
Citation: Koleva, M.N.; Vulkov, L.G.

A Quasilinearization Approach for

Identification Control Vectors in

Fractional-Order Nonlinear Systems.

Fractal Fract. 2024, 8, 196.

https://doi.org/10.3390/

fractalfract8040196

Academic Editors: Ivanka Stamova,

Velusamy Vijayakumar and

Chendrayan Dineshkumar

Received: 12 February 2024

Revised: 20 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

A Quasilinearization Approach for Identification Control Vectors
in Fractional-Order Nonlinear Systems
Miglena N. Koleva 1,∗ and Lubin G. Vulkov 2

1 Department of Mathematics, Faculty of Natural Sciences and Education, University of Ruse, 8 Studentska Str.,
7017 Ruse, Bulgaria

2 Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education,
University of Ruse, 8 Studentska Str., 7017 Ruse, Bulgaria; lvalkov@uni-ruse.bg

* Correspondence: mkoleva@uni-ruse.bg; Tel.: +359-82-888-587

Abstract: This paper is concerned with solving the problem of identifying the control vector problem
for a fractional multi-order system of nonlinear ordinary differential equations (ODEs). We describe a
quasilinearization approach, based on minimization of a quadratic functional, to compute the values
of the unknown parameter vector. Numerical algorithm combining the method with appropriate frac-
tional derivative approximation on graded mesh is applied to SIS and SEIR problems to illustrate the
efficiency and accuracy. Tikhonov regularization is implemented to improve the convergence. Results
from computations, both with noisy-free and noisy data, are provided and discussed. Simulations
with real data are also performed.
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1. Introduction

Many real processes are delayed in time, and the resulting memory effects require
the use of fractional calculus to model them mathematically. For example, the problems,
based on time-fractional derivative and a set of coupled nonlinear ODEs, describes the
concentrations of species in so-called compartment problems [1]. The model posits that
each compartment exhibits homogeneity within a well-mixed population. The coupling
terms in the ODEs depict interactions among populations in distinct compartments. These
terms could entail straightforward constant rate removal processes, or they might signify
reactions among various populations. For certain compartmental models, understand-
ing the time of entry of an individual into a compartment is crucial. Fractional-order
systems of ODEs are one of the most effective approaches for studying transmission
dynamics of epidemic [2–10], fractional pharmacokinetic processes [11], honeybee pop-
ulation dynamics [12,13], mechanics [14], etc. Recently, there has also been an increase
in the number of studies based on COVID-19 fractional epidemiological modeling, see
e.g., refs. [15–17]. One class of these models, describing the spread of an infectious disease,
are the SIR (susceptible-infected-removed) compartment model, SEIR (susceptible-exposed-
infected-recovered), etc.

A numerical solution of epidemic fractional SIR model of measles with and without
demographic effects by using Laplace Adomian decomposition method is presented in [2].
The effect of the fractional order was investigated. The homotopy analysis method is proposed
in [3] for the SIR model that tracks the temporal dynamics of childhood illness in the face of a
preventive vaccine. Authors of [8] provide some remarkable and helpful properties of the SIR
epidemic model with nonlinear incidence and Caputo fractional derivative.

The SEIR fractional differential model with Caputo operator is considered in [7].
Authors construct a numerical method in order to explain and comprehend influenza
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A(H1N1) epidemics. They conclude that the nonlinear fractional-order epidemic model is
appropriate for the study of influenza and fits the real data.

In [10], the author proposes a SEIR measles epidemiological model with a Caputo
fractional order operator. Existence, uniqueness and positivity of the solution was proved.
The problem is solved by the Adams technique. It is shown that the incorporation of
memory features into dynamical systems designed for modeling infectious diseases reveals
concealed dynamics of the infection that classical derivatives are unable to detect. Exis-
tence and uniqueness results for the Caputo fractional nonlinear ODE system, describing
transmission dynamics of COVID-19, are obtained in [15,17]. In [13], the author presents a
existence, uniqueness and stability analysis for a fractional multi-order honeybee colony
population nonlinear ODE system with Caputo and Caputo–Fabrizio operators.

One of the most popular approaches for numerically solving nonlinear ODEs and
systems of ODEs with Caputo derivative is the fractional Adam method [18–20]. This
method is applied, for example in [10] for solving the Caputo fractional SEIR measles
epidemiological problem. In [17], authors a construct numerical method based on the
Adams–Bashforth–Moulton approximation for solving the nonlinear ODEs system with a
Caputo operator.

The Newton–Kantorovich method for solving both classical and fractional nonlinear initial-
boundary values and initial value problems is employed in many papers, see e.g., [21–24].
In [25], the quasi-Newton’s method, based on the Fréchet derivative, is developed for
solving nonlinear fractional order differential equations.

The original concept of the quasilinearization method was developed by Bellman and
Kalaba [26] and recently has been widely investigated and applied by Ben-Romdhane et.al.,
to several highly nonlinear problems [27] combined with other methods by Feng et al. [28]
and by Sinha et al. [29]. By combining the technique of lower and upper solutions with
the quasilinearization method and incorporating the Newton–Fourier idea, it becomes
possible to simultaneously construct lower and upper bounding sequences that converge
quadratically to the solution of the given problem [30]. This approach, referred to as
generalized quasilinearization, has been further refined and theoretically extended to address
a broad class of problems.

The quasilinearization method is a realization of Bellman–Kalaba quasilinearization,
representing a generalization of the Newton–Raphson method. It is employed for solving
either scalar or systems of nonlinear ordinary differential equations or nonlinear partial
differential equations. One can also interpret quasilinearization as Newton’s method for
the solution of a nonlinear differential operator equation.

In [31–33] existence, uniqueness and convergence results for the generalized quasilin-
earization method for the Caputo fractional nonlinear differential equation, represented as
the Volterra fractional integral equation, are obtained.

Inverse or identification problem solutions have a key role in many practical
applications [34–37]. It is a process of reconstruction from a set of observations/measurements,
unknown parameters/coefficients, and initial conditions or source, i.e., the quantities that
cannot be directly measured. Such problems have attracted a lot of attention from many
researchers during the last decade. In spite of many results on the existence, uniqueness
and stability of the solution for linear ODEs and PDEs, the nonlinearity of the differ-
ential equation renders it challenging to solve. In general, inverse problems are highly
ill-posed [34–38], and this makes them difficult to solve, even numerically. Small fluctua-
tions (noisy measurements) in the input data can lead to significant changes in the outcome.
Therefore, to achieve meaningful results, the inversion or reconstruction process requires
stabilization, commonly known as regularization.

Numerical methods for solving inverse problems for fractional-order ODEs are pro-
posed in [14,39,40]. The shooting method is employed in [14] for numerically solving
terminal value problems for Caputo fractional differential equations. In [39], the authors
develop a numerical method for recovering a right-hand side function of a nonlinear
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fractional-order ODE, using Chelyshkov wavelets. Numerical discretizations of inverse
problems for Caputo fractional ODEs under interval uncertainty are constructed in [40].

Recently, a lot of research on inverse problems concern fractional-order nonlinear
ODEs systems. In [41] there is proposed a parameter and initial condition identification
block pulse function method for fractional order systems. A time–domain determination
inverse problem for fractional-order chaotic systems is solved in [42] by a hybrid particle
swarm optimization–genetic algorithm method. An adaptive recursive least-square method
is applied in [43] for parameter estimation in fractional-order chaotic systems.

