess these departments’ efficiency accurately. The evaluation leverages the Overall
Equipment Effectiveness (OEE) methodology, a comprehensive measure that evaluates a
department’s efficiency based on equipment availability, performance speed, and product
quality. For this study, product quality is specifically related to the production of a particular
model of sweater, underlining the practical application and relevance of this research for
the operational challenges of the textile industry.

In this research project, fractional differential equations and their alpha value, which
will be addressed, are intrinsically linked to the efficiency derived from the OEE methodol-
ogy. Therefore, obtaining the absolute efficiency values of the company located south of
Guanajuato is essential. These efficiency values are directly related to the fractional order
of the derivative, underlining the importance of their accuracy and validity for proper
modeling and understanding of the dynamics of the textile production process.

3.4.1. Availability Factor

Availability is calculated by dividing the actual operating time by the planned produc-
tion time. This factor, expressed as a percentage, provides a key measure of operational
efficiency by considering the time the equipment operates according to the established
plan. The availability of the Weaving department for the week of October 25 to 30 can be
observed in Table 2.

Table 2. Availability of the Weaving department.

Day 25 26 27 28 29 30

Total time (min) 690 690 690 690 690 630
Breaks (min) 120 120 120 120 120 120
Maintenance
stoppage (min) 10 10 10 10 10 45

Shutdowns of
machine records (min) 20.43 29.21 36.23 20.78 32.45 30.27

(A) Planned time
available (min) 560 560 560 560 560 465

(B) Productive time
(min) 539.5 530.7 523.7 539.2 527.5 434.73

(B/A) Availability (%) 96.35 94.78 93.53 96.29 94.21 93.49

Table 3 shows the availability of the Basting department for the week of 25–30 October.

Table 3. Availability of the Basting department.

Day 25 26 27 28 29 30

Total Time (min) 100 100 100 100 100 90
Breaks (min) 20 20 20 20 20 20
(A) Planned time
available (min) 80 80 80 80 80 70

(B) Productive time
(min) 79.26 79.35 76.55 78.41 79.95 69.73

(B/A)
Availability (%) 99.10 99.19 95.70 98.03 99.95 99.63
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3.4.2. Quality Factor

Quality in Overall Equipment Effectiveness (OEE) is measured by considering the
units that meet quality standards against the total units produced. The quality factor of the
Weaving department for the week of 25–30 October can be observed in Table 4.

Table 4. Quality of the Weaving department.

Day 25 26 27 28 29 30

(A) Actual production-
total parts 80 79 72 72 69 55

Contaminated
canvases 0 1 0 2 0 0

Overlay 5 6 5 10 7 10
Non-functional
canvases 1 3 3 5 3 7

(B) Good pieces 74 69 64 55 59 38
(B/A)
Quality (%) 92.50 87.34 88.89 76.39 85.51 69.09

Table 5 shows the quality factor of the Threading department of the week from
25–30 October.

Table 5. Quality of the Basting department.

Day 25 26 27 28 29 30

(A) Actual
production-total parts 75 64 72 79 88 81

(B) Good pieces 75 64 72 78 88 80
(B/A)
Quality (%) 100 100 100 98.73 100 98.77

3.4.3. Performance Factor

Efficiency is measured by the planned production factor divided by the actual pro-
duction. Table 6 shows the efficiency factor of the Basting department for the week of
25–30 October.

Table 6. Performance of the Weaving department.

Day 25 26 27 28 29 30

(A) Planned production
(total pieces) 82.7 79.3 72.98 73.44 69.24 55.21

(B) Real production 80 79 72 72 69 55
(B/A) Performance (%) 96.70 99.59 98.66 98.04 99.65 99.63

The performance factor of the Basting department for the week of 25–30 October can
be observed in Table 7.

Table 7. Performance of the Basting department.

