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Abstract: Nonlinear fractional-order differential equations have an important role in various branches
of applied science and fractional engineering. This research paper shows the practical application
of three such fractional mathematical models, which are the time-fractional Klein–Gordon equation
(KGE), the time-fractional Sharma–Tasso–Olever equation (STOE), and the time-fractional Clannish
Random Walker’s Parabolic equation (CRWPE). These models were investigated by using an ex-
pansion method for extracting new soliton solutions. Two types of results were found: one was
trigonometric and the other one was an exponential form. For a profound explanation of the physical
phenomena of the studied fractional models, some results were graphed in 2D, 3D, and contour
plots by imposing the distinctive results for some parameters under the oblige conditions. From
the numerical investigation, it was noticed that the obtained results referred smooth kink-shaped
soliton, ant-kink-shaped soliton, bright kink-shaped soliton, singular periodic solution, and multiple
singular periodic solutions. The results also showed that the amplitude of the wave augmented with
the pulsation in time, which derived the order of time fractional coefficient, remarkably enhanced the
wave propagation, and influenced the nonlinearity impacts.

Keywords: the
(

G′

G′+G+A

)
-expansion method; the conformable fractional derivative; the time-

fractional Klein–Gordon equation; the time-fractional Sharma–Tasso–Olever equation; the time-
fractional Clannish Random Walker’s Parabolic equation

1. Introduction

The mysteries of various complex phenomena occurring in nature can be explained by
providing fractional mathematical models with the help of fractional-order derivatives and
by providing exact soliton solutions of these models. Studying such mathematical models
has a firm place in various fields of engineering, modern medical science, and physical
science. As an evolution of integer-order perception, fractional calculus is valuable for
modeling real-world occurrences with complex dynamics [1,2]. Many studies have shown
that fractional-order differential equations can successfully express complex forcible charac-
teristics [3,4]. Moreover, by applying fractional derivatives, we can explain the reliability of
the memory effects, called a fundamental approach, to various real-world occurrences [5].
Over the past few years, numerous interpretations of fractional derivatives have been
proposed due to the rewards provided by giving models of real-world phenomena. It
has been shown that fractional differential equations, especially fractional-order partial
differential equations (PDEs), have made an indispensable contribution in many scientific
and engineering sectors. The use of such fractional PDEs in fields like theoretical physics,
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plasma physics, computational biology, applied physics, biochemistry, signal processing,
systems identification, electronic communication, including blogs and Facebook, electro-
magnetism, electrochemistry, nanotechnology, nonlinear optics, fluid mechanics, control
theory, finance, fractional dynamics, etc., is continuously increasing [6,7]. Since fractional
operators have a single kernel in the classical frame, many nonlinear complex phenom-
ena cannot be exactly characterized by traditional illustrations. Therefore, new fractional
derivatives with nonsingular kernels were developed to investigate nonlocal dynamics,
such as Atangana–Baleanu–Caputo [8,9] and fractal-fractional operator kernels [10].

Moreover, the applications of the spectral approach in the procedure for obtaining
solutions to the space–time non-integer order reaction–diffusion situation can be noticed
in [11,12]. We note that fractional-order derivatives [13,14] are difficult to deal with ana-
lytically, primarily those that describe real-world operations, and investigators sometimes
must depend on the numerical approach to solve these equations. Many investigators have
used various operators of fractional derivatives like Caputo–Fabrizio [15,16], Riemann–
Liouville [17,18], conformable fractional derivatives [19,20], etc., in fractional-order PDEs
of any system. One of the most familiar fractional-order PDE is the nonlinear KGE [21],
which has widespread implementations in condensed-type matter physics, nonlinear optics,
quantum mechanics, etc., and is also suitable for modeling real-world occurrences. The
second one is the nonlinear STOE [22], which is essential in applied science and engineering.
The nonlinear STOE explains the factual naturalistic model of fusion and fission, which
Kupershmidt introduces as the idea of dark equations in model equations [23]. The third
one is the nonlinear CRWPE [24], which is vital in understanding the quantitative and qual-
itative features of various natural phenomena. For example, the nonlinear oscillation of an
earthquake can be modeled by the nonlinear CRWPE. Our cited model equations can gain
complete shock-wave or topological-wave solutions. The fast progress of systematic meth-
ods for getting the solution to fractional PDEs has been of considerable help in addressing
physical-world problems of a complicated nature. Consequently, researchers have focused
on investigating fractional-order calculus and detecting exact and methodical techniques
for finding the perfect solutions for fractional PDEs. Recently, many researchers have inves-
tigated these types of equations by applying different methods, such as the Generalized
Kudryashov method [25,26], the residual-power-series method [27,28], the exp-function
method [29,30], the long-wave method [31], the variational iteration method [32,33], the ex-
tended direct algebraic method [34,35], the sine-Gordon expansion approach [36], the Jacobi
elliptic function method [37], the Sarder sub-equation method [38], the

(
G′
G , 1

G

)
-expansion

method [39–41], and many other techniques. Now, there is a more well-organized method
called the

(
G′

G′+G+A

)
-expansion method [42,43] to solve nonlinear fractional-order PDEs.