In [44], the authors developed a new numerical approach, based on the Adams–
Bashforth–Moulton method, for solving parameter estimation inverse problem for fractional-
order nonlinear dynamical biological systems. Time fractional-order biological nonlinear
ODE systems in Caputo sense with uncertain parameters are considered in [4,5]. In particu-
lar, the solution for HIV-I infection and Hepatitis E virus infection models is investigated.
In [45], the author investigate a fractional-order delay nonlinear ODE system to study
tuberculosis transmission. A numerical method for recovering dynamic parameters of
tuberculosis is developed.

In [16], authors use the Monte Carlo method based on the genetic algorithm in order
to estimate unknown parameters in fractional SIR models, describing the spread of the
COVID-19 disease. The authors of [46] solve the numerical parameter identification inverse
problem for the Caputo fractional SIR model, in order to estimate the economic damage of
COVID-19 pandemic. They minimize a least-squares cost functional.

The parameter identification inverse problem for the nonlinear ODE system with
Caputo differential operator describing honeybee colony collapse was solved numerically
in [12]. The authors applied a gradient optimization method to minimize a quadratic
cost functional.

The aim of this paper is to present an extension to the fractional multi-order (αi) ODE
system, the quasilinearization parameter identification method proposed in [47,48] for
the classical ODEs system. We develop a robust and convergent numerical method of
order 2−max

i
αi. The approach successfully recovers the unknown parameters even for

noisy data. The Tikhonov regularization technique is applied, which increases the range of
convergence with respect to the initial guess.

The remaining part of the paper is organized as follows. In the next section, we
formulate direct and inverse problems on the base of finite number solution observations.
In Section 3, the fractional-order quasilinearization inverse method is presented. The
implementation of the method is described in Section 4. The usefulness of our approach is
illustrated by numerical simulations for SIR and SEIR epidemiological models in Section 5.
The paper is finalized with some conclusions.

2. Direct and Inverse Problems

First, we introduce the direct (forward) problem for the nonlinear fractional differential
equation system with initial condition:

dαx(t)
dtα

= f(t, x(t); p), t0 ≤ t ≤ T, x(t0) = x0, (1)

where

α = (α1, α2, . . . , αI), x(t) = (x1(t), . . . , xI(t)), p = (p1, . . . , pL) ∈ RL,

RL is a real L-dimensional Euclidean space, and dα/dtα is the left Caputo fractional deriva-
tive of order 0 < α ≤ 1 for arbitrary function y ∈ AC[t0, T], i.e., y is absolutely continuous
on [t0, T], and
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dαy
dtα

=


1

Γ(1− α)

∫ t

t0

1
(t− ς)α

dy
dt

dς , 0 < α < 1;

dy
dt

, α = 1,

(2)

The vector function

f(t, x; p) =
(

f 1(t, x; p), . . . , f I(t, x; p)
)

: [t0, T]×RI ×RL → RI ,

where the symbol ‘;’ stands to underline the dependence on parameter p, is called vector
field. We will use also the notation xα =

(
(x1)α1 , (x2)α2 , . . . , (xI)αI

)
.

The direct problem is to determine the solution
(
x1(t), x2(t), . . . , xI(t)

)
, when the pa-

rameters p, right-hand side f and initial data x0 in (1) are given.
We denote by Cn(t0, T) the set of functions φ which are n-times differentiable on the

interval [t0, T] endowed by the norm

∥φ∥Cn = max
t∈[t0,T]

n

∑
k=1

∣∣∣∣∣dk φ

dtk

∣∣∣∣∣, n = 0, 1, 2, . . . , ∥φ∥C0 = ∥φ∥C.

Here, | · | is the Euclidean norm when the argument is the vector and the corresponding
operator norm if the argument is matrix.

Further, we will suppose that for the vector-valued function, f from (1) will have
continuous partial differential derivatives up to second order

∂f
∂x

=

{
∂ f i

∂xj

}
, i, j = 1, . . . , I, (3)

∂f
∂p

=

{
∂ f i

∂pl

}
,

∂2f
∂p∂x

=

{
∂2fi

∂pl∂xj

}
, i, j = 1, . . . , I, l = 1, . . . , L, (4)

in a bounded convex region D ⊂ Rn and

P = {p ∈ RL : |pl | < M̃, l = 1, . . . , L}, M̃ > 0.

We will use the following result of existence and uniqueness of the solution to the
problem (1).

Theorem 1. Let αi ∈ (0, 1), i = 1, 2, . . . , I and the function f(t, x) satisfies the conditions (3)
and (4). Then, the problem (1) has one solution x ∈ C2[t0, T], which is the solution of nonlinear
Volterra integral equation

x(t) = x0 +
1

Γ(α)

∫ t

t0

(t− ς)α−1f(ς, x(ς); p)dς (5)

and vice versa.

Proof. For proof, we use the results of [49], as well of [19,50].
The condition (3) is sufficient for f to be Lipschitz continuous for all t ∈ [t0, T] and

p ∈ P . Also,
∣∣∣ ∂ f i

∂xj (t, x(t); p)
∣∣∣ ≤ const., i, j = 1, 2, . . . , I, p ∈ P , t ∈ [t0, T]. Then, Theorem 2

from [49] and Theorem 3.1 from [19] assure global existence of unique solution x ∈ C2[t0, T]
to the problem (1), as well as the representation (5).

Further, since the system (1) depends on the vector parameters p = (p1, p2, . . . , p), we
state the following assertion.

Corollary 1. Let the conditions of Theorem 1 and (4) be fulfilled. Then, the solution x(t, p) has
continuous partial derivatives with respect to p = (p‘1, p2, . . . , pL).
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Proof. Let us consider the auxiliary problem:

dαx(t)
dtα

= f(t, x(t); p), t0 ≤ t ≤ T, x(t) = x0,

dαp
dtα

= 0, 0 ≤ t ≤ T.
(6)

Then, the analysis of the system (6), similar to that of the Theorem 1 provides the proof.

The inverse problem in this paper consists of identifying the parameter vector p ∈ P ,
where P is an admissible set upon the observed behavior of the solution of dynamical
system (1).

The idea of the parameter identification inverse problem is to minimize the difference
between a measured state xσ(t; p) of the system and the ones calculated with the mathemat-
ical model. However, in the real practice, the measurements are available at a final number
of times. So, let us denote xσ(tm; p), m = 1, 2 . . . ,M as the measured state of the dynamical
system (1) and x(tm; p), m = 1, 2 . . . ,M as those obtained by solving the fractional-order
differential problem (1). We gather the residuals for the measurements to be calibrated

rm(p) = x(tm; p)− xσ(tm; p), m = 1, 2, . . . ,M, (7)

in the residual vector r(p) ∈ RM, i.e.

r(p) = [r1(p), r2(p), . . . , rM(p)]Tr , (8)

where Tr means the transpose operation.
We treat the inverse problem in the nonlinear least-square form

min
p∈P

F(p), F(p) :=
1
2
∥r(p)∥2 =

1
2

rTr (p)r(p). (9)

This conception is developed in the next section, where a functional of type
T∫

t0

F(δp) with

δp being residual on iterations of quazilinearization of the problem (1).

3. Quasilinearization Optimization Approach to (1)

For clarity of the exposition, we describe the method for the simple case of two
equations with three unknown parameters, i.e., I = 2, L = 3.

