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Abstract: The paper studies a class of nonlinear disturbed neutral linear fractional systems with
derivatives in the the Riemann–Liouville sense and distributed delays. First, it is proved that the
initial problem for these systems with discontinuous initial functions under some natural assumptions
possesses a unique solution. The assumptions used for the proof are similar to those used in the case
of systems with first-order derivatives. Then, with the obtained result, we derive the existence and
uniqueness of a fundamental matrix and a generalized fundamental matrix for the homogeneous
system. In the linear case, via these fundamental matrices we obtain integral representations of the
solutions of the homogeneous system and the corresponding inhomogeneous system. Furthermore,
for the fractional systems with Riemann–Liouville derivatives we introduce a new concept for
weighted stabilities in the Lyapunov, Ulam–Hyers, and Ulam–Hyers–Rassias senses, which coincides
with the classical stability concepts for the cases of integer-order or Caputo-type derivatives. It is
proved that the zero solution of the homogeneous system is weighted stable if and only if all its
solutions are weighted bounded. In addition, for the homogeneous system it is established that the
weighted stability in the Lyapunov and Ulam–Hyers senses are equivalent if and only if the inequality
appearing in the Ulam–Hyers definition possess only bounded solutions. Finally, we derive natural
sufficient conditions under which the property of weighted global asymptotic stability of the zero
solution of the homogeneous system is preserved under nonlinear disturbances.

Keywords: fractional derivatives; neutral fractional systems; distributed delay; integral representation

MSC: 34A08; 34A12

1. Introduction

Practically, it has been shown that many real-world phenomena in various fields of
science can be represented more accurately through mathematical models, including frac-
tional differential equations [1–3]. More detailed information on fractional calculus theory
and fractional differential equations can be seen in the monographs of Kilbas et al. [4] and
Podlubny [5]. Compared to fractional equations with Caputo-type derivatives, the frac-
tional equations with Riemann–Liouville-type derivatives have been studied significantly
less. The first obstacle was the lack of meaningful geometric and physical interpretations of
the Riemann–Liouville type of integration and differentiation, which was overcome with
the appearance of Ref. [6]. The other problem was to derive an appropriate formulation of
the initial conditions for the initial problem. Some considerations about them are given
in [7,8], but as was mentioned in [9] “The initial value problem is a subject that remains
quite up-to-date”.

It is well known that the existence of explicit solutions or an integral representation
(variation of constants formula) of the solutions of linear fractional differential equations
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and/or systems (ordinary or delayed) is a main tool in executing their qualitative analysis.
That is why establishing either explicit solutions (see [10]) or integral representation, for
which existence of a fundamental matrix is needed (see [11]), are important tasks for
stability analysis, especially in the case of equations with Riemann–Liouville derivatives.
But it is surprising that there are not many articles devoted to this problem. As far as we
know, a survey concerning stability results for retarded and neutral fractional differential
equations with Riemann–Liouville-type derivatives does not exist. In general, partially
this gap can be fulfilled by reading the overview [12] and the references therein. From the
recent works devoted to the discussed themes concerning fractional differential equations
with Riemann–Liouville-type derivatives we refer to [13] for equations, to [14–16] where
retarded fractional differential equations are considered, and to [17,18] where the neutral
case is considered. We suppose that the mentioned works with their references give a good
enough picture of the studies in this area.

In the present article, we study a class of nonlinear disturbed neutral linear fractional
systems with derivatives in the the Riemann–Liouville sense and distributed delay. We first
study the important problem of the existence and uniqueness of the solutions of an initial
problem (IP) for these systems in the case of discontinuous initial functions. As far as we
know, there are no results devoted to the initial problem with discontinuous initial functions
for neutral differential equations with derivatives in the Riemann–Liouville sense. Since the
classically stability concepts are not directly applicable to systems with derivatives with the
property that the derivative of a constant is not equal to zero (like the Riemann–Liouville
fractional derivative, for example), we introduce a new concept for weighted stabilities in
the Lyapunov, Ulam–Hyers, and Ulam–Hyers–Rassias senses, which coincides with the
classical stability concepts for the cases of integer-order or Caputo-type derivatives.

The following abbreviations will be used in this manuscript: BV—bounded variation;
GAS—globally asymptotically stable; UH—Ulam–Hyers; LAS—locally asymptotically stable;
LT—Laplace transform; UHR—Ulam–Hyers–Rassias; IP—initial problem; PC—piecewise
continuous; RL—Riemann–Liouville; WML—weighted Mittag–Leffler.

The paper is organized as follows: Section 2 presents the necessary definitions and
properties concerning the RL and Caputo fractional derivatives, the problem statement,
and the needed auxiliary definitions and facts for our exposition. Section 3 is devoted to
the existence and the uniqueness of the solutions of the initial problem (IP) for the studied
class of nonlinear neutral systems in the case when the initial function is discontinuous. In
Section 4, as a consequence of the derived result we prove the existence and uniqueness of
a fundamental matrix and a generalized fundamental matrix for the linear homogeneous
system, as well as establishing an integral representation of the solutions of the IP for
the homogeneous system and the corresponding inhomogeneous system. Section 5 is
devoted to a new concept for weighted stabilities in the Lyapunov, UH, and UHR senses,
the definition of which coincides with the classical stability concepts for the cases of integer-
order or Caputo-type derivatives. It is proved that the zero solution of the homogeneous
system is weighted stable if and only if all its solutions are weighted bounded. In addition,
it is established that the weighted stabilities in the Lyapunov and UH senses are equivalent
if and only if the inequality appearing in the UH definition possesses only bounded
solutions. In Section 6, natural sufficient conditions are obtained under which the property
of weighted global asymptotic stability of the zero solution of the homogeneous system
is preserved under nonlinear disturbances. Finally, in Section 7 an illustrative example is
presented. In the last Section 8, we summarize some conclusions concerning the obtained
results and propose some open problems.

2. Preliminaries and Problem Statement

As is standard to avoid possible misunderstandings, we recall some properties con-
cerning the RL-type derivatives, as well as the needed definitions, conditions, and auxiliary
results necessary for the exposition below. For more comprehensive information on frac-
tional calculus we refer to Refs. [4,5].
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For a function g : R → R, we will say that some property holds locally if it is ful-
filled on every compact subinterval [b, c] ⊂ R. We will use the following notation for
the real linear spaces: Lloc

1 (R,R) consists of all locally Lebesgue integrable functions,
BLloc

1 (R,R) ⊂ Lloc
1 (R,R) and BV loc(R,R) ⊂ BLloc

1 (R,R) are, respectively, the subspaces of
all functions which are locally bounded and of all functions which have locally
bounded variation.

We define the left-sided fractional RL integral operator of arbitrary order α ∈ (0, 1)
with lower limit a ∈ R for any g ∈ Lloc

1 (R,R), via the relation

(Iα
a+g)(t) =

1
Γ(α)

t∫
a

(t − s)α−1g(s)ds.

The corresponding left-hand side RL and Caputo fractional derivatives of arbitrary order
α∈ (0, 1) with lower limit a are defined for any t > a by(

RLDα
a+g

)
(t) =

d
dt
(I1−α

a+ g(t)),

(
CDα

a+g
)
(t) =

(
RLDα

a+g
)
(t)−

(
RLDα

a+g
)
(a).

For shortness, we will use the notation Dα
a+ = RLDα

a+.
Consider the neutral fractional nonlinear system with RL-type derivatives of order

α ∈ (0, 1) with lower limit a ∈ R and distributed delays in the following general form:

Dα
a+

X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)

 =

0∫
−h

[dθU(t, θ)]X(t + θ) + F(t, XT
τ (θ)), (1)

where h > 0, J = [a,∞),R+ = [0,∞), J0 = (a,∞),R0
+ = (0,∞), ⟨n⟩= {1,2, . . . ,n}, ⟨m⟩0 = ⟨m⟩⋃{0},

X(t) = col(x1(t), . . . , xn(t)) : J0 → Rn, F(t, XT
t ) = col( f1(t, XT

t ), . . . , fn(t, XT
t )) : J ×PC → Rn,

(the notation col means column and superscript T denotes the transposed vector),
U(t, θ) = {uj

k(t, θ)}n
k,j=1 : J × R → Rn×n, V(t, θ) = {vj

k(t, θ)}n
k,j=1 : J ×R → Rn×n,

Dα
a+X(t) = col(Dα

a+x1(t), . . . , Dα
a+xn(t)), and Xt(θ) = X(t + θ) (Krasovskii-type functional)

for t ∈ J and θ ∈ [−h, 0]. In addition, I, Θ ∈ Rn×n denote the identity and the zero matrices,
0 ∈ Rn denotes the zero vector, and Iγ((t − a)) = (t − a)γI, γ ∈ [−1, 1].

For Y : J ×R → Rn×n, Y(t, θ) = {yj
k(t, θ)}n

k,j=1, we use the norm

|Y(t, θ)| =
n

∑
k,j=1

|yj
k(t, θ)|, Var[b,c]Y(t, ·) = {Var[b,c]y

j
k(t, ·)}

n
k,j=1,

PC([−h, 0],Rn) = {Φ = (ϕ1, . . . , ϕn)T : [−h, 0] → Rn |Φ is piecewise continuous} and SΦ
denotes the set of all jump points for any Φ(t) ∈ PC([−h, 0],Rn). We will use the following
Banach spaces of initial functions:

PC = {Φ(t) = col(φ1(t), . . . , φn(t)) : [−h, 0] → Rn |Φ(t) ∈ PC([−h, 0],Rn)},

PC∗ = PC ∩ BV([−h, 0],Rn) and C([−h, 0],Rn),

endowed with the norm ∥Φ∥ = ∑
k∈⟨n⟩

sup
s∈[−h,0]

|ϕk(s)| < ∞. In addition, we assume that in

all spaces the functions Φ(t) are right continuous at t ∈ SΦ (for Φ ∈ C this assumption
ultimately holds).

For any Φ ∈ PC we define the initial condition for the system (1) as follows:

X(t) = Φ(t − a) t ∈ [a − h, a], Dα−1
a+ X(a + 0) = Φ(0), h > 0. (2)
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More details concerning other types of initial conditions are given in [8] for the case
when the initial functions are continuous.

Let us introduce the auxiliary integral system (whose system is considered in detail in
Lemma 4 below) for any Φ ∈ PC and t ∈ J0:

X(t) = Φ(0)(t − a)α−1 +

0∫
−h

[dθV(t, θ)]X(t + θ)

+I−1(Γ(α))
t∫

a

Iα−1(t − τ)

 0∫
−h

[dθU(τ, θ)]X(τ + θ) + F(τ, XT
τ )

dτ. (3)

Let b > a and γ ∈ [0, 1] be arbitrary.