This research article’s prime goal is to find the exact solitary-wave solutions of our
proposed three model equations through this simple mathematical expansion method.

The three proposed nonlinear time-fractional PDEs are given below:

- The nonlinear KGE is [44,45]

∂2βv
∂t2β

− ∂2v
∂x2 − k1v − k2v3 = 0; t > 0, 0 < β ≤ 1, (1)

where k1 and k2 are any constants and β represents the time derivative of fractional order.

- The nonlinear STOE is [46,47]

∂βv
∂tβ

+ 3d
(

∂v
∂x

)2
+ 3dv2 ∂v

∂x
+ 3dv

∂2v
∂x2 + d

∂3v
∂x3 = 0; t > 0, 0 < β ≤ 1. (2)

Here, d is an arbitrary constant.

- The nonlinear CRWPE is [48,49]
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∂βv
∂tβ

− ∂v
∂x

+ 2v
∂v
∂x

+
∂2v
∂x2 = 0, t > 0, 0 < β ≤ 1 and x ∈ R. (3)

The configuration of this article is split into six parts as follows: In Section 2, we give a
short explanation of the conformable fractional derivative with some characteristics. The
general study of our proposed expansion method is described in Section 3. The analytical
implementation of our proposed technique to extract the exact solitary wave solutions
of the KGE, the STOE, and the CRWPE is in Section 4. In Section 5, the outcomes and
graphical explanations are given. Ultimately, the conclusion is conferred in Section 6.

2. Definition of Conformable Fractional Derivative and Its Characteristics

The generally accepted notion of the fractional-order integral differential operator is
defined as follows [50–54]:

aDβ
x =


dβ

dxβ , f (β) > 0
1, f (β) = 0∫ x

t dφ, f (β) < 0
, (4)

where β is the fractional order and f (β) implies the real part of β, and a is the lower limit
of the operation, which is constant. On the contrary, the upper limit x varies with x > a.

Recently, some researchers have developed definitions of some essential fractional
derivatives, such as the conformable fractional derivative, the Riemann–Liouville deriva-
tive, the modified Riemann–Liouville derivative, the Caputo derivative, the generalized
Riemann–Liouville–Caputo derivative, the Caputo–Fabrizio derivative, Atangana–Baleanu
derivative, etc. Here, the characteristics and definitions of a simple fractional-order deriva-
tive described by Khalil et al. [55] are given, called the conformable fractional derivative.
In our article, we used the

(
G′

G′+G+A

)
-expansion method for solving our proposed three

nonlinear model equations in the sense of the conformable fractional derivative [56,57].
If F : R+ → R is a continuous function, then the definition of the conformable frac-

tional derivative of order β is written as

∂βF
∂tβ

= lim
δ→0+

F
(
δt1−β + t

)
− F(t)

δ
, (5)

where t is positive and δ ∈ (0, 1).
Characteristics: Consider the two β-differentible functions F and G; then,

(i)
∂βtα

∂tβ
= qtα−β, α ∈ R. (6)

(ii)
∂β

∂tβ
(constant) = 0 (7)

(iii)
∂β

∂tβ
(r1F + r2G) = r1

∂βF
∂tβ

+ r2
∂βG
∂tβ

, (8)

where r1, r2 are real constants.

(iv)
∂β

∂tβ
(FG) = F

∂βG
∂tβ

+ G
∂βF
∂tβ

. (9)

(v)
∂β

∂tβ

(
F
G

)
=

G ∂β F
∂tβ − F ∂βG

∂tβ

G2 . (10)

(vi)
∂βF
∂tβ

= t(1−β) dF
dt

, when F is differentiable. (11)
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(vii) If F and G are β-differentiable function of t in the domain (0, ∞) and G(t) ̸= 0 then,

∂β

∂tβ
(FoG)(t) =

(
TβF

)
(G(t))

(
TβG

)
(t)G(t)β−1. (12)

3. Discussion of the Expansion Method

The main steps of the
(

G′
G′+G+A

)
-expansion method are given in detail in this portion.