Let
(

x1
0(t), x2

0(t)
)

be an initial approximation. Applying quasilinearization [26,51]
to (1), at each iteration k = 1, 2, . . . , we arrive at the linear Cauchy problem:

dαi xi
k

dtαi
= f i(t, x1

k−1, x2
k−1; p) +

∂ f i

∂xi (t, x1
k−1, x2

k−1; p)(xi
k − xi

k−1)

+
∂ f i

∂x3−i (t, x1
k−1, x2

k−1; p)(x3−i
k − x3−i

k−1), i = 1, 2,

(10)

xi(t0) = xi
0, i = 1, 2. (11)

Following [26], for a known parameter vector p = (p1, p2, p3), solving the problem (10)
and (11) one can construct a sequence {xk(t)}, which converges to x(t; p) with a quadratic
rate of convergence. However, we do not know the exact value of parameter p ∈ P , so that
starting from an an initial guess p0 ∈ P , after each quasilinearization iteration we specify
the parameter value pk = pk−1 + δpk from the linear system (10) and (11) by the following
sensitivity scheme.
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In line with the theory of sensitivity functions [52], we present the differences {xi(t)−
xi

k(t; pk)}, i = 1, 2, with second-order accuracy as follows:

ri = xi(t; p)− xi
k(t; pk) = xi(t; p)−

[
xi

k(t; pk−1)︸ ︷︷ ︸
δxi

k

+
3

∑
l=1

∂xi
k

∂pl (t; pk−1)(pl
k − pl

k−1)

]

+o(|δp|) as |δp| → 0, i = 1, 2.

(12)

The Jacobian Pk with elements (Pil
k )

2,3
i,l=1,1, called sensitivity matrix,

Pk ≡ (Pil
k )

2,3
i,l=1,1 =


∂x1

∂p1 (t; pk−1)
∂x1

∂p2 (t; pk−1)
∂x1

∂p3 (t, pk−1)

∂x2

∂p1 (t; pk−1)
∂x2

∂p2 (t; pk−1)
∂x2

∂p3 (t, pk−1)

 =
[
P1

k , P2
k , P3

k
]
, (13)

can be found after solving the system (10) and (11). Here, Ps
k , s = 1, 2, 3 are the correspond-

ing columns of the matrix Pk.

We suppose the existence of continuous mixed derivatives
∂2 f i

∂pl∂xj , i = 1, 2, l = 1, 2, 3,

j = 1, 2. Then, the sensitivity matrix Pk is a solution of the following matrix equation,
obtained by differentiation of the system (10) with respect to the vector p:

dαi Pk
dtαi

= J (t, x1
k−1, x2

k−1, pk−1)Pk + Qk +
∂ f (t, x1

k−1, x2
k−1, pk−1)

∂p
, Pk(0) = 0, (14)

where the Jacobian J (t, x1
k−1, x2

k−1, pk−1) is defined as follows

J (t, x1
k−1, x2

k−1, pk−1) =
[
J 1(t, x1

k−1, x2
k−1, pk−1),J 2(t, x1

k−1, x2
k−1, pk−1)

]Tr =
[
J 1,J 2]Tr ,

J i =

[
∂ f i

∂xi (t, x1
k−1, x2

k−1; p)(xi
k − xi

k−1),
∂ f i

∂x3−i (t, x1
k−1, x2

k−1; p)(x3−i
k − x3−i

k−1)

]
,

and Qk is 2× 3 matrix with elements

qil
k =

2

∑
j=1

∂2 f i(t, x1
k−1, x2

k−1, pk−1)

∂pl∂xj (xj
k − xj

k−1), i = 1, 2, l = 1, 2, 3.

The increment δpk is obtained by minimization of the functional [47,48]:

Jk(δp) =
∫ T

t0

((
δx1

k
δx2

k

)
− Pkδp

)Tr(( δx1
k

δx2
k

)
− Pkδp

)
dt. (15)

It is easy to see that the functional Jk(δp) is twice continuously differentiable and we have
the extremum necessary condition

J′k(δp) = 2
∫ T

t0

(
PTr

k Pkδp− PTr
k

(
δx1

k
δx2

k

))
dt = 0 (16)

and

J′′k (δp) = 2
∫ T

t0

PTr
k Pkdt > 0.

It follows from (16), that the minimum δpk satisfies the system of algebraic equations

Ckδp = Dk, Ck =
{

cl j
k

}3,3

l=1,j=1
=
∫ T

t0

PTr
k Pkdt. (17)
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Therefore, Ck is 3× 3 symmetric matrix with elements

cl j
k =

∫ T

t0


∂x1

k(t; pk−1)

∂pl

∂x2
k(t; pk−1)

∂pl


Tr

∂x1
k(t; pk−1)

∂pj

∂x2(t; pk−1)

∂pj

dt

and

Dk =
{

dl
k

}3

l=1
=
∫ T

t0

PT
k

(
δx1

k
δx2

k

)
dt,

is a 3-component vector:

dl
k =

T∫
t0


∂x1

k(t; pk−1)

∂pl

∂x2
k(t; pk−1)

∂pl

( x1(t; p)− x1(t; pk−1)
x2(t; p)− x2(t; pk−1)

)
dt.

The matrix Ck is a Gram matrix of vectors pj
k and

cl j
k = (Pl

k, Pj
k)L2(t0,T).

It is shown in [47,48,53] that

det(Ck) = Γ(P1
k , P2

k , P3
k ) ≥ 0

and it is strongly positive, that is to say, Ck is non-singular if and only if the vectors Pl
k,

l = 1, 2, 3 are linearly independent. In this case, we summarize the approach in the follow-
ing steps.

Algorithm

Step 1. Choose initial guess p0, (x1
0(t), x2

0(t)) and set k = 1.
Step 2. Solve the linear problem (10) and (11) to find

(
x1

k(t; pk−1), x2(t; pk−1)
)
, and the

system (14) to find Pk.
Step 3. Solve the linear algebraic Equations (17) to find the new parameter value

pk = pk−1 + δpk.
Step 4. One of the expressions can be used as a criterion to stop the iteration process

∥pk − pk−1∥, Jk(δp),

∫ T

0

(
x1(t; p)− x1

k(t; p)
x2(t; p)− x2

k(t; p)

)Tr( x1
k(t; p)− x1

k(t; pm)
x2

k(t; p)− x2
k(t; pm)

)
dt,

when it reaches a sufficiently small value. Otherwise, k := k + 1 and go to Step 2.

Now, following results in [47,48], more specifically Section 3 in [47], we discuss
the convergence of the quasilinearization method, based on Algorithm for general case
i = 1, 2, . . . , I, l = 1, 2, . . . , L.

We suppose that the solution of the problem (1) satisfies

∥x∥C ≤ X = const., max
∥x∥C≤X

sup
p∈P

max(∥f∥C, ∥J (x)∥C) ≤ Y = const.

It follows from (5), (10) and (11) the integral representation

xk(t) = x0(t) +
1

Γ(α)

T∫
t0

(t− ς)1−α[ f (τ, xk−1; pk−1) + J (τ, xk−1; pk−1)(xk − xk−1)]dς, (18)
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which gives for k = 1:

∥x1∥C ≤ ∥x0∥C + Y(X + 1)(T − t0)
α + Y(T − t0)

α∥x1∥C.

If we take T − t0, such that

(T − t0)
αi ≤ X− ∥x0∥C

Y(1 + 2X)
for all i = 1, 2, . . . , I, (19)

then ∥x1∥C ≤ X. Further, when (19) holds, by induction follows that ∥xk∥C ≤ X for k ≥ 1.
Next, we assume that

max
∥x∥C≤X

sup
p∈P

max
i,j,l

∥∥∥∥ ∂2 f i

∂pl∂xj

∥∥∥∥
C
≤ Y.