Definition 1 ([4]). The function G(t) = (g1(t), . . . , gn(t)) ∈ C(J0,Rn), γ ∈ [0, 1] will be called
right γ-continuous at a if the function Iγ(t − a)G(t) = col((t − a)γg1(t), . . . , (t − a)γgn(t)) ∈
C([a, ∞),Rn), i.e., the function Iγ(t − a)G(t) is right continuous at a. By Cγ we denote the real
linear space of all right γ-continuous-at-a functions and for any b ∈ R+ by Cγ

b the real Banach space

Cγ
b = {R(t) ∈ C((a, b],Rn) |R(t) = G(t)|(a,b], G(t) ∈ Cγ}

with norm ∥R∥γ
b = ∑

k∈⟨n⟩
sup

t∈[a,b]
(t − a)γ|rk(t)|.

Definition 2 ([11]). The vector function colX(t) = (x1(t), . . . , xn(t)) is a solution of IP (1), (2)
in (a, b](J0) if X(t) ∈ C1−α

b (C1−α) satisfies the system (1) for all t ∈ (a, b](J0) and the initial
condition (2) too.

Definition 3 ([11]). The vector function colX(t) = (x1(t), . . . , xn(t)) is a solution of IP (3), (2) in
(a, b](J0) if X(t) ∈ C1−α

b (C1−α) satisfies system (3) for all t ∈ (a, b](J0) and initial condition (2) too.

The hypotheses (S) stated below in Definition 4, as in the cases of systems with
derivatives of integer order or Caputo-type fractional order, will play a major role in the
solvability of IP (1), (2) (IP (3), (2)) (see [19–21]).

Definition 4 ([19–21]). We say that for the kernels U, V : J ×R → Rn×n the hypotheses (S)
hold if the following conditions are fulfilled for any i ∈ ⟨m⟩0 and q ∈ ⟨l⟩, l, m ∈ N:

(S1)The functions (t, θ) → U(t, θ), (t, θ) → V(t, θ) are measurable in (t, θ) ∈ J ×R and nor-
malized so that U(t, θ) = 0, V(t, θ) = 0 for θ ≥ 0, U(t, θ) = U(t,−σ) for θ ≤ −σ,
V(t, θ) = V(t,−τ) for θ ≤ −τ, σ, τ > 0, h = max(σ, τ) for any t ∈ J.

(S2)For any fixed t ∈ J the kernels U(t, θ) and V(t, θ) are left continuous in θ on (−σ, 0) and
(−τ, 0), U(t, ·), V(t, ·) ∈ BV loc

0 (J × R,Rn×n) and Var[−h,0]U(t, ·), Var[−h,0]V(t, ·) ∈
BLloc

1 (J,R+), Var[−h,0]V(t, ·) is uniformly bounded in t ∈ J and is uniformly nonatomic at
zero [21] ( i.e., for every ϵ > 0, there exists δ(ϵ) > 0 such that for any t ∈ J, we have that
Var[−δ,0]V(t, ·) < ϵ ).

(S3)For any fixed t ∈ J, the Lebesgue decomposition of the kernels U(t, θ) and V(t, θ) has the form:

U(t, θ) = Uj(t, θ) + Uac(t, θ) + Us(t, θ), V(t, θ) = Vj(t, θ) + Vac(t, θ) + Vs(t, θ),

Uj(t, θ) = ∑
i∈⟨m⟩

Ai(t)H(θ + σi(t)), Ai(t) = {ai
kj(t)}

n
k,j=1 ∈ BLloc

1 (J,Rn×n),

Vj(t, θ) = ∑
l∈⟨r⟩

Al
(t)H(θ + τl(t)), Al

(t) = {al
kj(t)}

n
k,j=1 ∈ C(J,Rn×n),
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σ0(t) ≡ 0, σi(t), τl(t) ∈ C(J, [0, h]), Uac(t, ·), Vac(t, ·) ∈ AC([−h, 0],Rn×n), Us(t, ·),
Vs(t, ·) ∈ C([−h, 0],Rn×n) and H(t) is the Heaviside function.

(S4)The sets Si
Φ = {t ∈ J | t − σi(t) ∈ SΦ, i ∈ ⟨m⟩}, Sl

Φ = {t ∈ J | t − τl(t) ∈ SΦ, l ∈ ⟨r⟩} do
not have limit points and the relations

lim
t→t∗

0∫
−h

|Ui(t, θ)− Ui(t∗, θ)|dθ = 0 , lim
t→t∗

0∫
−h

|V l(t, θ)− V l(t∗, θ)|dθ = 0

hold for any t∗ ∈ J.

Definition 5 ([20,21]). We say that the vector-valued functional F(t, Y) : J × PC → Rn satisfies
the modified Caratheodory conditions (C) if the following conditions hold:

(C1) For almost all fixed t ∈ J the functional (t, Y) → F(t, Y) is continuous in arbitrary
Y ∈ PC(PC∗) and for each fixed function Y ∈ PC(PC∗) the function F(t, Y) ∈ BLloc

1 (J,Rn).
(C2) (Local Lipschitz-type condition) For any (t, Y) ∈ J × PC and for some its vicinity

O(t, Y) ⊂ J × PC, there exists a function ℓ(t) ∈ BLloc
1 (J,R+) such that the inequalities

|F(t, Y1)− F(t, Y2)| ≤ ℓ(t)|Y1(t)− Y2(t)|

hold for every (t, Y1), (t, Y2) ∈ O(t, Y).

In our investigations below, we will use the following auxiliary result:

Lemma 1 ([4]). Let α ∈ (0, 1) and let y(t) be a Lebesgue measurable function on J.

(a) If there exists a.e. (almost everywhere) the limit lim
t→a+0

[(t − a)1−αy(t)] = c ∈ R, then there

also exists a.e. the limit (Dα−1
a y)(a + 0) = (I1−α

a y)(a + 0) = lim
t→a+0

(I1−α
a y)(t) = cΓ(α).

(b) If there exist a.e. the limit lim
t→a+0

[(t − a)1−αy(t)] and lim
t→a+0

(I1−α
a y)(t) = c∗, then we have

that lim
t→a+0

[(t − a)1−αy(t)] =
c∗

Γ(α)
.

Definition 6 ([22]). The low terminal a will be called a noncritical point (noncritical jump point)
for some initial function Φ ∈ PC relative to the delay τl(t), l ∈ ⟨r⟩ if the equality τl(a) = 0 implies
that there exists a constant b0 > a (eventually depending on τl(t)) such that t − τl(t) < a for
t ∈ (a, b0].

Definition 7 ([22]). The low terminal a for a function Φ ∈ PC with a /∈ SΦ(a ∈ SΦ) will be called
a critical point (critical jump point) relative to some delay τl(t), l ∈ ⟨r⟩ if the equality τl(a) = 0
implies that there exists a constant b0 > a (eventually depending on τl(t)) such that t − a ≥ τl(t)
for t ∈ (a, b0].

Lemma 2 ([22]). Let the hypotheses (S) hold and ∏
l∈⟨r⟩

τl(a) > 0. Then, there exists b ∈ (a, a + h]

(eventually depending from τl), such that Φ(t − τl(t)) is continuous for t ∈ (a, b].

Lemma 3 ([22]). Let the hypotheses (S) hold and ∏
l∈⟨r⟩

τl(a) = 0.

Then, for any initial function Φ ∈ PC with SΦ = {a}, one of the following statements holds:

(i) The statement of Lemma 2 holds.
(ii) The low terminal a is a critical jump point for Φ relative to the kernel V(t, θ) for some l0 ∈ ⟨r⟩.
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Theorem 1 ([23], Krasnosel’skii’s fixed point theorem). Let (E, ∥ · ∥E) be a Banach space,
H ⊂ E be a nonempty, closed, and convex subset of E and the maps T,N : H → E satisfy the
following conditions:

(i) The operator T is a contraction with constant γ ∈ (0, 1) ;
(ii) The operator K is continuous and the set K(B) is contained in a compact set;
(iii) For any x, y ∈ H, we have that Tx + Ky ∈ H.

Then, there exists a z ∈ H with Tz + Kz = z.

Theorem 2 ([24], Corollary 2). Suppose that α ∈ (0, 1) and the following conditions hold:

1. The functions a(t), g(t), y(t) ∈ Lloc
1 (J,R+).

2. The functions a(t), g(t) are nondecreasing, g(t) is bounded on J, and y(a) = 0.

3. The inequality y(t) ≤ a(t) + g(t)
t∫

a
(t − s)β−1y(s)ds holds for t ∈ J.

Then, for any t ∈ J we have that y(t) ≤ a(t)Eα(g(t)Γ(α)tα).

Remark 1. The main difference between the systems (even in the linear case) with different types
of fractional derivatives from the point of view of their applicability as model tools of real-world
phenomena is the answer for a concrete type of derivative, whether the derivative of a constant
is identically equal to zero or not. Typical representatives of these two classes are the fractional
derivatives of Caputo and RL types. So, for the study of retarded and neutral systems with Caputo
derivatives a lot of the ideas and techniques known from the systems with integer-order derivatives
can be used, because of the continuity of the corresponding Krasovskii functional. Note that in some
important special cases it is possible that the Krasovskii functional can have a jump only of the
first kind at the initial point, but this obstacle can be overcome with the help of some variants of
Banach’s contraction principle. In contrast, for retarded and neutral systems with RL derivatives
we have at least in the technical aspect several complications, mainly based on the availability of
a discontinuity (jump of second kind) of the solutions at the low terminal, a fact which greatly
complicates the use of the Riesz theorem for the representation of linear continuous functionals
(Krasovskii functionals) on C via a Lebesgue–Stieltjes integral. Even for the retarded systems with
RL derivatives, more sophisticated techniques such as Weissinger theorem combined with application
of the Mittag–Lafleur function must be used. We emphasize that the important neutral case with
RL derivatives, the study of which is the aim of this article, is essentially more complicated even in
comparison with the retarded systems with the same kind of derivatives, not only in the technical
aspects, but in their applications as models.

3. The Initial Problem (1), (2) with Discontinuous Initial Functions

The next Lemma is well known for the case of systems with Caputo-type derivatives
and for delayed systems with RL-type derivatives, and therefore, we will sketch only the
differences appearing in the neutral case with RL-type derivatives and distributed delays.

Lemma 4. Let the following conditions be fulfilled:

1. The hypotheses S hold.
2. For any Φ ∈ PC, the vector-valued functional F : J × PC → Rn ∈ BLloc

1 (J,Rn).

Then, every solution X(t) of IP (1), (2) is a solution of IP (3), (2) and vice versa.

Proof. Let Φ ∈ PC be arbitrary and X(t) be the corresponding solution of IP (1), (2). Then,
according to formula 2.1.40 in [5], we have
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Iα
a+Dα

a+

X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)

 = X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)

− lim
t→a+0

I1−α
a+

X(t)−

 0∫
−h

[dθV(t, θ)]X(t + θ)

 = X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)

−Φ(0)(t − a)α−1 + lim
t→a+0

I1−α
a+

 0∫
−h

[dθV(t, θ)]X(t + θ)

.

Then, obviously X(t) will be a solution of IP (3), (2) if we prove

lim
t→a+0

I1−α
a+

 0∫
−h

[dθV(t, θ)]X(t + θ)

 = 0.