Day 25 26 27 28 29 30

(A) Planned production
(total pieces) 78.0 78.1 75.3 83.7 96.5 84.2

(B) Real production 75 64 72 79 88 81
(B/A) Performance (%) 96.10 81.93 95.54 94.38 91.16 96.20

The OEE factor is determined by multiplying the three key factors in the methodology.
Table 8 details the efficiency calculation for the two departments.
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Table 8. Calculation of the OEE methodology in the departments.

Day 25 26 27 28 29 30 OEE
Weekly

OEE
(Weaving) (%) 86.1 82.4 82.0 72.1 80.2 64.3 77.90

OEE (Basting)
(%) 95.2 81.2 91.4 91.3 91.1 94.6 90.84

Overall Equipment Effectiveness (OEE) was calculated for both departments, yield-
ing an alpha value of 0.7790 for the tissue process and an alpha value of 0.9084 for the
Threading department.

4. Results

In this work, the results obtained through the use of the derivative of Caputo are
presented, accompanied by their demonstration and the corresponding graphic representa-
tions in function of time. These graphs show variations in system behavior under different
levels of efficiency.

4.1. Solution of The Fractional Order Model Per Caputo

It is proposed to replace the first-order derivative operators of the system of differential
equations with fractional-order operators of order α, where 0 < α < 1. When α = 1, it
returns to the first-order operators and, therefore, to the original system of equations, see
Equations (18) and (19).

dαx
dtα

= k1(xd1 − x), (18)

dαy
dtα

= k2(xd2 − y)− k1(xd1 − x). (19)

When using the Caputo derivative operator in the system of fractional equations, we have:

C
0 Dα

t x = k1(xd1 − x), (20)

C
0 Dα

t y = k2(xd2 − y)− k1(xd1 − x). (21)

To solve the system of fractional order differential equations, we apply the
Laplace transform: [

sαX(s)− sα−1x(0)
]
=

k1xd1
s

− k1X(s), (22)[
sαY(s)− sα−1y(0)

]
=

k2xd2 − k1xd1
s

− k2Y(s) + k1X(s). (23)

By simplifying both equations and applying the initial conditions, we obtain:

X(s)[sα + k1] =
k1xd1

s ,Y(s)[sα + k2] =
k2xd2 − k1xd1

s
+ k1X(s). (24)

When resolving to X(s):

X(s) = xd1
k1

s(sα + k1)
, (25)

we can find the solution by x(t) applying the inverse Laplace transform using the formula
of Equation (10), so we have Equation (26).

x(t; α) = xd1[1 − Eα(−k1tα)], (26)
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To find the solution of y(t), we can use X(s) of Equation (25):

Y(s)[sα + k2] =
k2xd2 − k1xd1

s
+ xd1

k2
1

s(sα + k1)
, (27)

Clearing for Y(s), we have:

Y(s) =
k2xd2 − k1xd1

s(sα + k2)
+ xd1

k2
1

s(sα + k1)(sα + k2)
. (28)

To solve Y(s), we separate in two terms Y1(s) and Y2(s), where the first has the same
structure of X(s), therefore we can use the same formula of inverse transform and solve the
first term:

Y1(s) =
k2xd2 − k1xd1

k2

k2

s(sα + k2)
, (29)

applying Laplace transform to Y1(s):

y1(t) =
k2xd2 − k1xd1

k2
[1 − Eα(−k2tα)], (30)

and for the second term Y2(s), we have:

Y2(s) = xd1
k2

1
s(sα + k1)(sα + k2)

, (31)

where we multiply the denominator of Y2(s) by s2α/s2α:

Y2(s) = xd1
k2

1
s2α+1

s2α (sα + k1)(sα + k2)
, (32)

and by rearranging the denominator products, we obtain:

Y2(s) = xd1
k2

1
s2α+1(1 + k1s−α)(1 + k2s−α)

, (33)

We apply the properties of the geometric series to both products: 1/(sα + k1) and
1/(sα + k2):

Y2(s) = xd1k2
1 s−2α−1

∞

∑
m=0

(
−k1s−α

)m
∞

∑
n=0

(
−k2s−α

)n, (34)

Applying the properties of the series product we obtain a more compact format:

Y2(s) = xd1k2
1

∞

∑
m,n=0

(−1)m+nkm
1 kn

2 s−(m+n+2)α−1. (35)

We express the argument of the series as a fraction and multiply it by
Γ[(m + n + 2)α + 1]/Γ[(m + n + 2)α + 1]:

Y2(s) = xd1k2
1

∞

∑
m,n=0

(−1)m+nkm
1 kn

2

s(m+n+2)α+1
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where again,  , β, and γ C are arbitrary parameters, and the expression is called the 

Mittag-Leffler function of three parameters. When γ = 1, the equation becomes Equation 

(6). In addition, it can be observed that Equation (5) is a special case when β = 1 in the 

Equation (5). Therefore, the exponential function is considered a special case of ML when 

  = 1, that is: 
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1,1(𝑧)  =   ∑  

𝑧𝑘

𝛤(𝑘  +  1)
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= ∑  
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𝑘!
= 𝑒𝑧 ,  (8) 

The aforementioned is why the ML function and its generalizations are called 

generalized Mittag-Leffler functions. Research into the properties of the ML function has 

continued [50,51]. Let us consider the Laplace transforms of the following functions: 
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Γ[𝛼 + 1]
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𝜔

𝑠(𝑠𝛼 + 𝜔)
,  (10) 

where 𝜔 ∈ ℝ y 𝛼 ∈ ℂ, with ℜ(𝛼) > 0. 

  

[(m + n + 2)α + 1]
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[(m + n + 2)α + 1]
s(m+n+2)α+1

, (37)
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Now you can find the inverse transform:

y2(t) = xd1k2
1

∞

∑
m,n=0

(−1)m+nkm
1 kn

2
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and the solution of is given by:

y(t; α) =

(
xd2 −

xd1k1

k2

)
[1 − Eα(−k2tα)] + xd1k2

1

∞

∑
m,n=0

(−1)m+nkm
1 kn

2
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[(m + n + 2)α + 1]
t(m+n+2)α. (39)

4.2. Mathematical Demonstration of Fractional Functions

Demonstrating fractional functions is fundamental to validate the mathematical solid-
ity and formality of the models developed. When considering the case where the alpha
value equals 1, the fractional solution is expected to match the solution obtained by tradi-
tional methods. This coincidence demonstrates the consistency of the fractional approach
with conventional methods and confirms the mathematical validity of the models. There-
fore, the accuracy and coherence of the fractional approach in the representation of dynamic
systems can be verified by comparing the solutions obtained with and without the use of
fractional functions. This comparison is crucial to ensure that the mathematical tools are
appropriate and effective in modeling complex phenomena.

The demonstration is performed for x(t; α), starting from Equation (26) when α = 1:
Now, we replace it in the Mittag-Leffler function:

Eα(z) =
∞

∑
k=0

zk

Fractal Fract. 2024, 8, 212 6 of 23 
 

 

𝛤(𝑧)  =  ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡  

∞

0

 (2) 

for any 𝑧 ∈ 𝐶, as to ℜ(𝑧)  >  0, when integrating by parts, you have an attractive property 

called recurrence property: 

𝛤(𝑧 +  1) =  𝑧𝛤(𝑧) , (3) 

When applied to integer real values, we have the relation: 

𝑛!  =  𝛤(𝑛 +  1), (4) 

in this way, the factorial concept can be generalized for real or complex values. 

2.2. Mittag-Leffler Function 

Just as the exponential function plays a fundamental role in solving many ordinary 

differential equations, the Mittag-Leffler function (ML) [47], defined in 1903, consistently 

appears in the solution of fractional differential equations. 

𝐸𝛼(𝑧)  =   ∑  
𝑧𝑘

𝛤(𝛼𝑘  +  1)

∞

𝑘=0

, (5) 

where 𝛼 , 𝑧  ∈ 𝐶 ,   is an arbitrary parameter; subsequently, a generalization was 

proposed in 1905, and other updates in [48,49]. The function is 

𝐸𝛼,β(𝑧)  =   ∑  
𝑧𝑘

𝛤(𝛼𝑘  +  β)

∞

𝑘=0

, (6) 

where 𝑒   , 𝛽  ∈ 𝐶  are also arbitrary parameters, and the expression is called a two-

parameter ML function. 