Also, we suppose that ∥Pk∥C ≤ X, for sufficiently small T − t0 and any k ≥ 1.
Further, using the representation (18) and following the line of consideration in

(Section 3 of [47]), we derive

∥xk+1(t; pk)− xk+1(t; pk)∥C ≤
ε2k

X1
, (20)

where X1 = max
1≤i≤I

{
Y(T − t0)

αi /
(
1−Y(T − t0)

αi
)}

and ε = X1∥x1(t; pk)− x0(t)∥C.

Additionally, as in [47], one can deduce for the functional Jk = Jk(δpk), δpk = pk −
pk−1 of (12), the inequalities

0 ≤ Jk+1 ≤ Jk + const.ε2k
. (21)

If we require ε < 1, then there exists a limit J∗ = lim
k→∞

Jk.

Furthermore, if the functional Jk(δp) is a strong convex function with convex constant
0.5ϱ, see [54], then, following the results of Section 3 in [47], one can show that

1
2

ϱ|δp− δpk|2 ≤ Jk(δp)− Jk(δpk) (22)

and
0 ≤ 1

2
ϱ|p− pk|2 ≤ const.ϱ2k

, 0 ≤ Jk ≤ const.ϱ2k
. (23)

Therefore, the next assertion holds.

Theorem 2. Assume that the vector-function f and its second-order derivatives (3) and (4) are
continuous and bounded as (t, x; p) ∈ (t0, t1)×D×P . Let x1(t; p), x1(t; p), . . . , xI(t; p), p ∈ P
be solution to the problem (1) and assume that the conditions (20)–(22) are fulfilled. Then, the
Algorithm for the general case i = 1, 2, . . . , I, l = 1, 2, . . . , L is convergent with quadratic rate of
convergence and the estimate (23) holds.

4. Numerical Implementation of the Method

In this section, we present the numerical approach and discuss the realization.

4.1. Numerical Discretization

For the numerical discretization of the fractional derivative, we apply L1 formula on
non-uniform mesh [55,56]. We define the nonuniform temporal mesh ωτ : t0 < t1 < · · · <
tM = T with step size τn+1 = tn+1 − tn, n = 0, 1, . . . , M− 1, τn < τn+1 and τ = max

0≤n≤M
τn

and denote (xi)n = xi(tn), i = 1, 2. Assume that M =M and we have measurements at
each grid node tn.
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The Caputo fractional derivative of the function (xi)n+1 is approximated by

dαi (xi)n+1

dtαi
≈ 1

Γ(1− αi)

n

∑
s=0

(xi)s+1 − (xi)s

τs+1

ts+1∫
ts

(tn+1 − η)−αi dη

=
n

∑
s=0

(
(xi)s+1 − (xi)s

)
ρi

n,s, i = 1, 2,

where

ρi
n,s =

(tn+1 − ts)1−αi − (tn+1 − ts+1)
1−αi

Γ(2− αi)τs+1
and ρi

n,n =
τ
−αi
n+1

Γ(2− αi)
.

Further, we involve the notation

Gn(xi) :=
n

∑
s=1

(
ρi

n,s − ρi
n,s−1

)
(xi)s + ρi

n,0(xi)0, n = 0, 1, . . . , M− 1, i = 1, 2.

Therefore, the discretized problem (10) and (11) become

ρi
n,nxi

k − f i(tn+1, x1
k−1, x2

k−1; p)− ∂ f i

∂xi (tn+1, x1
k−1, x2

k−1; p)(xi
k − xi

k−1)

− ∂ f i

∂x3−i (tn+1, x1
k−1, x2

k−1; p)(x3−i
k − x3−i

k−1) = Gn(xi), i = 1, 2,
(24)

xi(t0) = xi
0, i = 1, 2. (25)

and the corresponding to (14) discrete sensitivity problem in vector-matrix form is

EρPk −J (tn+1, x1
k−1, x2

k−1, pk−1)Pk −Qk −
∂ f (tn+1, x1

k−1, x2
k−1, pk−1)

∂p
= Gn(P),

P0(0) = 0, l = 1, 2, 3, i = 1, 2.
(26)

where qil
k are computed at time layer tn+1, Eρ =

(
ρ1

n,n 0
0 ρ2

n,n

)
and Gn(P) is a 2× 3 matrix

with elements

Gil
n = Gn(Pil) =

n

∑
s=1

(
ρi

n,s − ρi
n,s−1

)
(Pil)s + ρi

n,0(Pil)0, i = 1, 2, l = 1, 2, 3.

Here xi
k and Pil

k are solutions xi and Pil , respectively at k-th iteration of the new time layer
tn+1, i.e., xi

k = xi
k(tn+1) and Pil

k = Pil
k (tn+1).

The regularization technique stabilizes the solution in case of the ill-conditioning and
sensitivity of the solution to noise and perturbation. If the sensitivity vectors are not linear
independent, then the matrix Ck may be ill-conditioned. In this case, to solve the system (17),
we use Tikhonov regularization [57]. One regularization replaces the functional J(δp) with∥∥∥∥( δx1

k
δx2

k

)
− Pkδp

∥∥∥∥2

L2(t0,T)
+ ϵ∥δp∥2.

This leads to the linear system
(Ck + ϵE)δp = Dk, (27)

instead of (17), where E is the identity matrix, and ϵ is a regularization parameter.
Another regularization approach is to replace the functional J(δp) with∥∥∥∥( δx1

k
δx2

k

)
− Pkδp

∥∥∥∥2

L2(t0,T)
+ ϵ∥Pk−1 + δp− p̃∥2,
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where p̃ is a known vector to be close to the true value of the unknown parameter. It is
expected that the unknown parameter is searched in a neighborhood of p. This leads to the
following linear algebraic system of equations, instead of (17):

(Ck + ϵE) = Dk + ϵ(p̃− pk−1). (28)

To compute the Ck and Dk, the integrals are approximated by trapezoidal rule.

4.2. Realization of the Numerical Discretizations

Now, we summarize the results above in the following Algorithms 1 and 2 for param-
eter identification inverse problem (PIIP).

Algorithm 1 PIIP with regularization (27)

Require: p0, (x1
0(t), x2

0(t)), ϵ, tol
Ensure: p, (x1(tn), x2(tn)), n = 1, 2, . . . , M

k← 1, Q← tol + 1;

while Q > tol do
Find

(
x1

k(tn; pk−1), x2
k(tn; pk−1)

)
, n = 1, 2, . . . , M, solving (24) and (25);

Determine Pk(tn), n = 1, 2, . . . , M from (26);

Find pk = pk−1 + δpk, solving (27);

Q← ∥pk − pk−1∥;
k← k + 1.

end while

Algorithm 2 PIIP with regularization (28)

Require: p0, (x1
0(t), x2

0(t)), ϵ, tol, p̃.
Ensure: p, (x1(tn), x2(tn)), n = 1, 2, . . . , M

k← 1, Q← tol + 1;

while Q > tol do
Find

(
x1

k(tn; pk−1), x2
k(tn; pk−1)

)
, n = 1, 2, . . . , M, solving (24) and (25);

Determine Pk(tn), n = 1, 2, . . . , M from (26);

Find pk = pk−1 + δpk, solving (28);

Q← ∥pk − pk−1∥;
k← k + 1.

end while

Here, ∥ · ∥ is a discrete version of ∥ · ∥C norm, namely ∥ν∥ = max
0≤n≤M

|νn|.
We will clarify two points. The first one concerns the convergence. Although the

quasilinearization is the second order of convergence in the sense of Theorem 2, since we
apply O

(
M−(2−α)

)
approximation of the fractional derivative, we may expect at most a

min
i
{2− αi} = 2−max

i
{αi} order of convergence of Algorithms 1 and 2.