Consider the following nonlinear PDEs as

ψ
(

v, ∂
β
x v, ∂

β
t v, ∂

β
x ∂

β
x v, ∂

β
x∂

β
t v, ∂

β
t ∂

β
t v . . .

)
= 0. (13)

where polynomial ψ is a function of v = v(x, t) and its derivatives. Now, the mechanisms
of this method are given periodically.

Mechanism I: Using the wave conversion technique, we first wrote all the variables in
the proposed PDEs as a linear combination of a unique variable as follows:

v(x, t) = v(ρ); ρ = mx − µ

β
tβ. (14)

Here, the coefficient of space derivative m is called the wave number, and the coefficient
of time derivative µ is called the wave velocity and has constant values. Applying the wave
conversion technique from Equation (14) to (13), a simple ordinary differential equation
(ODE) can be written as

χ
(
v, v′, v′′, v′′′, . . .

)
= 0. (15)

Here, v′ = dv
dρ , v′′ = d2v

dρ2 , v′′′ = d3v
dρ3 etc.

Mechanism II: Now, we must consider an equation like the following form, which
will be the solution of Equation (15)

v(ρ) = ∑M
r=0 ar

(
G′

G′ + G + A

)r

. (16)

where ar are the coefficients of the polynomial
(

G′
G′+G+A

)r
, r = 0, 1, 2, . . . M and consider

the function G(ρ) that satisfies the following ODE:

G′′ + HG′ + RG + RA = 0. (17)

Now, the value of balance number M will be determined by applying the homoge-
neous balance technique between the supreme-order derivative and the supreme-degree
convective terms in Equation (15). By assigning the value of the balance number M in
Equation (16) and simplifying the resultant, we performed the derivative with respect to ρ
as often as was needed, then set these derivatives in Equation (15).

Mechanism III: From Equation (15), the coefficients of the successive power of(
G′

G′+G+A

)
are taken to be zero, which provides some equations in terms of H, R, A,

µ, m, and ar(r = 0, 1, 2, . . . M). After solving these equations via the program Mathemat-
ica, the values of ar(r = 0, 1, 2, . . . M) will be found. Now, we find the exponential and
trigonometric function solutions for the positive and negative values of the discriminant of
the auxiliary equation in Equation (17). Then, we put the values of the solution G in the
term

(
G′

G′+G+A

)
and finally, for the values of

(
G′

G′+G+A

)
, ar, and ρ, we have the ultimate

solution of Equation (13).
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4. Applications and Discussions
4.1. Investigation of the KGE

By setting the following transformation in Equation (1), we obtain the following
second equation:

v(x, t) = v(ρ), ρ = mx − µ

β
tβ. (18)

(
µ2 − m2

)d2v
dρ2 − k1v − k2v3 = 0. (19)

By applying the homogenous balance rule between the terms v3 and d2v
dρ2 in Equation

(19), the balance number M = 1. Equation (16) moves as

v(ρ) = a0 + a1

(
G′

G′ + G + A

)
. (20)

Inserting Equation (20) along with Equation (17) into Equation (19) and then plac-

ing the coefficients of
(

G′
G′+G+A

)r
; (r = 0, 1, 2, . . . M) to zero into the resultant, a set of

equations in terms of a0, a1, m, µ, H, R, k1 and k2 will be obtained as follows:

2µ2a1R2 − 2m2a1R2 − µ2a1HR + m2a1HR + k2a3
0 + k1a0 = 0,

6m2a1HR − 6µ2a1HR − 2m2a1R + µ2a1H2 + 6µ2a1R2 + 2µ2a1R−
m2a1H2 − 6m2a1R2 − k1a1 − 3k2a2

0a1 = 0,

9µ2a1HR − 3k2a0a2
1 − 6µ2a1R2 − 6µ2a1R − 9m2a1HR − 3m2a1H−

3µ2a1H2 + 3µ2a1H + 3m2a1H2 + 6m2a1R + 6m2a1R2 = 0,

4µ2a1HR − 4m2a1HR − 4µ2a1R + 2m2a1H2 + k2a3
1 − 2µ2a1R2+

2m2a1R2 − 4m2a1H + 4m2a1R + 4µ2a1H − 2µ2a1H2 + 2m2a1−
2µ2a1 = 0.

By solving the above system via the software Mathematica 11, we obtain the following
set of values:

a0 = a0, a1 = 2a0(H−R−1)
2R−H , m = m, µ = µ, k1 = 1

2 m2H2−
1
2 µ2H2 + 2µ2R − 2m2R, k2 =

(H−2R)2(µ2−m2)
2a2

0
.