Condition (S2) implies that there exists a constant Vh >0 such that |Varθ∈[−h,0]V(t, θ)| ≤ Vh

for t ∈ [a, a + h], and since Varθ∈[−h,0]V(t, θ) is uniformly nonatomic at zero in t, then

for any ϵ > 0 there exists δ ∈ (0, ϵ) such that |Varθ∈[−h,0]V(t, θ)| < ϵΓ(α)
2∥Φ∥ uniformly for

t ∈ [a, a + h]. Then, for t ∈ [a, a + δ] we have∣∣∣∣∣∣ lim
t→a+0

I1−α
a+

 0∫
−h

[dθV(t, θ)]X(t + θ)

∣∣∣∣∣∣
=

1
Γ(α)

lim
t→a+0

(t − a)1−α

∣∣∣∣∣∣
a−t∫
−h

[dθV(t, θ)]Φ(t + θ) +

0∫
a−t

[dθV(t, θ)]X(t + θ)

∣∣∣∣∣∣
≤ 1

Γ(α)
lim

t→a+0
(t − a)1−α∥Φ∥|Varθ∈[−h,0]V(t, θ)|

+
1

Γ(α)
lim

t→a+0
(t − a)1−α sup

θ∈[−δ,0]
|X(t, θ)|Varθ∈[−δ,0]V(t, θ) (4)

and, hence, for the first addend on the right-hand side of (4) the relation

lim
t→a+0

(t − a)1−α∥Φ∥|Varθ∈[−h,0]V(t, θ)| = 0

holds. Since X(t) ∈ C1−α, then there exists δ ∈ (0, δ) such that for t ∈ [a, a + δ] and any
θ ∈ [−h, 0] we have that |X(t + θ)| ≤ |X(t + θ)− X(t)|+ |X(t)| ≤ 2|X(t)|. Then, for the
second addend on the right-hand side of (4) for t ∈ [a, a + δ] we obtain that

1
Γ(α)

lim
t→a+0

(t − a)1−α sup
θ∈[−δ,0]

|X(t, θ)|Varθ∈[−δ,0]V(t, θ)

≤ 2
Γ(α)

lim
t→a+0

(t − a)1−α|X(t)| ϵΓ(α)
2∥Φ∥ ≤ 2Φ(0)

ϵ

2∥Φ∥ < ϵ,

which implies that

lim
t→a+0

(t − a)1−α sup
θ∈[−δ,0]

|X(t, θ)|Varθ∈[−δ,0]V(t, θ) = 0.

Thus, X(t) is a solution of IP (3), (2).
Let X(t) is a solution of IP (3), (2), and then, applying the operator Dα

a+ to both sides
of (3) we obtain immediately the opposite statement.
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Modifying the approach in [11], for an arbitrary fixed number α ∈ (0, 1) we introduce
the following real linear space:

E ={G : [a − h, ∞)|G(t)|[a−h,a] = Φ(t − a), Φ ∈ PC;

G|J0 ∈ C1−α(J0,Rn), lim
t→a+0

(t − a)1−αG(t) = Φ(0)}

and for any b > a introduce the linear subspaces:

Eb = {R : [a − h, b]|R(t) = G|[a−h,b], G ∈ E}

endowed with the norm ∥R∥b = ∥Φ∥+ ∥G|(a,b]∥1−α
b .

Let Φ0 ∈ PC with SΦ0 = {a} be arbitrary fixed and define the nonempty, closed, and
convex subset EΦ0

b ⊂ Eb as follows:

E
Φ0
b = {R ∈ Eb|R(t)|[a−h,a] = Φ0(t − a), lim

t→a+0
(t − a)1−αR(t) = Φ0(0)}.

It is simple to see that for any R ∈ Eb we have that the norms ∥R∥b = ∥Φ0∥+∥R∥1−α
b and

∥R∥b = ∥R∥1−α
b are equivalent.

For any b > a, t ∈ (a, b] and R ∈ Eb define the operator R : EΦ0
b → Eb as follows:

(RR)(t) = Φ(0)(t − a)α−1 +

0∫
−h

[dθV(t, θ)]R(t + θ)

+I−1(Γ(α))

 t∫
a

Iα−1(t − s)
0∫

−h

[dU(s, θ)]R(s + θ)ds +
t∫

a

Iα−1(t − s)F(t, Rs)ds

, (5)

with the additional conditions

(RR)(t) = Φ0(t − a), t ∈ [a − h, a]; lim
t→b−0

(RR)(t) = (RR)(b). (6)

In addition, for arbitrary b>h , t ∈ (a, b] and R∈Eb we define the operators T,K : EΦ0
b → Eb

as follows:

(TR)(t) = Φ0(0)(t − a)α−1 +

0∫
−h

[dθV(t, θ)]R(t + θ)

(TR)(t) = Φ0(t − a), t ∈ [a − h, a]; lim
t→b−0

(TR)(t) = (TR)(b), (7)

(KR)(t) = I−1(Γ(α)) t∫
a

Iα−1(t − s)

 0∫
−h

[dθU(s, θ)]R(s + θ)

ds +
t∫

a

Iα−1(t − s)F(s, Rs)ds


(KR)(t) = 0, t ∈ [a − h, a]; lim

t→b−0
(KR)(t) = (KR)(b). (8)

Then, the operator R, defined via (5), (6), for any R ∈ E
Φ0
b has the form

(RR)(t) = (TR)(t) + (KR)(t). (9)

The next technical lemma is an immediate generalization of Theorem 4 in [25]. The
lemma below is more appropriate for applications and can be used in the cases of RL
derivatives too. For simplicity we will consider only the case when the initial function
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Φ ∈ PC has only one jump point, but it is simple to see that the proof provided below can
be used in the case of an arbitrary but finite number of jumps too.

Lemma 5. Let the following conditions be fulfilled:

1. The hypotheses (S) hold and Φ ∈ PC with SΦ = {tjump}, tjump ∈ (a − h, a] are arbitrary.
2. The low terminal a is a jump point for Φ relative to the delay τl0(t) for some l0 ∈ ⟨r⟩.

Then, lim
t→a+0

Al0(t) = Θ, l0 ∈ ⟨r⟩.

Proof. We will consider the more complicated case when SΦ = {tjump = a} and a is a critical
jump point. Then, since τl(t)∈ C(J, [0, h]) for all l ∈ ⟨r⟩ we have that lim

t→a+0
t − τl0(t) = a.

Let assume that there exists a sequence {ti}∞
i=1 ⊂ (a, b0) such that ti − τl0(ti) = a, and

hence, the set SΦ has a limit point which contradicts condition (S4). Then, there exists

b0 ∈ (a, a + h) such that t − τl0(t) > a for any t ∈ (a, b0]. Let us assume that
∣∣∣Al0(a)

∣∣∣ > 0,

ϵ ∈

0,

∣∣∣Al0(a)
∣∣∣

4

 and δ ∈ (o, ϵ) is the number existing according to condition (S2) such

that Var[−δ,0]V(t, ·) < ϵ for any t ∈ J. Then, for any t ∈ J θ ∈ (0, δ] with t + θ ≥ a∣∣∣Al0(a)H(a)
∣∣∣ = ∣∣∣Al0(a)

∣∣∣ ≤ |Vd(t, θ)| ≤ |Vd(t, 0)|+
∣∣∣Varθ∈[−δ,0]Vd(t, θ)

∣∣∣
=
∣∣∣Varθ∈[−δ,0]V

l
d(t, θ)

∣∣∣ < ϵ <

∣∣∣Al0(a)
∣∣∣

4
,

which is impossible. Thus, we have that
∣∣∣Al0(a)

∣∣∣ = 0, and hence, lim
t→a+0

=
∣∣∣Al0(t)

∣∣∣ = 0.

The proofs of the cases when a is a noncritical jump point and when tjump ̸= a are
simpler versions of the proof in the case when tjump = a (a is a critical jump point), and
therefore, will be omitted.

It is clear that without loss of generality it is possible to renumber all concentrated

delays in the jump part Vj(t, θ) = ∑
l∈⟨r⟩

Al
(t)H(θ + τl(t)) and give the first l numbers,

0 ≤ l ≤ r of these delays, relative to which a is a critical jump point. Everywhere below we
will assume that this renumbering is made.

Theorem 3. Let the following conditions be fulfilled:

1. The conditions of Lemma 4 hold.
2. sup

θ∈[−h,0]
|∂Vθ(t, θ)|, sup

θ∈[−h,0]
|∂Uθ(t, θ)| ∈ BLloc

1 (J,Rn×n), where ∂Vθ , ∂Uθ denote the partial

derivatives with respect to θ.
3. The condition (C) holds.

Then, for any Φ0 ∈ PC with SΦ = {tjump}, tjump ∈ (a − h, a] there exists b0 > a such that
IP (3), (2) has at least one solution X(t) ∈ E

Φ0
b with an interval of existence (a, b0].

Proof. As above, we will consider the more complicated case when Φ ∈ PC with SΦ = {a}.
Let b ∈ (a, a + h) is arbitrary. As a first step we will prove that T(EΦ0

b ) ⊆ E
Φ0
b .

For any R ∈ E
Φ0
b from (6) and Lemmas 2 and 3 it follows that
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(TR)(t) = Φ0(0)(t − a)α−1 +

a−t∫
−h

[dθV(t, θ)]Φ0(t − a + θ) +

0∫
a−t

[dθV(t, θ)]R(t + θ)

= Φ0(0)(t − a)α−1 +

a−t∫
−h

[dθV(t, θ)]Φ0(t − a + θ)

+
r

∑
l=l+1

Al
(t)Φ0(t − τl(t)− a) +

l

∑
l=1

Al
(t)R(t − τl(t)) +

0∫
a−t

[dθVc(t, θ)]R(t + θ), (10)

where Vc(t, θ) = Vac(t, θ) + Vs(t, θ), and t ∈ (a, b].
The first addend on the right-hand side of (10) is continuous for any t ∈ J0, and hence,

belongs to C1−α. Since

lim
t→a+0

(t − a)1−αΦ0(0)(t − a)α−1 = Φ0(0),

we can prolong Φ0(0)(t − a)α−1 as a function from E
Φ0
b . According to Lemma 1 in [11] and

Lemma 4 in [22], since the initial function Φ0(t − a) is a continuous function for t∈ [a − h, a),
the second and the third addends on the right-hand side of (10) are continuous functions
at t ∈ (a, b]. Taking into account that a is a critical jump point relative to the delays with
numbers l ∈ ⟨l⟩, we conclude that the fourth addend is a continuous function at t ∈ (a, b]
too. For the fifth addend, via the substitution t + θ = s we obtain

0∫
a−t

[dθVc(t, θ)]R(t + θ) =

t∫
a

[dsVc(t, s − t)]R(s). (11)

Because Vc(t, s − t) and R(s) for any t ∈ (a, b] are continuous at s ∈ (a, t], then the fifth
addend is a continuous function at t ∈ (a, b] by virtue of lemma 1 in [19]. Since the right-
hand side of (10) is a continuous function at t = b, then the second additional relation in (7)
holds too, and hence, from (7) it follows that T(EΦ0

b ) ∈ E
Φ0
b . Thus, T(EΦ0

b ) ⊆ E
Φ0
b .