The second point is related to the regularity of the solution. If the conditions of
Theorem 1 are fulfilled, then we may use uniform temporal mesh. Following the results
in [55,58], we can conclude that the order of convergence of the numerical method for the
direct problem is 2−max

i
{αi}.

Consider the case t0 = 0. Because the fractional differential equation is a nonlocal
problem and the derivative of the solution usually exhibits singularity at t0 = 0, it is
unfeasible to employ high-order numerical methods with uniform meshes. Hence, it is
reasonable to employ non-uniform meshes to capture the singularity near the initial time.
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Suppose that there exist a positive constant C, such that∣∣∣∣dsxi(t)
dts

∣∣∣∣ ≤ C(1 + tαi−s), i = 1, 2, s = 0, 1, 2, t ∈ [0, T],

and consider the temporal grid defined as follows [55,58]

tn = T
( n

M

)r
, r ≥ 1, n = 0, 1, . . . , M, (29)

where for r = 1, the mesh is uniform, otherwise the grid nodes are concentrated close to the
origin t0 = 0. Then, following the results in [55,58], the convergence rate of the numerical
solution of the direct problem in maximal norm is

∥x(t)− x(tn)∥ ≤ O
(

M−min{2−α1,rα1} + M−min{2−α2,rα2}
)

,

or in general, the case of I number of equations

∥x(t)− x(tn)∥ ≤ O

(
I

∑
i=1

M−min{2−αi ,rαi}
)

= O
(

M
−min

i
{min{2−αi ,rαi}}

)
.

Therefore, in order to obtain optimal accuracy, we use graded mesh (29), taking
r = (2− α)/α, where α = min

i
αi.

5. Numerical Simulations

In this section, we illustrate the efficiency of the developed method for recovering three
and four parameters in biological ODE systems with two and four equations, respectively.
We give absolute (Epl ) and relative (Epl ), errors of the recovered parameters p and relative
errors (E∞

xi , E2
xi ) of the solution in maximal and L2 norms, respectively

E∞
ν = E∞

ν (M) =
∥νn − νn

∗∥
∥νn∗∥

, E2
ν = E2

ν (M) =
∥νn − νn

∗∥2

∥νn∗∥2
, ∥ν∥2 =

(
M

∑
n=0

τn(ν)
2

)1/2

,

Epl = |pl
k − pl

∗|, Epl =
|pl

k − pl
∗|

pl∗
, l = 1, 2, . . . , L,

for different fractional orders αi. Here, v = xi, pj
∗ is the exact (true) value of the parameter

pj, pj
k and νn = (xi)n are the recovered parameter and solution at time layer tn, and

νn
∗ = (xi)n

∗ is the reference solution of the ODEs system at time layer tn, which can be the
exact or numerical solution of the direct problem with exact values of the parameters, i.e.,
p = p∗.

In addition, we perform simulations to illustrate the model behavior with respect
to parameters.

We will also investigate the case of noisy measurements, generated by

xi
σ = xi(t; p) + σxiN , (30)

where the measurements xi(t; p) are obtained from direct problem, σxi
is the noise level,

and N is an M-dimensional random variable with standard normal distribution.
We take t0 = 0, and the computations are conducted mainly for the more intricate

scenario of a weak singular solution in graded mesh (29).
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5.1. System of Two Equations with Three Unknown Parameters

First, we consider a simplified prototype of SIS fractional order epidemic model [2,5,8],
describing the dynamics of susceptible S(t) and infectious I(t) individuals at any time t

dα1 S
dtα1

= Λ− (βI + µ)S, S(0) = S0,

dα2 I
dtα2

= βSI − γI, I(0) = I0.
(31)

Typically in such models β, Λ, µ and γ are constants, representing transmission, birth,
death and recovery rates, respectively.

The inverse problem is formulated for recovering the parameters p = (β, µ, γ), and
computations are performed by Algorithm 1 with tol = 10−4. We assume thatM = M and
the measurements are performed at grid nodes.

Example 1. (Direct problem). First, we test the accuracy of the numerical discretization (24)
and (25) for solving the direct problem (31), T = 1 in the case of weak singular solution. To this
aim, we add residual functions fS(t) and f I(t) in the right-hand side of the differential equations
in (31), such that the exact solution is to be S∗ = 0.8 + Eα1(−tα1), I∗ = 0.2 + Eα1(−tα2), where

Eαi , i = 1, 2 is the Mittag–Leffler function, namely Eα(z) =
∞
∑

n=0

zn

Γ(nα+1) .

That corresponding to the (24) and (25) discretization for the modified system (31)
with an exact solution is

ρ1
n,nSk + (βIk−1 + µ)Sk + βIkSk−1 = Gn(S) + Λ + βIk−1Sk−1 + fS(tn+1),

ρ2
n,n Ik − βIk−1Sk − βIkSk−1 + γIk = Gn(I) + f I(tn+1)− βIk−1Sk−1,

(32)

where Sk(0) = S0 and Ik(0) = I0.
We compute the solution of the direct problem from (32), initiating iteration process

at each time layer with stopping criteria max{∥Sk − Sk−1∥, ∥Ik − Ik−1∥} ≤ 10−6, for exact
values of the parameters p∗ = (β∗, µ∗, γ∗) = (0.8, 0.40, 0.43) and Λ = 0.4 [3].

Note that in inverse problem Algorithms 1 and 2, to find the solution x(t; pk−1), an
iterative process with the same termination criteria is used to find the solution x(t; pk−1).

In Table 1 we present errors and the corresponding orders of convergence

CR∞
ν = log2

E∞
x (M)

E∞
x (2M)

, CR2
ν = log2

E2
x (M)

E2
x (2M)

,

for different and equal orders of the fractional derivative. We observe that the accuracy of
the solutions S is O

(
M−(2−α1)

)
and that of the solution I is O

(
M−(2−α2)

)
, both in maximal

and L2 norms. Therefore, the convergence of the numerical solution of the system (31) is
E ≤ O

(
M−(2−max{α1,α2})

)
, where E = max{E∞

S , E∞
I } or E = max{E2

S , E2
I }.

Example 2. (Inverse problem: exact measurements). We consider an inverse problem for recovering
parameters p in the ODE system (31) with an exact solution, modified just as in Example 1. We
consider noisy-free data (σ = 0), and the measurements x(t; p) in (30) are equal to the numerical
solution of the direct problem, computed by (24) and (25) for the true values p∗ = (0.8, 0.4, 0.43).
The sensitivity problem (26) is
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Sβ
k

(
ρ1

n,n + βk Ik−1 + µk

)
+ βkSk−1 Iβ

k = Gn(Sβ)− Sk−1 Ik − Ik−1(Sk − Sk−1),

Sβ
k (−βk Ik−1) +

(
ρ2

n,n − βkSk−1 + αk

)
Iβ
k = Gn(Iβ) + Ik−1Sk + Sk−1(Ik − Ik−1),

Sµ
k

(
ρ1

n,n + βk Ik−1 + µk

)
+ βkSk−1 Iµ

k = Gn(Sµ)− Sk,

Sµ
k (−βk Ik−1) +

(
ρ2

n,n − βkSk−1 + αk

)
Iµ
k = Gn(Iµ),

Sγ
k

(
ρ1

n,n + βk Ik−1 + µk

)
+ βkSk−1 Iγ

k = Gn(Sγ),

Sγ
k (−βk Ik−1) +

(
ρ2

n,n − βkSk−1 + αk

)
Iγ
k = Gn(Iγ)− Ik.

where
∂Sk

∂pl = Spl

k ,
∂Ik

∂pl = Spl

k , Spl

k (0) = 0, Ipl

k (0) = 0, l = 1, 2, 3.