𝐸γ
𝛼,β,(𝑧)  =   ∑  

(γ)k

𝛤(𝛼𝑘  +  β)

∞

𝑘=0

 
𝑧𝑘

𝑘!
, (7) 

where again,  , β, and γ C are arbitrary parameters, and the expression is called the 

Mittag-Leffler function of three parameters. When γ = 1, the equation becomes Equation 

(6). In addition, it can be observed that Equation (5) is a special case when β = 1 in the 

Equation (5). Therefore, the exponential function is considered a special case of ML when 

  = 1, that is: 

𝐸1
1,1(𝑧)  =   ∑  

𝑧𝑘

𝛤(𝑘  +  1)

∞

𝑘=0

= ∑  

∞

𝑘=0

𝑧𝑘

𝑘!
= 𝑒𝑧 ,  (8) 

The aforementioned is why the ML function and its generalizations are called 

generalized Mittag-Leffler functions. Research into the properties of the ML function has 

continued [50,51]. Let us consider the Laplace transforms of the following functions: 

Equations (9) and (10) in terms of the Mittag-Leffler function [52]: 

ℒ{𝑡𝛼} =
Γ[𝛼 + 1]

𝑠𝛼+1
,  (9) 

ℒ{[1 − 𝐸𝛼(𝜔𝑡𝛼)]} =
𝜔

𝑠(𝑠𝛼 + 𝜔)
,  (10) 

where 𝜔 ∈ ℝ y 𝛼 ∈ ℂ, with ℜ(𝛼) > 0. 

  

((1)k + 1)
, (40)

resulting in the denominator equal to
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((k + 1 ))=k!. Then, we have the Euler function:

Eα(z) =
∞

∑
k=0

zk

k!
= ek, (41)

replace the value of k, by k1 Equation (16) is obtained by performing the demonstration.
Resulting in being equal to the ordinary solution by testing the correct solution by

the Caputo method for state variable 1. The demonstration is performed for y(t; α) , when
α = 1:

y(t; 1) =
(

xd2 −
xd1k1

k2

)[
1 − Eα

(
−k2t1

)]
+ xd1k2

1

∞

∑
m,n=0

(−1)m+nkm
1 kn

2
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[(m + n + 2) + 1]
t(m+n+2). (42)

To demonstrate the function found with the fractional calculation when α = 1, we
apply the Laplace transform, which divides the transformation into two parts:

Y1(s) =

(
xd2 −

xd1k1

k2

)(
k2

s(s + k2)

)
, (43)

The partial fractions solve the second term left in the equation as follows:

Y1(s) =

(
xd2 −

xd1k1

k2

)(
1
s
− 1

s + k2

)
, (44)

Later, the transform of the place is applied to the second part:

Y2(s) = xd1k1
2

(
∞

∑
m=0

(−1)mk1
m

sm+1

)(
∞

∑
n=0

(−1)mk2
m

sm+1

)
s−1, (45)
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where the denominator passes to multiply the numerator in each of the summations.

Y2(s) = xd1k1
2

(
∞

∑
m=0

(−1)mk1
ms−m

)(
∞

∑
n=0

(−1)mk2
ms−m

)
s−3, (46)

The terms are arranged to obtain the geometric series in the two terms:

Y2(s) = xd1k1
2

(
∞

∑
m=0

(
−k1s−1

)m
)(

∞

∑
n=0

(
−k2s−1

)m
)

s−3, (47)

The approximation of the geometric series obtained is represented as follows:

Y2(s) = xd1k1
2
(

1
1 + k1s−1

)(
1

1 + k2s−1

)
s−3, (48)

The terms are arranged as follows:

Y2(s) = xd1k1
2.