As a second step we will prove that the operator T is a contraction. Denote Lb= sup
t∈[a,b]

ℓ(t),

Vb = max

 sup
t∈[a,b],

θ∈[−h,0]

|∂θV(t, θ)|, sup
t∈[a,b]

∣∣∣∣ Var
θ∈[−h,0]

V(t, θ)

∣∣∣∣


and

Ub = max

 sup
t∈[a,a+b]

∣∣∣∣ Var
θ∈[−h,0]

U(t, θ)

∣∣∣∣, sup
t∈[a,b],

θ∈[−h,0]

|∂θU(t, θ)|

.

Then, for arbitrary R, R ∈ E
Φ0
b from (7) and Lemmas 2 and 3 it follows that∣∣(T(R))(t)− (T(R))(t)

∣∣ =
∣∣∣∣∣∣

0∫
−h

[dθV(t, θ)](R(t + θ)− R(t + θ))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
0∫

−h

[dθVj(t, θ)](R(t + θ)− R(t + θ))

∣∣∣∣∣∣+
∣∣∣∣∣∣

0∫
−h

[dθVc(t, θ)](R(t + θ)− R(t + θ))

∣∣∣∣∣∣
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≤
∣∣∣∣∣ l

∑
l=1

Al
(t)(R(t − τl(t))− R(t − τl(t)))

∣∣∣∣∣
+

∣∣∣∣∣l=r

∑
l=l

Al
(t)(Φ0(t − a − τl(t))− Φ0(t − a − τl(t)))

∣∣∣∣∣
+

∣∣∣∣∣∣
0∫

a−t

[dθVc(t, θ)](R(t + θ)− R(t + θ))

∣∣∣∣∣∣
≤
∣∣∣∣∣ l

∑
l=1

Al
(t)(R(t − τl(t))− R(t − τl(t)))

∣∣∣∣∣t+θ=s
+

∣∣∣∣∣∣
t∫

a

[dsV(t, s − t)](R(s)− R(s))

∣∣∣∣∣∣. (12)

For the first addend on the right-hand side of (12), since τl(a) = 0 and the low terminal
a is a critical jump point for Φ relative to the delays τl(t), l ∈ ⟨l⟩, by virtue of Lemma 5
there exists b1 ∈ (a, b] such that for any t ∈ (a, b1] we have the estimation∣∣∣∣∣ l

∑
l=1

Al
(t)(R(t − τl(t))− R(t − τl(t)))

∣∣∣∣∣
≤ (t − a)α−1

∣∣∣∣∣ l

∑
l=1

Al
(t)(t − a)1−α(R(t − τl(t))− R(t − τl(t)))

∣∣∣∣∣
≤ (t − a)1−α

6
sup

s∈(a,t]
(s − a)1−α

∣∣R(s)− R(s)
∣∣. (13)

Hypothesis (S2) implies that for ϵ =
1
6

there exists δ ∈ (0, ϵ) such that∣∣∣∣ Var
θ∈[−δ,0]

Vc(t, θ)

∣∣∣∣ < 1
6

for any t ∈ (a, b2], where b2 = min(b1, a + δ), we obtain

|V(t, s − t)| ≤ |V(t, 0)|+
∣∣∣Vars−t∈[−δ,0]Vc(t, s − t)

∣∣∣ ≤ 1
6

.

Then, the second addend in (12) for any t ∈ (a, b2] has the estimation∣∣∣∣∣∣
t∫

a

[dsV(t, s − t)](R(s)− R(s))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

a

[∂sV(t, s − t)](s − a)α−1(s − a)1−α(R(s)− R(s))ds

∣∣∣∣∣∣
≤ (t − a)αVb

α
sup

s∈(a,t]
(s − a)1−α

∣∣R(s)− R(s)
∣∣

and, hence, for t ∈ (a, b3], where b3 ∈
(

a, min
(

1, b2, a +
(

α
6Vb

) 1
α

)]
we obtain that

∣∣∣∣∣∣
t∫

a

[dsV(t, s − t)](R(s)− R(s))

∣∣∣∣∣∣ ≤ 1
6

sup
s∈[a,t]

(s − a)1−α
∣∣R(s)− R(s)

∣∣. (14)
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Multiplying both sides of (12) by (t − a)1−α and then from (12), (13), and (14) it follows

that for any t ∈ (a, b3] we obtain that
∥∥T(R)− T(R)

∥∥Φ0
b3

≤ 1
3

∥∥R − R
∥∥Φ0

b3
and, hence, T is a

contraction operator in E
Φ0
b3

.

For arbitrary R, R ∈ E
Φ0
b3

, from (7) we obtain that∣∣(KR)(t)− (KR)(t)
∣∣ ≤ n

Γ(α)

∣∣∣∣∣∣
t∫

a

Iα−1(t − s)

 0∫
−h

[dθU(s, θ)](R(s + θ)− R(s + θ))

ds

∣∣∣∣∣∣
+

n
Γ(α)

∣∣∣∣∣∣
t∫

a

Iα−1(t − s)
(
F(s, Rs)− F(s, Rs)

)
ds

∣∣∣∣∣∣
≤ n2

Γ(α)

t∫
a

(t − s)α−1

∣∣∣∣∣∣
0∫

a−s

[dθU(s, θ)](R(s + θ)− R(s + θ))

∣∣∣∣∣∣ds

+
n2

Γ(α)

t∫
a

(t − s)α−1∣∣F(s, Rs)− F(s, Rs)
∣∣ds

≤ n2

Γ(α)

t∫
a

(t − s)α−1
0∫

a−s

|∂θU(s, θ)||R(s + θ)− R(s + θ)|ds

+
n2

Γ(α)

t∫
a

(t − s)α−1ℓ(s)
∣∣R(s)− R(s)

∣∣ds

≤ n2Ub
Γ(α)

 t∫
a

(t − s)α−1

 s∫
a

|R(η)− R(η)|dη

ds + Lb

t∫
a

(t − s)α−1|R(s)− R(s)|ds

. (15)

For the first addend on the right-hand side of (15), for any t ∈ (a, b3] the following estima-
tion holds:

n2Ub
Γ(α)

∣∣∣∣∣∣
t∫

a

(t − s)α−1

 s∫
a

|R(η)− R(η)|dη

ds

∣∣∣∣∣∣= n2Ub
Γ(α)

∣∣∣∣∣∣
t∫

a

 s∫
a

|R(η)− R(η)|dη

d(t − s)α

∣∣∣∣∣∣
n2Ub
Γ(α)

∣∣∣∣∣∣
t∫

a

(t − s)α|R(s)− R(s)|ds

∣∣∣∣∣∣
t−s=y−a

=
n2Ub
Γ(α)

∣∣∣∣∣∣
t∫

a

(y − a)α(y − a)α−1(y − a)1−α|R(t − y + a)− R(t − y + a)|dy

∣∣∣∣∣∣
≤ (2α)−1 n2Ub

Γ(α)
(t − a)2α sup

s∈[a,t]
(s − a)1−α|R(s)− R(s)|

≤ n2Ub
2Γ(1 + α)

sup
s∈[a,t]

(s − a)1−α|R(s)− R(s)| (16)

and analogously, for the second one we obtain
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n2Lb
Γ(α)

t∫
a

(t − s)α−1|R(s)− R(s)|ds =
n2Lb

Γ(1 + α)

t∫
a

|R(s)− R(s)|d(t − s)α

≤ n2Lb
Γ(1 + α)

t∫
a

(t − s)αd|R(s)− R(s)|

≤ n2Lb(t − a)2α−1

Γ(1 + α)
sup

s∈[a,t]
(s − a)1−α|R(s)− R(s)|. (17)

Multiplying both sides of (15) by (t − a)1−α, and then, from (15), (16), and (17), it
follows that for any t ∈ (a, b3] we obtain that

∥∥K(R)− K(R)
∥∥Φ0

b3
≤ n2

2Γ(1 + α)
(Ub + 2Lb(b3 − a)α)

∥∥R − R
∥∥Φ0

b3
(18)

and, hence, K : EΦ0
b3

→ Eb3 is a continuous operator.

Let r0 ∈ R0
+ and R0 ∈ E

Φ0
b3

be arbitrary fixed and consider the ball

B(R0, r0) = {R ∈ E
Φ0
b3

| ∥R0 − R∥Φ0
b3

≤ r0} ⊂ E
Φ0
b3

.

For any R ∈ B(R0, r0), from (18) it follows that

∥K(R)∥Φ0
b3

≤ ∥K(R0)∥Φ0
b3

+ ∥K(R)− K(R0)∥Φ0
b3

≤ n2

2Γ(1 + α)
(Ub + 2Lb(b3 − a)α)∥R − R0∥Φ0

b3
+ ∥N(R0)∥Φ0

b3

≤ n2r0

2Γ(1 + α)
(Ub + 2Lb(b3 − a)α) + ∥N(R0)∥Φ0

b3
= C(r0, b3) (19)

and, hence, the set K(B(R0, r0)) is uniformly bounded.
To apply Theorem 1 we must prove that the set N(B(R0, r0)) is equicontinuous, and

hence, it is at least relative compact. For any R ∈ B(R0, r0) and arbitrary t1, t2 ∈ (a, b3] we
have the estimation

|(KR)(t2)− (KR)(t1)|

≤ n2

Γ(α)

∣∣∣∣∣∣
t1∫

a

((t2 − s)α−1 − (t1 − s)α−1)

 0∫
−h

[dθU(s, θ)]R(s + θ) + F(s, Rs)

ds

∣∣∣∣∣∣
+

n2

Γ(α)

∣∣∣∣∣∣
t2∫

t1

(t2 − s)α−1

 0∫
−h

[dθU(s, θ)]R(s + θ) + F(s, Rs)

ds

∣∣∣∣∣∣
≤ n2

Γ(α)

t1∫
a

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣
∣∣∣∣∣∣

0∫
−h

[dθU(s, θ)]R(s + θ) + F(s, Rs)

∣∣∣∣∣∣ds

+
n2

Γ(α)

t2∫
t1

(t2 − s)α−1

∣∣∣∣∣∣
0∫

−h

[dθU(s, θ)]R(s + θ) + F(s, Rs)

∣∣∣∣∣∣ds. (20)

Since for t ∈ (a, b3] from conditions (C) and (19) we have that∣∣∣∣∣∣
0∫

−h

[dθU(s, θ)]R(s + θ) + F(s, Rs)

∣∣∣∣∣∣ ≤ (Ub + Lb)C(r0, b3), (21)
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then from (20) and (21) for any t ∈ (a, b3] we obtain

|(KR)(t2)− (KR)(t1)|

≤ n2C(r0, b3)(Ub + Lb)

Γ(α)

 t1∫
a

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ds +

t2∫
t1

(t2 − s)α−1ds


≤ n2C(r0, b3)(Ub + Lb)