Table 1. Errors and convergence rate of the solution (S, I), direct problem, Example 1.

α1 α2 M = 20 M = 40 M = 80 M = 160 M = 320 M = 640 M = 1280

0.5 0.5 E∞
S 2.552 × 10−3 1.018 × 10−3 3.902 × 10−4 1.454 × 10−4 5.323 × 10−5 1.928 × 10−5 6.940 × 10−6

CR∞
S 1.326 1.383 1.424 1.450 1.465 1.474

E∞
I 8.805 × 10−3 3.067 × 10−3 1.078 × 10−3 3.809 × 10−4 1.349 × 10−4 4.782 × 10−5 1.695 × 10−5

CR∞
I 1.521 1.508 1.501 1.498 1.496 1.497

E2
S 2.203 × 10−3 7.655 × 10−4 2.682 × 10−4 9.462 × 10−5 3.349 × 10−5 1.187 × 10−5 4.209 × 10−6

CR2
S 1.525 1.513 1.503 1.498 1.496 1.496

E2
I 1.366 × 10−2 4.726 × 10−3 1.655 × 10−3 5.838 × 10−4 2.066 × 10−4 7.320 × 10−5 2.594 × 10−5

CR2
I 1.531 1.514 1.503 1.499 1.497 1.497

0.7 0.3 E∞
S 3.191 × 10−3 1.418 × 10−3 6.138 × 10−4 2.608 × 10−4 1.096 × 10−4 4.571 × 10−5 1.877 × 10−5

CR∞
S 1.170 1.209 1.235 1.251 1.262 1.284

E∞
I 1.057 × 10−2 4.060 × 10−3 1.581 × 10−3 6.213 × 10−4 2.457 × 10−4 9.847 × 10−5 3.252 × 10−5

CR∞
I 1.381 1.361 1.348 1.339 1.319 1.599

E2
S 3.657 × 10−3 1.623 × 10−3 7.01 × 10−4 2.983 × 10−4 1.255 × 10−4 5.251 × 10−5 2.165 × 10−5

CR2
S 1.172 1.210 1.233 1.249 1.257 1.278

E2
I 1.594 × 10−2 5.925 × 10−3 2.252 × 10−3 8.693 × 10−4 3.390 × 10−4 1.325 × 10−4 4.206 × 10−5

CR2
I 1.428 1.396 1.373 1.358 1.355 1.656

The regularization parameter is determined experimentally, by multiple runs, such
that to avoid singularity of the matrix Ck (very small det(Ck)) and to obtain convergent
iteration process. In Table 2, we give the regularization parameter, recovered values of p,
errors of the recovered values of the parameters and solution, and number of iterations k
for different initial guesses p0 and fractional orders, M = 320, T = 1. The reference value of
the recovered solution (S, I) is the exact solutions (S∗, I∗). Results show that independently
of the fractional order, the recovering of the parameters is almost exact, and the accuracy of
the restored solution (S, I) is similar to the accuracy of the discrete solution of the direct
problem. Therefore, we conclude that the order of convergence of the numerical method
for solving PIIP with noisy-free data has the same order of convergence as the numerical
method of the direct problem.

For comparison, we give also the results for integer order derivative. In this case, L1
approximation is replaced by forward time stepping. We observe that the recovering of the
parameters is with higher precision, and the obtained values of the solution (S, I) have the
same accuracy as the discrete solution of the direct problem. Note that for this example,
regularization is not required.
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The convergence of the method without regularization is limited in relation to the
size of the convergence range for the initial guess p0. Moreover, for this test example, a
smaller α1 leads to a bigger singularity of Ck, and convergence is achieved in more itera-
tions. Nevertheless, applying the regularization approach, the parameters are successfully
recovered. It is not a surprise that, if the initial guess p0 approaches the true values p∗, the
regularization parameter can be decreased, the iteration process requires smaller number
of iterations, and the accuracy improves.

Table 2. Errors of the recovered parameters p and solution (S, I), Example 2.

α1 = α2 = 0.5 α1 = 0.4, α2 = 0.6 α1 = 0.7, α2 = 0.3 α1 = α2 = 1
p0 (1, 2, 1) (2, 3, 2) (1, 2, 1) (2, 3, 2) (2, 3, 2) (3, 2, 3)
ϵ 0.0005 0.001 0.001 0.005 0.0001 0

βk 0.800010 0.800025 0.800034 0.800262 0.800000 0.800000
µk 0.399992 0.499980 0.399972 0.399791 0.400000 0.400000
γk 0.430014 0.430043 0.430047 0.430354 0.430000 0.430000
Eβ 1.0402 × 10−5 2.4504 × 10−5 3.4993 × 10−5 2.6165 × 10−4 2.9138 × 10−7 1.1768 × 10−14

Eµ 8.2974 × 10−6 1.9546 × 10−5 2.7937 × 10−5 2.0888 × 10−4 2.3914 × 10−7 5.5511 × 10−17

Eγ 1.4362 × 10−5 3.3832 × 10−5 4.7305 × 10−5 3.5370 × 10−4 4.1960 × 10−7 1.2990 × 10−14

Eβ 1.3003 × 10−5 3.0630 × 10−5 4.3741 × 10−5 3.2706 × 10−4 3.6422 × 10−7 1.4710 × 10−14

Eµ 2.0743 × 10−5 4.8865 × 10−5 6.9842 × 10−5 5.2222 × 10−4 5.9785 × 10−7 1.3878 × 10−16

Eγ 3.3400 × 10−5 7.8679 × 10−5 1.1001 × 10−4 8.2256 × 10−4 9.7582 × 10−7 3.0208 × 10−14

E∞
S 5.3987 × 10−5 5.3988 × 10−5 1.3685 × 10−4 1.3687 × 10−4 1.4339 × 10−4 2.5810 × 10−4

E∞
I 2.5134 × 10−4 2.5133 × 10−4 5.4781 × 10−4 5.4770 × 10−4 4.4899 × 10−4 1.6266 × 10−3

E2
S 3.3493 × 10−5 3.3494 × 10−5 8.5864 × 10−5 8.5882 × 10−5 1.2549 × 10−4 1.2412 × 10−4

E2
I 2.0661 × 10−4 2.0661 × 10−4 3.5098 × 10−4 3.5094 × 10−4 3.3904 × 10−4 1.1390 × 10−3

k 11 16 14 41 8 10

For completeness, we illustrate the performance of the numerical approach for the
smooth solution in the sense of Theorem 1. We repeat the same experiment as in Table 2,
but now, we take the exact solution to be S∗ = 0.8 + t4 + 2t, I∗ = 0.2 + t5 + 3t, and the
mesh is uniform. The computational results are listed in Table 3. The parameter recovering
is more accurate than the case of weak singular solution, and for most sets of initial guesses,
the convergence is attained for a smaller number of iterations. Furthermore, in most cases,
except for α1 = 0.4, α2 = 0.6 and initial guess p0 = (2, 3, 2), the recovering without
regularization fails.

Table 3. Errors of the recovered parameters p and smooth solution (S, I), Example 2.