1
s3

(
1

1 + k1s−1

)(
1

1 + k2s−1

)
, (49)

Multiply and rearrange the denominator:

Y2(s) = xd1k1
2 1

s(s + k1)(s + k2)
, (50)

The linear partial fractions are made:

Y2(s) = xd1k1
2 1

s(s + k1)(s + k2)
=

A
s
+

B
s + k1

+
D

s + k2
, (51)

Resulting in the partial fractions:

Y2(s) = xd1k1
2

 1
k1k2

s
−

1
k1(k 2−k1)

s + k1
+

1
k2(k 2−k1)

s + k2

, (52)

multiplying and simplifying the equation.

Y2(s) =

xd1k1
k1k2

s
−

xd1k1
k1(k 2−k1)

s + k1
+

xd1k1
2

k2(k 2−k1)

s + k2
, (53)

are added Y1(s) + Y2(s)

Y(s) =
xd2
s

− xd2
s + k2

− xd1k1

k2s
+

xd1
k1
k2

s + k2
+

xd1k1
k1k2

s
−

xd1k1
k1(k 2−k1)

s + k1
+

xd1k1
2

k2(k 2−k1)

s + k2
, (54)

reducing similar terms and drawing common ground xd2.

Y(s) = xd2

(
1
s
− 1

s + k2

)
+

xd1k1
2

k2(k 2−k1)

s + k2
+

xd1
k1
k2

s + k2
−

xd1k1
k1(k 2−k1)

s + k1
, (55)

Y(s) = xd2

(
1
s
− 1

s + k2

)
+

xd1k1
2

k2(k 2−k1)

s + k2
+

xd1
k1(k 2−k1)
k2(k 2−k1)

s + k2
−

xd1k1
k1(k 2−k1)

s + k1
, (56)

reducing similar terms in Y(s).

Y(s) = xd2

(
1
s
− 1

s + k2

)
+

xd1k1
(k 2−k1)

s + k2
−

xd1k1
(k 2−k1)

s + k1
, (57)
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the common factor is removed in xd1k1
(k 2−k1)

the equation.

Y(s) = xd2

(
1
s
− 1

s + k2

)
+

xd1k1

(k 2 − k1)

(
1

s + k2
− 1

s + k1

)
, (58)

Now, you can find the inverse transform in Equation (17):
Therefore, by checking that the solution obtained by the Caputo method of the frac-

tional calculation, by substituting α = 1, which coincides with the function in ordinary
time, we validate the fractional solution. This result confirms the consistency and precision
of the fractional approach in the representation of dynamic systems. By evaluating both
fractional functions in 1 and obtaining the function over time for the two state variables, the
validity and reliability of the models developed are corroborated. This finding reinforces
confidence in using fractional calculus as a practical mathematical tool to address complex
dynamic phenomena.

4.3. Simulating Diverse Scenarios

In this section, we will explore several scenarios, varying both production goals and
alpha values in each department, to better understand how these variables affect the
performance of the Weaving and Basting process. This will provide valuable information
for decision-making in the management of textile production.

4.3.1. Simulation of Weaving Department Efficiencies

It is important to note that the alpha parameter plays a fundamental role as an indicator
of operational efficiency, and its range of variation allows a thorough assessment of the
efficiency of the department in question. Table 9 shows the different scenarios for the
Weaving department.

Table 9. Parameter variance for different simulations of the Weaving department.

Scenarios Category Target (Pieces) Efficiency

Scenario 1

Optimal

100

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4

Scenario 2

Optimal

70

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4

Scenario 3

Optimal

50

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4
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Figure 5 shows simulation 1, which compares the six efficiency categories with
100% performance.
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Figure 6 shows simulation 2, which compares the six efficiency categories with
100% performance.
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4.3.2. Simulation of Basting Department Efficiencies

Table 10 details the different scenarios considered for the Basting department. Each
scenario represents a unique combination of variables, including the department’s produc-
tion goal and the efficiency values associated with the processes, expressed in alpha terms.
These scenarios provide a comprehensive view of the possible configurations under which
the performance of the Basting department in the manufacturing process is evaluated.