αΓ(α)
(2(t2 − t1)

α + (t1 − a)α − (t2 − a)α)

≤ n2C(r0, b3)(Ub + Lb)

Γ(1 + α)
(2(t2 − t1)

α + |(t1 − a)α − (t2 − a)α|). (22)

Then, since (t − a)α is uniformly continuous at t ∈ [a, a + h], for any ϵ > 0 there exists
δ ∈ (0, ϵ) such that if |t2 − t1| < δ we have that

|(t1 − a)α − (t2 − a)α| < ϵ
Γ(1 + α)

n2C(r0, b3)(Ub + Lb)

and, hence, from (22) it follows that the set K(B(R0, r0)) is equicontinuous. Thus, by
virtue of the Arzella–Ascoli theorem, K(B(R0, r0)) is at least relative compact. For ar-
bitrary R, R ∈ E

Φ0
b3

we consider the sum (TR)(t)+(KR)(t). Taking into account that
lim

t→a+0
(KR)(t) = 0 and can be prolonged as 0 for any t∈ [a − h, a], from (7) it follows that

(TR)(t)+(KR)(t)=Φ0(t − a). Since lim
t→a+0

(KR)(t) = 0, then lim
t→a+0

(t − a)1−α(KR)(t) = 0

too. Considering the fact that

lim
t→a+0

(t − a)1−α(TR)(t) = Φ0(0) + lim
t→a+0

(t − a)1−α

0∫
−h

[dθV(t, θ)]R(t + θ)

 = Φ0(0),

then, we obtain that

lim
t→a+0

(t − a)1−α((TR)(t) + (KR)(t)) = Φ0(t − a)

and, hence, (TR)(t) + (KR)(t) ∈ E
Φ0
b3

. Applying Theorem 1, we obtain that there exists at

least one fixed point R∗ ∈ E
Φ0
b0

, i.e., R∗(t) = (TR∗)(t) + (KR∗)(t), t ∈ (a, b0], b0 = b3.

Theorem 4. Let the conditions of Theorem 3 be fulfilled.
Then, for any Φ0 ∈ PC with SΦ = {tjump}, tjump ∈ (a − h, a] the solution X(t) ∈ E

Φ0
b0

of
IP (3), (2) is unique in the interval of its existence (a, b0].

Proof. Assume the contrary, that IP (3), (2) possess two different solutions X1(t), X2(t) ∈ E
Φ0
b .

Then, from (3) for any t ∈ (a, b0] we obtain that∣∣∣X1(t)− X2(t)
∣∣∣ = |Y(t)| ≤ |(TY)(t) + (KY)(t)| ≤ |(TY)(t)|+ |(KY)(t)| ≤ q|Y(t)|

+
n2

Γ(α)

t∫
a

(t − τ)α−1

∣∣∣∣∣∣
0∫

−h

∂θU(τ, θ)Y(τ + θ)dθ

∣∣∣∣∣∣+
∣∣∣F(τ, X1,T

τ )− F(τ, X2,T
τ )

∣∣∣
dτ

≤ q|Y(t)|+
n2(b0 − a)1−αUb0

Γ(α)

t∫
a

(t − τ)α−1

(
( sup

s∈[a,τ]
|Y(s)|+ ℓ(τ)|Y(s)|)dτ

)
. (23)
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Since (2) implies that |Y(a)| = 0, then from (23) it follows that

sup
s∈[a,t]

|Y(s)| ≤
n2(b0 − a)1−αUb0

Γ(α)(1 − q)

t∫
a

(t − τ)α−1

(
( sup

s∈[a,τ]
|Y(s)|+ ℓ(τ)|Y(s)|)dτ

)

≤
n2(b0 − a)1−αUb0(1 + Lb0)

Γ(α)(1 − q)

t∫
a

(t − τ)α−1 sup
s∈[a,τ]

|Y(s)|dτ.

Denoting g(t) = g0 =
n2(b0 − a)1−αUb0(1 + Lb0)

Γ(α)(1 − q)
, a(t) ≡ 0 and applying Theorem 2, we

obtain for t ∈ (a, b0] the estimation sup
s∈[a,t]

|Y(s)| ≤ a(t)Eα(g0Γ(α)tα) ≡ 0 which contradicts

our assumption. The proof of the case when tjump ̸= a is almost the same as the proof in
the case when tjump = a, and therefore, will be omitted.

Definition 8. We say that the solution of IP (3), (2) X2(t) ∈ E
Φ0
b2

is a continuation of a solu-

tion X1(t) ∈ E
Φ0
b1

of IP (3), (2) if (a, b1] ⊂ (a, b2] and X2(t) ≡ X1(t) on (a, b1]. The solution

XMax(t) ∈ E
Φ0
bMax

of IP (3), (2) which coincides with all of its continuations will be called the
maximal solution.

Theorem 5. Let the conditions of Theorem 3 be fulfilled.
Then, for any Φ0 ∈ PC with SΦ = {tjump}, tjump ∈ (a − h, a] the unique solution X(t)∈E

Φ0
b0

with interval of existence (a, b0] of IP (3), (2) can be continued as a unique solution X(t) ∈ E of IP
(3), (2) with interval of existence J0.

Proof. Assume the contrary, that there exists a maximal solution XMax(t) ∈ E
Φ0
bMax

of IP (3),
(2) with the interval of its existence (a, bMax] (which is closed from the right), bMax < ∞,
and define the operator R : EΦ0

b → Eb with b > bMax via (5) with the additional conditions
(RR)(t) = XMax(t), t ∈ [a − h, a]; lim

t→b−0
(RR)(t) = (RR)(b). Then, we can prove, fully analo-

gous to the proof of Theorem 3, that for any Φ0 ∈ PC with SΦ={tjump}, tjump∈(a − h, a] there
exists b > bMax such that IP (3), (2) has at least one solution Xb(t) ∈ E

Φ0
b

with interval of

existence (a, b], and obviously, Xb(t) ≡ XMax(t) for any t ∈ (a − h, bMax]. Thus, we obtain
that Xb(t) is a continuation of XMax(t), which is impossible.

Let assume that that there exists a maximal solution XMax(t) of IP (3), (2) and its inter-
val of existence is open and finite, i.e., (a, bMax), bMax < ∞. Then, since XMax(t) satisfies
(3) for any t ∈ (a, bMax) and the additional condition lim

t→bMax−0
(RR)(t) = (RR)(b) too, we

conclude that XMax(t) satisfies (3) for any t ∈ (a, bMax], which contradicts our assumption.
Thus, we have that bMax = ∞, which completes the proof.

Remark 2. We note that from Theorems 3–5 it follows that the requirement in Theorem 2 [11],
that in the Lebesgue decomposition of U(t, θ) a singular part does not exist, is unnecessary. So, the
results proved in Theorems 3–5 generalize the statement of Theorem 2 [11] even in the retarded case.

4. The Linear Case F(t, XT
t ) = F(t) – Fundamental Matrices and Integral

Representation of the Solutions

In this section, we establish the existence of two different types of fundamental ma-
trices and of their bases; we obtain two types integral representations for the solutions of
IP (24), (2) for different kinds of initial functions. In the case when F(t, XT

t ) = F(t),
system (1) becomes an inhomogeneous linear system and has the following form:
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Dα
a+

Y(t)−
0∫

−h

[dθV(t, θ)]Y(t + θ)

 =

0∫
−h

[dθU(t, θ)]Y(t + θ) + F(t), (24)

where Y(t) = (y1(t), . . . , yn(t))T : J → Rn and F(t) = ( f1(t), . . . , fn(t))T ∈ BLloc
1 (J,Rn).

Consider the corresponding homogeneous linear system of (1) and (24):

Dα
a+

Y(t)−
0∫

−h

[dθV(t, θ)]Y(t + θ)

 =

0∫
−h

[dθU(t, θ)]Y(t + θ), (25)

and following [11] introduce for any j ∈ ⟨n⟩ and s ∈ J the initial function

Y j(t, s) = 0, t ∈ [s − h, s); Y(t, s) = I j, t = s, (26)

where I j denotes the j-th column of the identity matrix I.
From Theorem 5 it follows that for any j ∈ ⟨n⟩ and s ∈ J IP (25), (2) has a unique

solution Hj(t, s), which satisfies (25) for any t ∈ (s, ∞) and the initial condition (2) with
the initial function (26) too. Then, the matrix H(t, s) = (H1(t, s), . . . ,Hn(t, s)) will be called
fundamental matrix of the system (25).

Additionally, we introduce the following initial function for any j∈⟨n⟩ and s∈ [a − h, a]:

Y j(t, s) = I j, a − h ≤ s ≤ t ≤ a; Y(t, s) = 0, t < s; Y(t, s) = 0, s < a − h. (27)

As above, for any j ∈ ⟨n⟩ and s ∈ J we can conclude that IP (24), (2) has a unique
solution Qj(t, s) which satisfies (24) for any t ∈ J0 and the initial condition (2) with the initial
function (27) too. The matrix Q(t, s) = (Q1(t, s), . . . ,Qn(t, s)) we will call the generalized
fundamental matrix.

Both matrices play crucial roles in the construction of different kinds of integral
representations of the solutions of IP (24), (2) and IP (25), (2), having a lot of applications in
the qualitative theory of the fractional systems.

It is clear that H(t, a) ≡ Q(t, a) if and only if s = a. First, we will establish some
analytical properties of the matrices Q(t, a) and H(t, a), needed to obtain appropriate
integral representations of the solutions of (24) and (25).

As in the case of Caputo-type derivatives [26], for any Φ ∈ PC∗ we define the function

X̃(t) =
a∫

a−h

[dsΦ̃(s − a)]Q(t, s), (28)

where Φ̃(s − a) = Φ(s − a), s ∈ (a − h, a], and Φ̃(−h) = 0, s = a − h. It is necessary to es-
tablish for any j ∈ ⟨n⟩ that the solutions Qj(t, s) to IP (25), (2) are Lebesgue integrable in s
on s ∈ [a − h, a] for any fixed t ∈ J0.

Remark 3. Note that to prove the statement that Qj(t, s), j ∈ ⟨n⟩ are Lebesgue integrable in s on
s ∈ [a − h, a] for any fixed t ∈ J0 is not trivial, in contrast with the Caputo case where this fact can
be proved via elementary application of a generalized Bellman–Gronwall inequality (see Theorem 2).
The main tool in all these proofs of theorems devoted to integral representations of the solutions of
fractional systems with Caputo-type derivatives is the Fubini theorem. Thus, from our point of view
it is important to justify its correct application. The greatest obstacle in the neutral case with RL
derivatives is the problem with the integrability of the integrands relative to the product measures,
which are defined as the products of two Lebesgue–Stieltjes measures. Note that this problem arises
in our case, since the integrand is with a singularity of order 1 − α at the point a in contrast to the
case of neutral systems with Caputo-type fractional derivatives, in which case the integrand is a
Lebesgue measurable and locally bounded function. This difference leads at least to some additional
technical complications, but not only that.
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To overcome this obstacle, we need the statements of the next two lemmas.