Now, the soliton solutions to the KGE are given for two occurrences as follows:
Occurrence 1. For D = H2 − 4R > 0,

v(ρ) = a0 +
2a0(H − R − 1)

2R − H
×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

Dρ

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

Dρ

. (21)

Using the wave transformation from Equation (18), we can write the soliton solution
of Equation (1) as

v(x, t) = a0 +
2a0(H − R − 1)

2R − H
×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

D[mx− µ
β tβ ]

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

D[mx− µ
β tβ ]

. (22)

Occurrence 2. For D = H2 − 4R < 0,

v(ρ) = a0 +
2a0(H−R−1)

2R−H ×[
(Hc2+c1

√
−D)sin

(√
−D
2 ρ

)
+(Hc1−c2

√
−D)cos

(√
−D
2 ρ

)
((H−2)c2+c1

√
−D)sin

(√
−D
2 ρ

)
+((H−2)c1−c2

√
−D)cos

(√
−D
2 ρ

)
]

.
(23)
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Using the wave transformation from Equation (18), the other soliton solution of
Equation (1) is written as

v(x, t) = a0 +
2a0(H−R−1)

2R−H ×[
(Hc2+c1

√
−D)sin

(√
−D
2 [mx− µ

β tβ ]
)
+(Hc1−c2

√
−D)cos

(√
−D
2 [mx− µ

β tβ ]
)

((H−2)c2+c1
√
−D)sin

(√
−D
2 [mx− µ

β tβ ]
)
+((H−2)c1−c2

√
−D)cos

(√
−D
2 [mx− µ

β tβ ]
)
]

.
(24)

4.2. Investigation of the STOE

By setting the following transformation in Equation (2), we obtain the following
second equation:

v(x, t) = v(ρ), ρ = x − µ

β
tβ. (25)

d
d3v
dρ3 + 3d v

d2v
dρ2 + 3d

(
dv
dρ

)2
+ 3d v2 dv

dρ
− µ

dv
dρ

= 0. (26)

Integrating the above equation, we obtain

N − µv + 3d v
dv
dρ

+ d v3 + d
d2v
dρ2 = 0, (27)

where N is the integration constant. By applying the balance rule between the terms v3 and
d2v
dρ2 in Equation (27), the balance number, M = 1. Equation (16) moves as

v(ρ) = a0 + a1

(
G′

G′ + G + A

)
. (28)

Inserting Equation (28) along with Equation (17) into (27) and then placing the coef-

ficients of
(

G′
G′+G+A

)r
; (r = 0, 1, 2, . . . M) to zero into the resultant, a set of equations in

terms of a0, a1, µ, H, R, N, and d will be obtained, and after solving the obtaining set of
equations via the software Mathematica, two sets of results are attained as follows.

Set 1:

a0 = a0, a1 = R − H + 1, d = d, N = −6da0HR + 2da0R + 6da0R2 + dH2R − dHR−
3dHR2 + 2dR2 + 2dR3 + 6da2

0R + 2da3
0 − 3da2

0H + a0dH2, µ = −3dHR − dR+
6da0R + 3dR2 + 3da2

0 − 3da0H + dH2.

Set 2:

a0 = H − 2R, a1 = 2R − 2H + 2, N = 0, d = d, µ = −4dR + dH2.

For set 1, the soliton solutions to the STOE are given for two occurrences as follows:
Occurrence 1. For D = H2 − 4R > 0,

v(ρ) = a0 + (R − H + 1)×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

Dρ

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

Dρ

. (29)

Using the wave transformation from Equation (25), we can write the soliton solution
of Equation (2) as

v(x, t) = a0 + (R − H + 1)×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

D[x− µ
β tβ ]

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

D[x− µ
β tβ ]

, (30)

where µ = −3dHR − dR + 6da0R + 3dR2 + 3da2
0 − 3da0H + dH2.



Fractal Fract. 2024, 8, 210 7 of 16

Occurrence 2. For D = H2 − 4R < 0,

v(ρ) = a0 + (R − H + 1)×

 (
Hc2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(

Hc1 − c2
√
−D

)
cos
(√

−D
2 ρ

)
(
(H − 2)c2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(
(H − 2)c1 − c2

√
−D

)
cos
(√

−D
2 ρ

)
. (31)

Again, using the wave transformation from Equation (25), the soliton solution of
Equation (2) is written as

v(x, t) = a0 + (R − H + 1)×

 (
Hc2 + c1

√
−D

)
sin
(√

−D
2 [x − µ

β tβ]
)
+
(

Hc1 − c2
√
−D

)
cos
(√

−D
2 [x − µ

β tβ]
)

(
(H − 2)c2 + c1

√
−D

)
sin
(√

−D
2 [x − µ

β tβ]
)
+
(
(H − 2)c1 − c2

√
−D

)
cos
(√

−D
2 [x − µ

β tβ]
)
, (32)

where µ = −3dHR − dR + 6da0R + 3dR2 + 3da2
0 − 3da0H + dH2.