Table 10. Parameter variance for different simulations of the Basting department.

Scenarios Category Target (Pieces) Efficiency

Scenario 1

Optimal

100

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4

Scenario 2

Optimal

70

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4

Scenario 3

Optimal

50

α = 0.9

Very good α = 0.8

Good α = 0.7

Fair α = 0.6

Poor α = 0.5

Very poor α = 0.4
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Figure 8 shows simulation 1, which compares the six efficiency categories with
100% performance.
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Figure 9 shows simulation 2, which compares the six efficiency categories with
100% performance.
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Figure 9. Simulation 2 of the Basting process.

Figure 10 shows the third scenario for the Basting department, where the six compara-
tive labels are shown.

Simulations provide us with an invaluable tool for decision-making. By exploring a
variety of scenarios that encompass different efficiency values for both departments, we
can gain a deeper understanding of how these factors affect the production process. This
ability to simulate and compare multiple scenarios gives us valuable insight to optimize
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our operations and make informed decisions that drive efficiency and productivity across
the organization.
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4.4. Field Validation

In this section, we contrast the efficiency of 100% with the efficiencies observed in each
of the two departments validated in the field. This meticulous analysis allows us to see
the operational reality of both departments. In addition, it allows us to identify significant
discrepancies and areas of potential improvement, which contributes to more informed
decision-making and continuous optimization of our processes.

4.4.1. Simulation of Weaving Department Efficiencies

The results of field validation using the OEE methodology are presented in Figure 11
and detailed in the third section. In this context, the efficiency obtained for the Weaving
department was 77.90%.
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4.4.2. Simulation of Basting Department Efficiencies

The results of field validation using the OEE methodology are presented in Figure 12
and detailed in the third section. In this context, the efficiency obtained for the Basting
department was 90.84%. It can be concluded that the Weaving process is in the category
“Good” since it exceeds 70% of estimated efficiency and has a wide margin for improve-
ments in the two categories. It is estimated that it could achieve approximately 50 pieces.
On the other hand, in the Basting process, it is in the “Optimum” category, exceeding 90%
efficiency, which indicates a very good performance in this department, obtaining 67 pieces
during the given period.
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The results presented in Section 4.4 are specifically designed and analyzed for domain
0 < α < 1. This range was selected intentionally because it makes sense for the application.
Since the value of α does not measure absolute production but production efficiency, it is
limited to the range from 0 to 1. In this context, a value of α greater than 1 could indicate
an efficiency greater than 100%, which would not be practical or relevant to interpreting
efficiency in the process. Therefore, we focused on the range 0 < α < 1, where the results
are most significant and applicable for this study.

5. Conclusions

This research project presents an innovative proposal by introducing fractional calculus
into system dynamics models, explicitly focusing on equilibrium loops. By addressing
discrepancies between ideal simulations and actual models, this initiative seeks to provide
a more realistic understanding of systems’ behavior, considering their different levels of
efficiency. The integration of fractional calculus significantly strengthens existing models,
providing more accurate and helpful information for decision-making in various contexts.
This contribution represents a valuable advance in the field of system dynamics in line with
the legacy of engineer Jay Forrester.

The results obtained from the simulations in Figures 3 and 4 reveal a series of signifi-
cant findings. First, the validity of the solutions obtained by comparing ordinary differential
equations with fractional solutions for different alpha values has been confirmed. This
finding reinforces the solidity of the approach used in the study. In addition, the analysis
of efficiency curves in the different areas of the company determines the completion time
of orders based on the percentage OEE indicator. For example, in the Tissue department,
with 91% efficiency. The proposed approach determines the respective duration time.
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This efficiency level highlights the importance of implementing continuous improvement
strategies in production management to meet deliveries promptly. In short, the results
provide a solid foundation for informed decision-making to diagnose company processes
and improve overall performance. Future work will analyze the efficiency behavior of an
industrial process using the theory of conformable calculus.
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