Lemma 6. Let the following conditions be fulfilled:

1. Conditions 1 and 2 of Theorem 3 hold.

2. sup
t∈J0

∣∣∣Varθ∈[−h,0]V(t, θ)
∣∣∣ < 1

Then, for any compact interval [a, b] ⊂ J0, t ∈ [a, b], and j ∈ ⟨n⟩ we have that

Qj(t, ·) ∈ BLloc
1 ([a − h, a],Rn).

Proof. Let t ∈ J0 and j ∈ ⟨n⟩ be arbitrary fixed. Then, from (25), since F(τ, XT
τ ) ≡ 0 we have

|Qj(t, s)| ≤ |I j1[s,a](t − a)|(t − a)α−1 +

∣∣∣∣∣∣
0∫

−h

[dθV(t, θ)]Qj(t, s)

∣∣∣∣∣∣
+

n2

Γ(α)

t∫
a

(t − τ)α−1

∣∣∣∣∣∣
0∫

−h

[dθU(τ, θ)]Qj(τ + θ, s)

∣∣∣∣∣∣dτ

|I j1[s,a](t − a)|(t − a)α−1 + V sup
η∈(a,t]

∣∣∣Qj(t, s)
∣∣∣

=
n2Ub

Γ(α)(1 − V)

∣∣∣∣∣∣
t∫

a

(t − τ)α−1 sup
η∈(a,τ]

∣∣∣Qj(η, s)
∣∣∣
∣∣∣∣∣∣dτ

and, hence, by virtue of Theorem 2 we obtain

sup
s∈[−h,0]

(
sup

η∈(a,t]

∣∣∣Qj(η, s)
∣∣∣) ≤ |I j1[s,a](t − a)| (t − a)α−1

1 − V

+
n2Ub

Γ(α)(1 − V)

∣∣∣∣∣∣
t∫

a

(t − τ)α−1 sup
s∈[−h,0]

(
sup

η∈(a,τ]

∣∣∣Qj(η, s)
∣∣∣)
∣∣∣∣∣∣dτ

≤ |I j1[s,a](t − a)| (t − a)α−1

1 − V
Eα

(
n2Ub(t − a)α

(1 − V)

)
, (29)

where in (29) Eα(z) =
∞

∑
k=1

zk

Γ(αk + 1)
is the one-parameter Mittag–Laffler function. This

completes the proof.

By virtue of Lemma 6 we can state that the integral on the right-hand side of (28) is
correctly defined.

Corollary 1. Let the conditions of Lemma 6 hold.
Then, for arbitrary fixed s ∈ [−h, 0), Q(t, s) is continuous in t for t − a ∈ [−h, s) ∪ (s, 0) or

when s = 0 for t − a ∈ [−h, 0). At t − a = s, Q(t, s) has a first-kind jump.

Lemma 7. Let the conditions of Lemma 6 hold.
Then, for any t ∈ J0 we have that Q(t, ·) ∈ BV([a − h, a],Rn×n).

Proof. Let Φ∗(s) = (φ∗
1(s), . . . , φ∗

n(s))T ∈ PC∗ with inf
s∈[a−h,a]

φ∗
j (s) ≥ c0 > 0, j ∈ ⟨n⟩. Then,

integrating by parts formally the integral in (28) we have that
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a∫
a−h

[dsΦ̃∗(s − a)]Q(t, s)

= Φ̃∗(0)Q(t, a)− Φ̃(−h)]Q(t, a − h)−
a∫

a−h

[dsQ(t, s)]Φ̃∗(s − a), (30)

and since the integral on the left-hand side of (30) exists, then the integral on the right-hand
side exists too (see [27], point 5, page 229). Let t ∈ J0 be arbitrary, ϵ > 0 and ∏q = {s0 =
a − h, s1, . . . , sq = a} ⊂ [a − h, a] be an arbitrary partition. Then, there exists a number
qϵ ∈ N such that for any q ≥ qϵ we have that∣∣∣∣∣∣

a∫
a−h

[dsQ(t, s)]Φ̃∗(s − a)−
q

∑
k=1

Φ̃∗(sk − a)
∣∣∣Qj(t, sk)−Qj(t, sk−1)

∣∣∣
∣∣∣∣∣∣ < ϵ,

and hence,

0 ≤ c0

q

∑
k=1

∣∣∣Qj(t, sk)−Qj(t, sk−1)
∣∣∣ ≤ inf

s∈[a−h,a]

∣∣Φ̃∗(s − a)
∣∣ q

∑
k=1

∣∣∣Qj(t, sk)−Qj(t, sk−1)
∣∣∣

≤
q

∑
k=1

Φ̃∗(sk)
∣∣∣Qj(t, sk)−Qj(t, sk−1)

∣∣∣ ≤ a∫
a−h

[dsQ(t, s)]Φ̃∗(s − a) + ϵ.

Thus, Q(t, ·) ∈ BV([a − h, a],Rn×n).

Theorem 6. Let the conditions of Lemma 6 hold.
Then, for arbitrary initial function Φ ∈ PC∗ the function X̃(t), defined via (28), is the unique

solution of IP (25), (2) with interval of existence t ∈ J0.

Proof. The proof is based on ideas used in [22]. Thereupon, we will emphasize in detail
those differences that arise from the influence on the neutral system of the Riemann–
Liouville-type derivatives.

Theorem 5 implies that Q(·, s) ∈ C(J0,Rn×n) for any s ∈ [a − h, a]. Then, for the function
X̃(t), defined via (28), by virtue of Lemma 1 in [22] we have that X̃(t) ∈ C(J0,Rn) too.

More concretely, for arbitrary fixed t ∈ J0 the kernels V(t, θ) of U(t, θ) define two
Lebesgue–Stieltjes measures µθ

V = µV((θ1, θ2])=V(t, θ2)−V(t, θ1) and µθ
U = µU((θ1, θ2]) =

U(t, θ2)− U(t, θ1) for any (θ1, θ2] ⊂ [−h, 0], as well as the function Φ(s) defining a mea-
sure µs

Φ
= µΦ((s1, s2]) = Φ(s1) − Φ(s2) for any (s1, s2] ⊂ [a − h, a]. We introduce the

product measures

(µθ
V × µs

Φ)((θ1, θ2]× (s1, s2]) = µV((θ1, θ2]µΦ((s1, s2])

and
(µθ

U × µs
Φ)((θ1, θ2]× (s1, s2]) = µU((θ1, θ2]µΦ((s1, s2])

of the rectangles in P = [−h, 0]× [a − h, a]. Then, to use the proposition 5.15 in [28] we need

to prove that the relations

∣∣∣∣∣∣
∫∫
P

Q(t + θ, s)µθ
U × µs

Φ

∣∣∣∣∣∣<∞ and

∣∣∣∣∣∣
∫∫
P

Q(t + θ, s)µθ
V × µs

Φ

∣∣∣∣∣∣< ∞

hold. Since according to Lemmas 5 and 6 we have Q(t, ·) = BV([a − h, a],Rn×n) and
Q(t + θ, ·) = Lloc

1 ([a − h, ∞),Rn×n) for any t ∈ J0 and θ ∈ [−h, 0] concerning the first argu-
ment, then taking into account that µθ

V × µs
Φ
= µs

Φ
× µθ

V and µθ
U × µs

Φ
= µs

Φ
× µθ

U
we obtain
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∣∣∣∣∣∣
∫∫
P

Q(t + θ, s)µθ
U × µs

Φ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0∫
−h

[dθU(t, θ)]

 a∫
a−h

[dsΦ(s − a)]Q(t + θ, s)

∣∣∣∣∣∣ < ∞,

∣∣∣∣∣∣
∫∫
P

Q(t + θ, s)µθ
V × µs

Φ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0∫
−h

[dθV(t, θ)]

 a∫
a−h

[dsΦ(s − a)]Q(t + θ, s)

∣∣∣∣∣∣ < ∞.

Then, applying proposition 5.15 in [28] we have for t ∈ J0 that

0∫
−h

[dθV(t, θ)]X̃(t + θ) =

0∫
−h

[dθV(t, θ)]

 a∫
a−h

[dsΦ(s − a)]Q(t + θ, s)


=

a∫
a−h

[dsΦ(s − a)]

 0∫
−h

[dθV(t, θ)]Q(t + θ, s)

 (31)

and in the same way we obtain

0∫
−h

[dθU(t, θ)]X̃(t + θ) =

a∫
a−h

[dsΦ(s − a)]

 0∫
−h

[dθU(t, θ)]Q(t + θ, s)

. (32)

From (25) and (31) via the Fubini theorem it follows that

Dα
a+

X̃ j(t)−
0∫

−h

[dθV(t, θ)]X̃ j(t + θ)


=

1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

 a∫
a−h

[dsΦ̃(s − a)]Q(η, s)

dη

− 1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

0∫
−h

[dθV(η, θ)]

 a∫
a−h

[dsΦ̃(s − a)]Q(η + θ, s)

dη

=

a∫
a−h

[dsΦ̃(s − a)]

 1
Γ(1 − α)

d
dt

t∫
a

(t − η)−αQ(η, s)dη


−

a∫
a−h

[dsΦ̃(s − a)]

 1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

 0∫
−h

[dθV(η, θ)]Q(η + θ, s)

dη


=

a∫
a−h

[dsΦ̃(s − a)]Dα

Q(t, s)−
0∫

−h

[dθV(t, θ)]Q(t + θ, s)

. (33)

Hence, from (25), (32), and (33) it follows that X̃(t), defined via (28), satisfies (25) for any
t ∈ J0.

Let s̃ ∈ [a − h, a] be an arbitrary number, and then, from (28) when t = s̃, it follows that

X̃(s̃) =
a∫

a−h

[dsΦ̃(s − a)]Q(t, s) =
s̃∫

a−h

[dsΦ̃(s − a)]Q(t, s) +
a∫

s̃

[dsΦ̃(s − a)]Q(t, s)

=

s̃∫
a−h

[dsΦ̃(s − a)]I = Φ̃(s̃)− Φ̃(a − h) = Φ̃(s̃),
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i.e., X̃(t) satisfies the initial condition (2), and hence, it is the unique solution of the
IP (25), (2) with interval of existence t ∈ J0.

Following the idea in [22], we introduce

X(t) =
t∫

a

H(t, s)D1−α
a+ F0(s)ds, (34)

where F0(t) ≡ F(t), t ∈ J0, and F0(0) = 0.

Theorem 7. Let the conditions of Lemma 6 hold.
Then, the function X(t) introduced via (34) is the unique solution of IP (24), (2) for the initial

function Φ(t − a) ≡ 0, t ∈ [a − h, a] and interval of existence t ∈ J0.

Proof. As in the theorem above, the proof is based on some ideas used in [15]. Therefore,
we will only sketch the similar parts and we will emphasize in detail those differences that
arise from the influence on the neutral system of the Riemann–Liouville-type derivatives.