For set 2, the soliton solutions to the STOE are given for two occurrences as follows,
Occurrence 1. For D = H2 − 4R > 0,

v(ρ) = (H − 2R) + (2R − 2H + 2)×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

Dρ

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

Dρ

. (33)

Using the wave transformation from Equation (25), the other soliton solution of
Equation (2) is written as

v(x, t) = (H − 2R) + (2R − 2H

+2)×

 c1(H+
√

D)+c2(H−
√

D)e
√

D[x− d(H2−4R)
β

tβ ]

c1(H+
√

D−2)+c2(H−
√

D−2)e
√

D[x− d(H2−4R)
β

tβ ]

.
(34)

Occurrence 2. For D = H2 − 4R < 0,

v(ρ) = (H − 2R) + (2R − 2H + 2)×

 (
Hc2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(

Hc1 − c2
√
−D

)
cos
(√

−D
2 ρ

)
(
(H − 2)c2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(
(H − 2)c1 − c2

√
−D

)
cos
(√

−D
2 ρ

)
. (35)

Again, using the wave transformation from Equation (25), the other soliton solution of
Equation (2) is written as

v(x, t) = (H − 2R) + (2R − 2H + 2)× (Hc2+c1
√
−D)sin

(
√
−D
2

[
x−

d(H2−4R)
β tβ

])
+(Hc1−c2

√
−D)cos

(
√
−D
2

[
x−

d(H2−4R)
β tβ

])
((H−2)c2+c1

√
−D)sin

(√
−D
2

[
x− d(H2−4R)

β tβ

])
+((H−2)c1−c2

√
−D)cos

(√
−D
2

[
x− d(H2−4R)

β tβ

])
.

(36)

4.3. Investigation of the CRWPE

By setting the following transformation in Equation (3), we obtain the following
second equation:

v(x, t) = v(ρ), ρ = px − η

β
tβ. (37)

−(p + η)
dv
dρ

+ 2pv
dv
dρ

+ p2 d2v
dρ2 = 0. (38)

Integrating the above equation, we obtain

−(p + η)v + pv2 + p2 dv
dρ

+ ρ0 = 0, (39)
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where ρ0 is the integration constant. By applying the balance rule between terms v2 and dv
dρ

in Equation (39), the balance number, M = 1. Equation (16) moves as

v(ρ) = a0 + a1

(
G′

G′ + G + A

)
. (40)

Inserting Equation (40) along with Equation (17) into Equation (39) and then placing

the coefficients of
(

G′
G′+G+A

)r
, (r = 0, 1, 2, . . . M) to zero into the resultant, a set of equa-

tions in terms of a0, a1, η, H, R, p, and ρ0 will be obtained, and after solving the obtaining
set of equations via the software Mathematica, the following set of particular values are
obtained as follows:

a0 = a0, a1 = p(R − H + 1), p = p, η = −p + 2p2R + 2pa0 − p2H,

ρ0 = 2a0 p2R + pa2
0 − a0 p2H + p3R2 − p3HR + p3R.

For the above set, the soliton solutions to the nonlinear CRWP equation are given for
two occurrences as follows:

Occurrence 1. For D = H2 − 4R > 0,

v(ρ) = a0 + p(R − H + 1)×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

Dρ

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

Dρ

. (41)

Using the wave transformation from Equation (37), the soliton solution of Equation (3)
is written as

v(x, t) = a0 + p(R − H + 1)×

 c1

(
H +

√
D
)
+ c2

(
H −

√
D
)

e
√

D[px− η
β tβ ]

c1

(
H +

√
D − 2

)
+ c2

(
H −

√
D − 2

)
e
√

D[px− η
β tβ ]

, (42)

where η = −p + 2p2R + 2pa0 − p2H.
Occurrence 2. For D = H2 − 4R < 0,

v(ρ) = a0 + p(R − H + 1)×

 (
Hc2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(

Hc1 − c2
√
−D

)
cos
(√

−D
2 ρ

)
(
(H − 2)c2 + c1

√
−D

)
sin
(√

−D
2 ρ

)
+
(
(H − 2)c1 − c2

√
−D

)
cos
(√

−D
2 ρ

)
. (43)

Again, using the wave transformation from Equation (37), the other soliton solution of
Equation (3) is written as

v(x, t) = a0 + p(R − H + 1)×[
(Hc2+c1

√
−D)sin

(√
−D
2

[
px− η

β tβ
])

+(Hc1−c2
√
−D)cos

(√
−D
2

[
px− η

β tβ
])

((H−2)c2+c1
√
−D)sin

(√
−D
2

[
px− η

β tβ
])

+((H−2)c1−c2
√
−D)cos

(√
−D
2

[
px− η

β tβ
])
]

,
(44)

where η = −p + 2p2R + 2pa0 − p2H.