α1 = α2 = 0.5 α1 = 0.4, α2 = 0.6 α1 = 0.7, α2 = 0.3
p0 (1, 2, 1) (2, 3, 2) (1, 2, 1) (2, 3, 2) (2, 3, 2)
ϵ 0.0001 0.001 0 0.005 0.005

βk 0.800000 0.800000 0.800000 0.800002 0.800000
µk 0.400000 0.400002 0.400000 0.399995 0.400000
γk 0.430000 0.429998 0.430000 0.430006 0.429999
Eβ 1.7116 × 10−8 8.0290 × 10−7 2.0005 × 10−12 2.3862 × 10−6 1.3503 × 10−7

Eµ 3.5581 × 10−8 1.6727 × 10−6 7.3495 × 10−12 5.1874 × 10−6 2.2071 × 10−7

Eγ 4.1176 × 10−8 1.9328 × 10−6 7.8799 × 10−12 5.7160 × 10−6 3.2656 × 10−7

Eβ 2.1394 × 10−8 1.0036 × 10−6 2.5006 × 10−12 2.9828 × 10−6 1.6879 × 10−7

Eµ 8.8951 × 10−8 4.1817 × 10−6 1.8374 × 10−11 1.2968 × 10−5 5.5178 × 10−7

Eγ 9.5758 × 10−8 4.4948 × 10−6 1.8325 × 10−11 1.3293 × 10−5 7.5943 × 10−7

E∞
S 1.0147 × 10−4 1.0147 × 10−4 1.5576 × 10−4 1.5576 × 10−4 2.6470 × 10−4

E∞
I 2.2631 × 10−4 2.2631 × 10−4 2.8133 × 10−4 2.8133 × 10−4 8.3472 × 10−4

E2
S 4.9615 × 10−5 4.9615 × 10−5 8.3308 × 10−5 8.3308 × 10−5 1.0833 × 10−4

E2
I 1.4677 × 10−4 1.4677 × 10−4 1.8367 × 10−4 1.8367 × 10−4 4.8207 × 10−4

k 11 14 12 13 12
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Computational results in this example showed that if the system is not ill-conditioned,
and thus if the regularization is not used, the recovering of the parameters is almost
exact. Otherwise, the use of regularization is strongly recommended in order to obtain
a convergent iteration process, although this is at the expense of the accuracy of the
restored parameters. Nevertheless, the recovery is with good enough precision such that
the reconstructed solution is with optimal accuracy.

Further, all experiments are performed for the case of weak singular solution.

Example 3. (Inverse problem: noisy measurements). The test’s problem is the same as in Example 2,
but now, we add a noise, i.e., σS > 0 and σI > 0 in (30). We consider three levels of noise: 10%
(σS = 0.065, σI = 0.03), 5% (σS = 0.032, σI = 0.015) and 1% (σS = 0.0065, σI = 0.003).

The computations are performed for p0 = (2, 3, 2), M = 320 and different fractional
orders. In the case of α1 = α2 = 0.5, we take ϵ = 0.001, while for α1 = 0.7, α2 = 0.3, we set
ϵ = 0.0001. In Table 4 we give the numerical results. The noise level has a bigger impact on
the precision of the recovered parameters in the case of derivatives with different fractional
orders of large range than the case of moderate and equal values of the fractional orders,
but the convergence is faster. For α1 = α2 = 0.5, the iteration process requires twice as
many iterations than for the case of α1 = 0.7, α2 = 0.3. In both scenarios, the precision of
the determined parameters is optimal, such that the solution (S, I) is sufficiently accurate.

In Figure 1, we illustrate the convergence of the iteration process, namely, we represent
the values of |δpj

k| at each iteration for α1 = α2 = 0.5 and α1 = 0.7, α2 = 0.3 and 10% noise.
For both set of parameters, we observe the fluctuation at initial iterations, and then, as
was mentioned above, for α1 = α2 = 0.5, the convergence is attained at a small number
of iterations compared to the case α1 = 0.7, α1 = 0.3. We believe that the reason is in
the smaller regularization parameter and bigger grading of the mesh, which is prescribed
by (29).

Table 4. Errors of the recovered parameters p and solution (S, I), Example 3.

α1 = α2 = 0.5 α1 = 0.7, α2 = 0.3
Noise 1% 5% 10% 1% 5% 10%

βk 0.7992 0.7954 0.7900 0.7985 0.7919 0.7834
µk 0.4008 0.4045 0.4099 0.4011 0.4060 0.4126
γk 0.4281 0.4196 0.4081 0.4270 0.4144 0.3982
Eβ 8.1197 × 10−4 4.5403 × 10−3 9.9972 × 10−3 1.5330 × 10−3 8.1016 × 10−3 1.6634 × 10−2

Eµ 8.5923 × 10−4 4.5611 × 10−3 9.9945 × 10−3 1.1390 × 10−3 6.0346 × 10−3 1.2611 × 10−2

Eγ 1.9371 × 10−3 1.0318 × 10−2 2.1993 × 10−2 2.9961 × 10−3 1.5574 × 10−2 3.1774 × 10−2

Eβ 1.0152 × 10−3 5.6730 × 10−3 1.2469 × 10−2 9.1622 × 10−3 1.0127 × 10−2 3.1528 × 10−2

Eµ 2.0981 × 10−3 1.1453 × 10−2 2.4858 × 10−2 2.8476 × 10−3 1.5087 × 10−2 2.0793 × 10−2

Eγ 4.5050 × 10−3 2.3994 × 10−2 5.0916 × 10−2 6.9677 × 10−3 3.6219 × 10−2 7.3892 × 10−2

E∞
S 5.4023 × 10−5 5.4173 × 10−5 5.4314 × 10−5 1.4354 × 10−4 1.4424 × 10−4 1.4516 × 10−4

E∞
I 2.5187 × 10−4 2.5406 × 10−4 2.5714 × 10−4 4.4962 × 10−4 4.5218 × 10−4 4.5540 × 10−4

E2
S 3.3502 × 10−5 3.3518 × 10−5 3.3507 × 10−5 1.2562 × 10−4 1.2618 × 10−4 1.2691 × 10−4

E2
I 2.0686 × 10−4 2.0787 × 10−4 2.0923 × 10−4 3.3926 × 10−4 2.4010 × 10−4 3.4111 × 10−4

k 17 17 17 8 8 8
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Figure 1. |δpj
k| at each iteration, σ = 0.05, M = 320 for α1 = α2 = 0.5 (left) and α1 = 0.7, α2 = 0.3 (right),

Example 3.

5.2. System of Four Equations with Four Unknown Parameters

We consider the following dynamical system SEIR model, describing measles
epidemic [10].

dαS
dtα

= Λα − (βα I + µα)S, S(0) = S0,

dαE
dtα

= βαSI − (µα + λα)E, E(0) = E0,

dα I
dtα

= λαE− (µα + γα)I, I(0) = I0,

dαR
dtα

= γα I − µαR, R(0) = R0,

(33)

where S(t), E(t), I(t), R(t) are susceptible, exposed, infectious and the recovered individu-
als at time t, measured in months. The epidemiological model parameters describe recruit-
ment rate Λ, transmission coefficient rate β, natural death rate µ, rate of exposure to the
epidemic λ and recovery rate γ. Let the total population be N(t) = S(t)+E(t)+ I(t)+R(t).
If the birth Λα rate is equal to death rate µαN, then N is a constant, and the problem (33)
reduces to a system or three equations. Namely, the function R(t) is determined from
algebraic relation of the total population conservation.

For the simulations, we use the data from [10] for real confirmed measles incidence
cases for May–December, 2018 in Pakistan

Λ = 374125, β = 4.569662× 10−11, µ = 5.25× 10−4, λ = 2, γ = 1.579,

α = 8.368542× 10−1, S(0) = 204989885, E(0) = 3548, I(0) = 6567, R(0) = 0,
(34)

incorporated in the normalized model (33).
The inverse problem is to recover the vector p = (β, µ, λ, γ). We use the numerical

solution of the direct problem (33) and (34), as a reference (exact) solution and as the
measured solution xi(t; p) in (30).