For any t ∈ J0 and θ ∈ [−h, 0], since H(t, s) = 0 when t < s, we have that
t∫

t+θ

H(t + θ, s)D1−α
a+ F0(s)ds = 0. (35)

Then, substituting X(t) on the left-hand side of (24) for any t ∈ J0 via the Fubini theorem
and using formula (2.211) in [5] and (35) we obtain that

Dα
a+

X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)


=

1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

 η∫
a

H(η, s)
(

D1−α
a+ F0

)
(s)ds

dη

− 1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

 0∫
−h

[dθV(η, θ)]

 η+θ∫
a

H(η + θ, s)
(

D1−α
a+ F0

)
(s)ds

dη

=
1

Γ(1 − α)

d
dt

t∫
a

 t∫
s

(t − η)−αH(η, s)dη

(D1−α
a+ F0

)
(s)ds

− 1
Γ(1 − α)

d
dt

t∫
a

(t − η)−α

 0∫
−h

[dθV(η, θ)]

 η∫
a

H(η + θ, s)
(

D1−α
a+ F0

)
(s)ds

dη

=
1

Γ(1 − α)

d
dt

t∫
a

 t∫
a

(t − η)−αH(η, s)dη

(D1−α
a+ F0

)
(s)ds

− 1
Γ(1 − α)

d
dt

t∫
a

 t∫
a

(t − η)−α

 0∫
−h

[dθV(η, θ)]H(η + θ, s)

dη

(D1−α
a+ F0

)
(s)ds

=

t∫
a

(
D1−α

a+ F0
)
(s)Dα

a+(H(t, s))ds −
t∫

a

(
D1−α

a+ F0
)
(s)Dα

a+

 0∫
−h

[dθV(t, θ)]H(t + θ, s)

ds

+ lim
s→t−0

RLDα−1
a+

((
D1−α

a+ F0
)
(s)H(t, s)

)
− lim

s→t−0
RLDα−1

a+

(D1−α
a+ F0

)
(s)

 0∫
−h

[dθV(t, θ)]H(t + θ, s)

. (36)
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For the third addend on the right-hand side of (36), we have that

lim
s→t−0

RLDα−1
a+

((
D1−α

a+ F0
)
(s)(H(t, s))

)
= lim

s→t−0

1
Γ(α)

t∫
a

(t − τ)−αH(τ, s)
(

D1−α
a+ F0

)
(s)dτ

=
1

Γ(α)

t∫
a

(t − τ)−α lim
s→t−0

(
H(τ, s)

(
D1−α

a+ F0
)
(s)
)

dτ

=

∣∣∣∣∣∣ 1
Γ(α)

t∫
a

(t − τ)−αH(τ, τ)
(

D1−α
a+ F0

)
(τ)dτ

∣∣∣∣∣∣
=

1
Γ(α)

t∫
a

(t − τ)−αI
(

D1−α
a+ F0

)
(τ)dτ

=
(

RLDα−1
a+

RLD1−α
a+ F0

)
(t) = F0(t)− F0(0) = F0(t). (37)

Since V(τ, 0) = Θ and H(t + θ, t) = 0, for any t ∈ J0 and θ ∈ [−h, 0) we obtain

lim
s→t−0

RLDα−1
a+

(D1−α
a+ F0

)
(s)

0∫
−h

[dθV(τ, θ)]H(τ + θ, s)


= lim

s→t−0

1
Γ(α)

t∫
a

(t − τ)−α

(D1−α
a+ F0

)
(s)

0∫
−h

[dθV(τ, θ)]H(τ + θ, s)

dτ

=
1

Γ(α)

t∫
a

(t − τ)−α
(

D1−α
a+ F0

)
(τ)

0∫
−h

[dθV(τ, θ)]H(τ + θ, τ)dτ = 0, (38)

and hence, from (36), (37), and (38) it follows that

Dα
a+

X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)


=

t∫
a

(
D1−α

a+ F0
)
(s)Dα

a+

H(t, s)−
0∫

−h

[dθV(t, θ)]H(t + θ, s)

ds + F0(t). (39)

Similarly as above, for the right-hand side of (24) we obtain

0∫
−h

[dθU(t, θ)]X(t + θ) + F0(t)

=

0∫
−h

[dθU(t, θ)]

 t+θ∫
a

H(t + θ, s)
(

D1−α
a+ F0

)
(s)ds

+ F0(t)

=

t∫
a

(
D1−α

a+ F0
)
(s)

0∫
−h

([dθU(t, θ)]H(t, s))ds + F0(t), (40)

and since H(t, s) is a fundamental matrix, then the statement of the theorem follows from
(39) and (40).
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Corollary 2. Let the following conditions be fulfilled:

1. The conditions of Lemma 6 hold.
2. For any initial function Φ ∈ PC∗ and F(t) ∈ BLloc

1 (J,Rn), the functions X̃(t) and X(t) are
defined via (28) and (34), respectively.

Then, the function X(t) = X̃(t) +X(t) is the unique solution of IP (24), (2) and has the
following representation for any t ∈ J0:

X(t) =
t∫

a

H(t, s)D1−α
a+ F(s)ds +

a∫
a−h

Q(t, s)dsΦ̃(s − a), (41)

where Φ̃(s − a) ≡ Φ(s − a) for s ∈ [a − h, a) and Φ̃(a − h) = 0.

Proof. It follows from the superposition principle and Theorems 5 and 6.

5. Weighted Stabilities

It is worth noting that the standard definitions for stability in the Lyapunov or Ulam–
Hyers senses introduced for the systems with integer-order derivatives (without or with
delays) are applicable directly for systems with fractional derivatives only when the frac-
tional derivative of a constant is equal to zero (as Caputo-type derivatives, etc.). As we have
mentioned previously [11], in general when the fractional derivative of a constant is not
equal to zero (as for RL-type derivatives), then the standard definitions are not applicable
since the solutions of the systems with RL-type derivatives have singularity at a + 0 (the
low terminal) of power order α − 1. That is why new types of definitions for the different
kinds of stabilities applicable to systems with RL-type derivatives are needed. The aim
of this section is to introduce definitions of weighted stability in the Lyapunov sense, as
well as UH and UHR weighted stabilities for fractional systems (equations) with RL-type
derivatives and to study the relations with the classical definitions and with the concept
“stability in time” in the Lyapunov sense, introduced in [9].

Let assume that F(t, 0) ≡ 0 for any t ∈ J. Below, we recall the classical definitions for
Lyapunov stability, applicable only for the case when the fractional derivatives are, in the
Caputo sense, of order α ∈ (0, 1] (and not applicable for RL derivatives):

Definition 9 ([29]). The zero solution of IP (1), (2) (with derivatives in the Caputo sense!) is said
to be:

(a) Stable if for a given low terminal a ∈ R and any ϵ > 0 there is a δ(ϵ, a) > 0 such that for
each initial function Φ ∈ PC(PC∗) with ∥Φ∥ < δ the corresponding solution X(t) satisfies
for each t ∈ J the inequality |X(t)| ≤ ϵ.

(b) Stable (uniformly) if for a given low terminal a ∈ R and any ϵ > 0 there is a δ(ϵ) > 0 such
that for every initial function Φ ∈ PC(PC∗), with ∥Φ∥ < δ the corresponding solution X(t)
satisfying for each t ∈ J the inequality |X(t)| ≤ ϵ.

(c) Locally asymptotically stable (LAS) if for a given low terminal a ∈ R there is a ∆(a) > 0 such
that for every initial function Φ ∈ PC(PC∗) with ∥Φ∥ < ∆ the corresponding solution X(t)
is stable and lim

t→∞
|X(t)| = 0.

(d) Globally asymptotically stable (GAS) if for every for every initial function Φ ∈ PC(PC∗) the
corresponding solution X(t) is stable and lim

t→∞
|X(t)| = 0.

Both definitions below are applicable not only for initial problems with Caputo-type
derivatives, but also for initial problems with fractional derivatives in the RL sense.

Define for any Φ ∈ PC the weighted function w(t) : J → R as follows:
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w(t) =


1, t = a,
(t − a)1−α, t ∈ (a, a + 1],
1, t > a + 1.

Definition 10. The zero solution of IP (1), (2) is said to be weighted stable (W-stable), weighted
uniformly stable (W-uniformly stable), weighted locally asymptotically stable (W-LAS stable), or
weighted globally asymptotically stable (W-GAS stable) if for the corresponding solution X(t) the
product w(t)X(t) satisfies the conditions (a), (b), (c), or (d) from Definition 9.

Definition 11 ([9]). The zero solution of IP (1), (2) is said to be:

(i) Stable in time (Lyapunov in time stable) if for an arbitrary ϵ > 0 there exists a point tϵ ∈ J0

and number δ(ϵ, tϵ) > 0 such that for any initial function Φ ∈ PC(PC∗) with ∥Φ∥ < δ, the
corresponding solution X(t) satisfies for each t ≥ tϵ the inequality |X(t)| ≤ ϵ.

(ii) Asymptotically stable in time if for any initial function Φ ∈ PC(PC∗) the corresponding
solution X(t) is stable in time and additionally lim

t→∞
|X(t)| = 0.

Remark 4. It is simple to see that if α = 1 (the order of differentiation) then Definition 10 for
the weighted stability coincides with the classical one. In addition, when a solution is weighted
stable then we can take tϵ = a + 1 for any ϵ > 0 in Definition 11, and hence, the weighted stability
implies stability in time, as well as the weighted global asymptotically stability implying asymptotic
stability in time.

Let ϵ > 0 be an arbitrary number and consider the inequality∣∣∣∣∣∣Dα
a+

X(t)−
0∫

−h

[dθV(t, θ)]X(t + θ)

 0∫
−h

[dθU(t, θ)]X(t + θ) + F(t, XT
τ (θ))

∣∣∣∣∣∣ ≤ ϵ. (42)

Definition 12. The function Y(t): [a − h, ∞)→Rn is a solution of IP (42), (2) in J0 if
Y(t)|t∈J0 ∈ C1−α satisfies the inequality (42) for t ∈ J0 and the condition (2) for t ∈ [a − h, a],
with initial function Y(t − a) = ΦY(t − a) ∈ PC(PC∗).

Definition 13. The system (1) is said to be Ulam–Hyers weighted stable in J0 if for any ϵ > 0 there
exists a number δ ∈ (0, ϵ) and constant Cϵ > 0 such that for any solution Y(t) of (42) there exists
an initial function Φ(t) ∈ PC(PC∗), with |ΦY(t − a)− Φ(t − a)| ≤ δ for t ∈ [a − h, a] and for
the corresponding unique solution X(t) of IP (1), (2), with initial function Φ(t), the inequality

w(t)
∣∣Y(t)|J − X(t)

∣∣ ≤ Cϵϵ (43)

holds for any t ∈ J0.

The first result in this section clarifies the relations between the boundedness of all
solutions and the weighted stabilities in the Lyapunov sense.