5. Interpretation of the Numerical Outputs along with Their Graphical Portraiture

In this graphical section, we want to figure out some soliton solutions of the time-
fractional nonlinear PDEs which are investigated in this article. This article aims to solve
the KGE, the STOE, and the CRWPE in the sense of the conformable fractional derivative by
applying the expansion method. The results obtained in this research paper are consistent,
ordinary, and more accurate than the results of all previous papers. The accuracy and
stability were looked over by setting the attained results back into the main equations, and
we found exactness. The proposed expansion method gives two types of solitary-wave
solutions: one is the exponential-function solution, and the other is the trigonometric-
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function solution. The above Equations (22), (30), (34), and (42) represent the exponential-
function solutions, and Equations (24), (32), (36), and (44) represent trigonometric-function
solutions. For simplicity of the article, the graphical interpretations of Equations (34), (36),
and (44) are omitted. The data in the graph displays the characteristics of the traveling
wave solutions by inserting various parametric values.

Figures 1–5 exhibits the exponential and trigonometric solitary-wave solutions of the
mentioned three model equations in the shape of a 3D plot (for β = 0.5), contour plot (for
β = 0.5), and 2D plot (for β = 0.25, 0.5, 0.75). Figure 1 implies the smooth kink-shaped
soliton solution with the parameters as a0 = 1, H = 1, R = 0.1, c1 = 1, c2 = 1, m = 1,
µ = 0.01, and T = 0.6 in the case of the 3D plot (for −100 ≤ x ≤ 100 and 0 ≤ t ≤ 100),
contour plot (for −100 ≤ x ≤ 100 and 0 ≤ t ≤ 100), and 2D plot (for x = 0 and 0 ≤ t ≤ 10).
These figure shows that when increasing the order β, the slope of the graph is increasing.

Again, Figure 2 implies the multiple singular periodic solution with the parameters
as a0 = 1, H = 2, R = 3, c1 = 1, c2 = 1, m = 1, µ = 3 and T = −8 in the case of the 3D
plot (for −5 ≤ x ≤ 5 and 0 ≤ t ≤ 5), contour plot (for −5 ≤ x ≤ 5 and 0 ≤ t ≤ 5), and
2D plot (for x = 0 and 0 ≤ t ≤ 0.5). These figure shows that when increasing the order β,
the curve scatters.

Figure 3 implies the anti-kink soliton solution with the parameters as a0 = 1, H = 3,
R = 1.5, c1 = 1, c2 = −1, d = 1, µ = 3.75, and T = 3 in the case of the 3D plot (for
−100 ≤ x ≤ 100 and 0 ≤ t ≤ 100), contour plot (for −100 ≤ x ≤ 100 and 0 ≤ t ≤ 100), and
2D plot (for x = 0 and 0 ≤ t ≤ 3). These figure shows that when increasing the order β, the
graph is shifted right.

Figure 4 implies the singular periodic solution with the parameters as a0 = 1, H = 1,
R = 2.5, c1 = −1, c2 = 1, d = −0.01, µ = −0.2475 and T = −9 in the case of the 3D plot
(for −3 ≤ x ≤ 3 and 0 ≤ t ≤ 3), contour plot (for −3 ≤ x ≤ 3 and 0 ≤ t ≤ 3), and 2D plot
(for x = 0 and 0 ≤ t ≤ 50). These figure shows that when increasing the order β, the graph
closes together.

Figure 5 implies the bright kink-shaped soliton solution with the parameters as a0 = 1,
H = 1, R = 0.2, c1 = 1, c2 = 1, d = 0.1, p = −3, η = −8.4 and T = 0.2 in the case of
the 3D plot (for −100 ≤ x ≤ 100 and 0 ≤ t ≤ 100), contour plot (for −100 ≤ x ≤ 100
and 0 ≤ t ≤ 100), and 2D plot (for x = 0 and 0 ≤ t ≤ 5). These figure show that when
increasing the order β, the graph is shifted right.
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Figure 1. The smooth kink-shaped soliton solution for Equation (22) with the imposed values: (a) 3D
plot, (b) contour plot, and (c) 2D plot for β = 0.25, 0.5, 0.75.
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Figure 2. The multiple singular periodic solution for Equation (24) with the imposed values: (a) 3D
plot, (b) contour plot, and (c) 2D plot for β = 0.25, 0.5, 0.75.
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Figure 3. The anti-kink-shaped soliton solution for Equation (30) with the imposed values: (a) 3D
plot, (b) contour plot, and (c) 2D plot for β = 0.25, 0.5, 0.75.
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Figure 5. The bright kink-shaped soliton solution for Equation (42) with the imposed values: (a) 3D
plot, (b) contour plot, and (c) 2D plot for β = 0.25, 0.5, 0.75.