The computations are performed for the system (33) and (34), involving rescalling
S̃ = S/N(0), Ẽ = E/N(0), Ĩ = I/N(0), R̃ = R/N(0) and to reduce the computational
time, we use also the transformation t̃ = t/T.

The additional challenging in this example is that we need to recover parameters with
a very different order of magnitude. We apply both Algorithms 1 and 2 for more general
case I = L = 4 and tol = 10−5.

Example 4. (Inverse problem: noisy measurements at each tn). We compute the solution of the
inverse problem for noisy data (30), σS = 102500, σE = 246, σI = 205, σR = 1025, measured at
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each grid node tn (M = M). The final time is T = 7 months and M = 320. The level of the noise
of (Sσ, Eσ, Iσ, Rσ) is illustrated on Figure 2.
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Figure 2. The noise (σxN ), added to the numerical solution of the direct problem in order to generate
(Sσ, Eσ, Iσ, Rσ) in (30), Example 4.

We consider two choices of the initial guess p1
0 = (7.42× 10−11, 1.12× 10−3, 2.82, 2.22) and

p2
0 = (4× 10−10, 2.75× 10−3, 4.58, 3.61) and examine the performance of Algorithms 1 and 2.

Vector p̃ is chosen by giving one and the same deviation of each element of p. The
values of this deviation in percentages are given in Table 5. Errors of the recovered
parameters p and solution (S, E, I, R) for different regularization are presented in Table 5,
as well.

We observe that the proposed numerical identification algorithm, realized by both
algorithms, recovers the unknown parameters and solution (S, E, I, R) with optimal ac-
curacy. As can be expected, the regularization (28) is successful even for initial guess
that differs significantly from their true values. The iteration process converges in four to
five iterations.

In Figures 3 and 4, we depict an exact and recovered solution of the system (33) for
initial guess p1

0 and p2
0, computed by Algorithms 1 and 2, respectively. The better fitting of

the recovered solution to the exact one is attained by Algorithm 2.
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Table 5. Errors of the recovered parameters p and solution (S, E, I, R) for different regularization,
ϵ = 0.001, Example 4.

p0 p1
0 p2

0 p2
0

Algorithm Algorithm 1 Algorithm 2 Algorithm 2

deviation p̃ 5% 10%
βk 7.418 × 10−11 4.844 × 10−11 5.121 × 10−11

µk 5.270 × 10−4 5.271 × 10−4 5.273 × 10−4

λk 2.820 2.120 2.241
γk 2.226 1.673 1.769
Eβ 2.848 × 10−11 2.743 × 10−12 5.512 × 10−12

Eµ 1.968 × 10−6 2.182 × 10−6 2.319 × 10−6

Eλ 8.204 × 10−1 1.120 × 10−1 2.412 × 10−1

Eγ 6.477 × 10−1 9.479 × 10−2 1.904 × 10−1

Eβ 6.234 × 10−1 6.003 × 10−2 1.206 × 10−1

Eµ 3.750 × 10−3 4.156 × 10−3 4.416 × 10−3

Eλ 4.102 × 10−1 6.003 × 10−2 1.206 × 10−1

Eγ 4.102 × 10−1 6.003 × 10−2 1.206 × 10−1

E∞
S 4.435 × 10−5 4.724 × 10−5 4.876 × 10−5

E∞
E 6.307 × 10−2 1.576 × 10−2 3.077 × 10−2

E∞
I 6.937 × 10−2 1.628 × 10−2 3.179 × 10−2

E∞
R 9.305 × 10−2 1.696 × 10−2 3.312 × 10−2

E2
S 2.823 × 10−5 2.901 × 10−5 3.029 × 10−5

E2
E 6.041 × 10−2 3.445 × 10−2 6.643 × 10−2

E2
I 6.431 × 10−2 3.459 × 10−2 6.670 × 10−2

E2
R 3.821 × 10−2 9.985 × 10−3 1.927 × 10−2
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Figure 3. Exact (solid line) and recovered (line with circles) solution, Algorithm 1, ϵ = 0.001, initial
guess p1

0, Example 4.
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Figure 4. Exact (solid line) and recovered (line with circles) solution, Algorithm 2, ϵ = 0.001, 10%
deviation of p̃, initial guess p2

0, Example 4.

Example 5. (Inverse problem: noisy measurements atM < M grid nodes). We repeat the experiments
from Example 4 with only difference that now, we take measurements at M̃ = 65 grid nodes. The
observations are generated from numerical solution of the direct problem at M̃ nodes, giving the same
noise levels as in Example 4. Then, we generate simulated measurements interpolating data on the time
mesh. The results are listed in Table 6. We establish that the values of the recovered parameters and
corresponding errors are very closed to the ones in Table 5.

Table 6. Errors of the recovered parameters p and solution (S, E, I, R) for different regularization,
ϵ = 0.001, Example 5.

p0 p1
0 p2

0 p2
0

Algorithm Algorithm 1 Algorithm 2 Algorithm 2

deviation p̃ 5% 10%
βk 4.752 × 10−11 4.844 × 10−11 5.121 × 10−11

µk 5.281 × 10−4 5.278 × 10−4 5.278 × 10−4

λk 2.820 2.120 2.241
γk 2.227 1.674 1.769
Eβ 1.826 × 10−12 2.743 × 10−12 5.512 × 10−12

Eµ 3.104 × 10−6 2.183 × 10−6 2.827 × 10−6

Eλ 8.205 × 10−1 1.120 × 10−1 2.413 × 10−1

Eγ 6.478 × 10−1 9.480 × 10−2 1.905 × 10−1

Eβ 3.995 × 10−2 6.003 × 10−2 1.206 × 10−1

Eµ 5.912 × 10−3 5.395 × 10−3 5.386 × 10−3

Eλ 4.102 × 10−1 6.003 × 10−2 1.206 × 10−1

Eγ 4.102 × 10−1 6.004 × 10−2 1.206 × 10−1
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6. Conclusions

In this work, we constructed a numerical quasilinearization regularization approach
for solving a parameter identification inverse problem for a fractional multi-order (αi)
nonlinear ODE system. The uniqueness and existence of the differential direct problem
was discussed. We illustrated that the order of convergence of the numerical solution of the
direct problem is 2−max

i
{αi}. In the case of noisy-free data, the order of convergence of the

numerical solution of the inverse problem is the same as that of the the numerical solution
of the direct problem, namely 2−max

i
{αi}. The precision of the recovered parameters

is more significantly affected by the noise level in cases where derivatives have varying
fractional orders over a large range, compared to situations with moderate and equal
fractional order values. The convergence of the iteration process achieves a moderate
number of iterations. Moreover, the precision of the determined parameters is optimal such
that the recovered solution is sufficiently accurate. The recovering is successful even for
10% noise added to the simulated data and initial guess, not closed to the true value vector,
but the use of regularization technique is essential. Otherwise, the iteration process may
not converge. The regularization substantially increases the range of convergence with
respect to the initial guess and reduces the number of iterations.

In our future work, we plan to develop a numerical method for a parameter identi-
fication inverse problem for a fractional multi-order nonlinear ODE system, applying a
generalized quasilinearization approach by incorporating the technique of lower and upper
solutions. Moreover, we intend to extended the method for a time-fractional parabolic
semilinear systems and to improve the temporal order of convergence. Additionally, we
intend to develop a numerical method for recovering the fractional order of the derivative
for a fractional multi-order nonlinear ODEs system.
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