From the overall outcomes, it is understood that the fractional-order derivative reforms
the nature of the results, narrates the continuous behavior of the waveform and has a
remarkable influence on the nonlinear propagation related to the soliton solutions.

6. Comparison of the Results

To investigate the novelty of this work, we compared the findings we obtained with the
previously obtained results of the time-fractional KGE [44], the time-fractional STOE [44],
and the time-fractional CRWPE [48] in Tables 1–3, respectively.
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Table 1. Comparison (I).

Comparison of the obtained results with those of Taghizadeh et al. [44]

Results of Taghizadeh et al. [44] using the simplest equation method on
time-fractional KGE Results obtained using the

(
G′

G′+G+A

)
-expansion method

For a0 = ±
√
−θ1θ2

θ1
, b = ±

√
θ2

2(λ2 − l2)
, a = ±

√
2θ2

(l2 − λ2)
,

a > 0 and b < 0, then the result

(i) gives exponential function solution as

u(x, t) =

±

√− θ1
θ2

−
√

θ2√
2(λ2−l2)

a1exp

[ √
2θ2√

(λ2−l2)

(
lx− λ

Γ(1+α)
tα+ξ0

)]

l−a1

√
θ2√

2(λ2−l2)
exp

[ √
2θ2√

(λ2−l2)

(
lx− λ

Γ(1+α)
tα+ξ0

)]
.

Again for a0 = ±
√

−θ1
θ2

, A = −
√

2θ2
(l2−λ2)

, then the result (ii) gives

hyperbolic function results as

u(x, t) = ±
√

−θ1
θ2

× tanh
(√

θ1
2(l2−λ2)

(
lx − λ

Γ(1+α)
tα + ξ0

))
.

For a0 = a0, a1 = 2a0(H−R−1)
2R−H , m = m,

µ = µ, k1 = 1
2 m2 H2 − 1

2 µ2 H2 + 2µ2R − 2m2R, k2 =
(H−2R)2(µ2−m2)

2a2
0

,

then result (i) D = H2 − 4R > 0 gives exponential function solution as

v(x, t) = a0 +
2a0(H−R−1)

2R−H ×
[

c1(H+
√

D)+c2(H−
√

D)e
√

D[mx− µ
β

tβ ]

c1(H+
√

D−2)+c2(H−
√

D−2)e
√

D[mx− µ
β

tβ ]

]
.

(ii) D = H2 − 4R < 0 gives trigonometric function solution as

v(x, t) = a0 +
2a0(H−R−1)

2R−H ×[
(Hc2+c1

√
−D)sin

( √
−D
2 [mx− µ

β tβ ]
)
+(Hc1−c2

√
−D)cos

( √
−D
2 [mx− µ

β tβ ]
)

((H−2)c2+c1
√
−D)sin

( √
−D
2 [mx− µ

β tβ ]
)
+((H−2)c1−c2

√
−D)cos

( √
−D
2 [mx− µ

β tβ ]
)
]

.

Table 2. Comparison (II).

Comparison of the obtained results with those of Taghizadeh et al. [44]

Results of Taghizadeh et al. [44] using the simplest equation
method on time-fractional STOE Results obtained using the

(
G′

G′+G+A

)
-expansion method

For a = −a0, b = − a1
2 , R = 0, λ = ka2

0 a > 0 and b < 0, then

the result

(i) gives the exponential function solution as

u(x, t) = a0

 2−a1exp
[
−a0

(
x− ka2

0
Γ(1+α) tα+ξ0

)]
2+a1exp

[
−a0

(
x− ka2

0
Γ(1+α) tα+ξ0

)]
.

For A = −a0, a1 = 1, r = 0, λ = ka2
0, a1 = 2, then the result (ii)

gives hyperbolic function solution as

u(x, t) = −a0 tanh
((

x − ka2
0

Γ(1+α)
tα + ξ0

))
.

For a0 = H − 2R, a1 = 2R − 2H + 2,

N = 0, d = d, µ = −4dR + dH2, then result

(i) D = H2 − 4R > 0 gives exponential function solution as

v(x, t) =

a0 + (R − H + 1)×
[

c1(H+
√

D)+c2(H−
√

D)e
√

D[x− µ
β

tβ ]

c1(H+
√

D−2)+c2(H−
√

D−2)e
√

D[x− µ
β

tβ ]

]
,

where
µ = −3dHR − dR + 6da0R + 3dR2 + 3da2

0 − 3da0H + dH2.

(ii) D = H2 − 4R < 0 gives trigonometric function solution as

v(x, t) = a0 + (R − H + 1)×[
(Hc2+c1

√
−D)sin

( √
−D
2 ρ

)
+(Hc1−c2

√
−D)cos

(( √
−D
2 ρ

))
((H−2)c2+c1

√
−D)sin

(( √
−D
2 ρ

))
+((H−2)c1−c2

√
−D)cos

(( √
−D
2 ρ

))
]

,

where

µ = −3dHR − dR + 6da0R + 3dR2 + 3da2
0 − 3da0H + dH2 and

ρ =
(

x − µ
β tβ
)

.
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Table 3. Comparison (III).

Comparison of the obtained results with the results of Guner et al. [48]

Results of Guner et al. [48] using
(

G′
G

)
-expansion method on

time-fractional CRWPE
Results obtained usng the

(
G′

G′+G+A

)
-expansion method

For a0 = a0, a1 = k, c = −k2λ + 2a0k + k, k = k,

ξ0 = −a0k2λ + ka2
0 + k3µ, C1 ̸= 0, C2 = 0, λ > 0 and µ = 0, then

(i) λ2 − 4µ > 0 gives hyperbolic solution as

U1(x, t) = a0 − kλ
2 + kλ

2 coth
{

λ
2
(kx−k−k2λ+2a0)tα

Γ(1+β)

}
.

(ii) λ2 − 4µ < 0 gives rational function solution as

U2(x, t) = a0 − kλ
2 +

k
√

4µ−λ2

2

(
−C1sin 1

2

√
4µ−λ2ξ+C2cos 1

2

√
4µ−λ2ξ

C1cos 1
2

√
4µ−λ2ξ+C2sin 1

2

√
4µ−λ2ξ

)
,

where ξ =
(kx−k−k2λ+2a0)tα

Γ(1+β)
.

For a0 = a0, a1 = p(R − H + 1), p = p, η = −p + 2p2R + 2pa0 − p2 H,

ρ0 = 2a0 p2R + pa2
0 − a0 p2 H + p3R2 − p3 HR + p3R, then

(i) D = H2 − 4R > 0 gives exponential function solution as

v(x, t) = a0 + p(R − H + 1)×
[

c1(H+
√

D)+c2(H−
√

D)e
√

D[px− η
β

tβ ]

c1(H+
√

D−2)+c2(H−
√

D−2)e
√

D[px− η
β

tβ ]

]
,

where η = −p + 2p2R + 2pa0 − p2 H.

(ii) D = H2 − 4R < 0 gives trigonometric function solution as

v(x, t) = a0 + p(R − H + 1)×[
(Hc2+c1

√
−D)sin

( √
−D
2

[
px− η

β tβ
])

+(Hc1−c2
√
−D)cos

( √
−D
2

[
px− η

β tβ
])

((H−2)c2+c1
√
−D)sin

( √
−D
2

[
px− η

β tβ
])

+((H−2)c1−c2
√
−D)cos

( √
−D
2

[
px− η

β tβ
])
]

,

where η = −p + 2p2R + 2pa0 − p2 H.

7. Conclusions

Our research article focused on time-fractional PDEs via an effective computational
technique. We obtained eight new soliton solutions for these models. In this paper, for
the time-fractional KGE we obtained two new soliton solutions, for the time-fractional
STOE we obtained four new soliton solutions, and for the time-fractional CRWPE, we
obtained two new soliton solutions. Our obtained soliton solutions were classified into
different forms of exponential and trigonometric functions. So, by using these extracted
new solitons, we could easily explain the new physical phenomena of these mentioned
models. By investigating these results, we could decide they played an influential role in
providing models and physical configurations of many complicated natural occurrences
and many dynamical systems. We chose some convenient values of the parameters for
drawing graphs and ascertained 3D figures, 2D figures, and contour figures of the exciting
shapes, such as a smooth kink-shaped soliton, an ant-kink-shaped soliton, a singular
periodic solution, a multiple singular periodic solution, a bright kink-shaped soliton, etc.
The mentioned method can be expected to play a vital role in solving various nonlinear
fractional PDEs, especially the time-fractional nonlinear PDEs, as seen from our time-
fractional model equations presented in our paper, as well as in [58]. It is important to
emphasize that no research study has achieved reliable and instructive results similar to
those found here.
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