Theorem 8. Let the conditions of Lemma 6 hold.
Then, the zero solution of the system (25) is W-stable in the Lyapunov sense if and only if for

all solutions X(t) of IP (25), (2) with initial function Φ(t) ∈ PC, the product w(t)X(t) is bounded
in J0.

Proof. Necessity: Let us assume that the zero solution is W-stable in the Lyapunov sense.
Assume the contrary, that there exists Φ(t) ∈ PC such that for the existing, according to The-
orem 3, unique solution X(t) of IP (25), (2) we have that w(t)X(t) is unbounded in J0. Since
the zero solution is W-stable, then for any ϵ > 0 there exists a number δ ∈ (0, ϵ) such that for
any Φ(t) ∈ PC with ∥Φ∥ < δ we have that the corresponding solution X(t) satisfies the in-
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equality |w(t)X(t)| ≤ ϵ for any t ∈ J0. Consider the following initial function Φ∗ =
δΦ

2∥Φ∥

with norm ∥Φ∗∥ =

∥∥∥∥ δΦ
2∥Φ∥

∥∥∥∥ =
δ

2
< δ. Then, since the system (25) is a linear system the

function X∗(t) =
δ

2∥Φ∥
X(t) is the corresponding solution of IP (25) (2) for the initial func-

tion Φ∗(t) ∈ PC, and hence, for t ∈ J0 we have that |w(t)X∗(t)| =
∣∣∣∣ δ

2∥Φ∥
w(t)X(t)

∣∣∣∣ ≤ ϵ,

which implies that |w(t)X(t)| ≤ 2∥Φ∥ϵ

δ
for t ∈ J0, which contradicts our assumption.

Sufficiency: Let for any Φ(t) ∈ PC the product w(t)X(t) be bounded in J0, where X(t)
is the corresponding solution of IP (25), (2) with this initial function, and hence, according
to Lemma 4, we have that X(t) satisfies IP (3), (2) with F(t, XT

t ) ≡ 0 for t ∈ J and vice versa.
Let t∗ ∈ J0 be arbitrary and let b > a∗ > a be fixed numbers with t∗ ∈ [a∗, b]. Then, for
arbitrary initial functions Φ, Φ ∈ PC, their corresponding unique solutions of IP (3), (2) are
X(t), X(t), respectively, and for any t∗ ∈ [a∗, b] we have

|X(t)− X(t)| ≤
(
Φ(0)− Φ(0)

)
(t − a)α−1 +

∣∣∣∣∣∣
0∫

−h

[dθV(t, θ)]
(
X(t + θ)− X(t + θ)

)∣∣∣∣∣∣
+

n
Γ(α)

∣∣∣∣∣∣
t∫

a

(t − τ)1−α

 0∫
−h

[dθU(τ, θ)]
(
X(τ + θ)− X(τ + θ)

)dτ

∣∣∣∣∣∣
≤ ∥Φ − Φ∥(t − a)α−1 + V sup

s∈[a,t]
|X(s)− X(s)|+ V∥Φ − Φ∥

+
n

Γ(α)

∣∣∣∣∣∣
t∫

a

(t − τ)α−1

 0∫
−h

[∂θU(τ, θ)]
(
X(τ + θ)− X(τ + θ)

)
dθ

dτ

∣∣∣∣∣∣
≤ V sup

s∈[a,t]
|X(s)− X(s)|+ ∥Φ − Φ∥

(
(t − a)α−1 + V

)

+
nUb

Γ(1 + α)

t∫
a

(t − τ)α−1 sup
η∈[a,τ]

|X(η)− X(η)|dτ +
nUb(t − a)α

Γ(1 + α)
∥Φ − Φ∥

≤ V sup
s∈[a,t]

|X(s)− X(s)|+ ∥Φ − Φ∥
(
(t − a)α−1 +

nUb(t − a)α

Γ(1 + α)
+ V

)

+
nUb

Γ(1 + α)

t∫
a

(t − τ)α−1 sup
η∈[a,τ]

|X(η)− X(η)|dτ. (44)

From (44), for any t ∈ [a∗, b] it follows that

sup
s∈[a,t]

w(t)|X(s)− X(s)|

≤ ∥Φ − Φ∥


sup

s∈[a,t]
w(s)(s − a)α−1

1 − V
+

nUbbα

(1 − V)Γ(1 + α)
+

V
(1 − V)


+

nUb
Γ(1 + α)

t∫
a

(t − τ)α−1 sup
η∈[a−h,τ]

|X(η)− X(η)|dτ. (45)
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Then, applying corollary 2 in [24] to (45), we obtain for any t ∈ [a∗, b] the estimation

sup
s∈[a,t]

|X(s)− X(s)|

≤∥Φ − Φ∥


sup

s∈[a,t]
w(s)(s − a)α−1

1 − V
+

nUb(b − a)α

(1 − V)Γ(1 + α)
+

V
(1 − V)

(Eα(nUbtα)). (46)

Let us define for any t ∈ J0 a family of functionals ℵt : PC → Rn via the equality
ℵt(Φ) = w(t)X(t), where X(t) denotes the corresponding solution of IP (25),(2) for initial
function Φ(t) ∈ PC. From (46), it follows that ℵt(Φ) is a continuous functional at any
Φ(t) ∈ PC for any t ∈ J0 i.e., for every Φ(t) ∈ PC we have that |ℵt(Φ)| ≤ ∥ℵt∥ ∥Φ∥, where
∥ℵt∥ denotes the norm of the functional. Then applying the Banach–Steinhaus theorem
we obtain that the norms of all functionals are uniformly bounded, i.e., there exists a
constant ∥ℵ∥ > 0 such that ∥ℵt∥ ≤ ∥ℵ∥ for any t ∈ J. Let ϵ > 0 be arbitrary and choose

δ =
ϵ

2∥ℵ∥ > 0. Then, for any Φ(t) ∈ PC with ∥Φ∥ < δ for the corresponding solution X(t)

we have that |w(t)X(t)| = |ℵt(Φ)| ≤ ∥ℵ∥ ∥Φ∥ = ∥ℵ∥ ϵ

2∥ℵ∥ < ϵ for any t ∈ J0, which

implies that the zero solution is W-stable in the Lyapunov sense.

Remark 5. It is worth emphasizing that the result from the application of any kind of stability
definitions concerning the differential equation (system) with all types of derivatives (integer or
fractional order) essentially depends on the functional type of the set of all solutions of the studied
object. As an example, for equations (systems) with first-order derivatives the solutions are usually
either continuous differentiable or absolutely continuous functions. So, the conclusions could be true
for all solutions which are absolutely continuous or only for these solutions which are continuous
differentiable. For retarded or neutral equations (systems) the situation is more complicated. The
space of the initial functions plays a leading role in its functional type, because the analytical type
of the solutions essentially depends on them. This is very important for the stability in the Ulam–
Hyers sense for the following reason: the functional type of the initial function and the solutions
of system (1) must be the same for the corresponding inequality (42), since all solutions of (1) are
solutions of inequality (42) too.

As a consequence, from the proved results, we obtain two necessary conditions for
W-stability of the zero solution of the system (25).

Theorem 9. Let the following conditions be fulfilled:

1. The conditions of Lemma 6 hold.
2. The zero solution of the system (25) is W-stable in the Lyapunov sense.

Then, the following relations hold:

Q∞ = sup
t∈J0

|w(t)Q(t)| < ∞,H∞ = sup
t∈J0

|H(t)| < ∞,

where Q(t) = Vars∈[a−h,a]Q(t, s) and H(t) = sups∈[a,t] |w(t)H(t, s)|.

Proof. Let us, as above for Φ(t) ∈ PC∗ and any t ∈ J0, define a family of functionals
ℵt : PC → Rn via the equality ℵt(Φ) = w(t)X(t), where X(t) denotes the corresponding
solution of IP (25), (2) for this initial function. Then, according Theorem 6 and Lemma 6,
for any t ∈ J0 we have that
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|ℵt(Φ)| = |w(t)X(t)| =

∣∣∣∣∣∣w(t)
a∫

a−h

[dsΦ̃(s − a)]Q(t, s)

∣∣∣∣∣∣
≤ sup

s∈[−h,0]
Q(t, s)∥Φ∥ ≤ Q(t)∥Φ∥ ≤ Vars∈[−h,0]|Q(t, s)|∥Φ∥,

and hence, ℵt(Φ) is a continuous functional at any Φ(t) ∈ PC∗ for any t ∈ J0 with norm
∥ℵt∥ = Vars∈[−h,0]|Q(t, s)|. Then, by virtue of the Banach-Steinhaus theorem we have that
there exists a constant ∥ℵ∥ > 0 such that ∥ℵt∥ ≤ ∥ℵ∥ for any t ∈ J0. Thus, we have that the
W-boundedness ( supt∈J0(Vars∈[−h,0]|Q(t, s)|) < ∞ ) of the matrix w(t)Q(t) is a necessary
condition for the W-stability of the zero solution of system (25).

By virtue of Theorem 8 we have that for any s ∈ J0 and j ∈ ⟨n⟩, the relation
sups∈[a,t] |w(t)Hj(t, s)| < ∞ holds, and taking into account that |w(t)Hj(t, s)| = 0 when
t < s, we can conclude that H∞ = supt∈J0 |H(t)| < ∞.

Corollary 3. Let the following conditions be fulfilled:

1. The conditions of Lemma 6 hold.
2. The zero solution of the system (25) is W-GAS stable in the Lyapunov sense.

Then, the following relations

lim
t→∞

|Q(t)| = 0, lim
t→∞

|H(t)| = 0

hold, where H(t) = sup
s∈[a,t]

|w(t)H(t, s)|.

Proof. The statement follows immediately from Theorem 9, since according to condition 2 of
Corollary 3, for any j ∈ ⟨n⟩ we have lim

t→∞
|Qj(t, s)| = 0 for s ∈ [a − h, a] and lim

t→∞
|Hj(t, s)| = 0

for any s ∈ [a, t].

Remark 6. Note that the differences in the proofs of Theorems 8 and 9 are caused from the differences
in the spaces of the initial functions Φ(t) ∈ PC and Φ(t) ∈ PC∗, respectively.

The next theorem makes clear the relation between the W-stability in the Lyapunov
sense and Ulam–Hyers W-stability.

Theorem 10. Let the following conditions be fulfilled:

1. The conditions of Lemma 6 hold.
2. The system (25) is Ulam–Hyers W-stable for any initial functions Φ(t) ∈ PC.

Then, the zero solution of the system (25) is stable in the Lyapunov sense if and only if for any
Φ(t) ∈ PC and arbitrary ϵ > 0 IP (42), (2) has only W-bounded solutions.

Proof. Necessity: Let the zero solution of the system (25) be stable in the Lyapunov
sense and assume that IP (42), (2) has a W-unbounded solution Y(t)|t∈J0 ∈ C1−α for some
ΦY ∈ PC and ϵ > 0. Then, since (25) is Ulam–Hyers W-stable for any ϵ > 0, there exists
δ = δ(ϵ) > 0 and Φ∗(t) ∈ C with |Φ∗(t)− ΦY(t)| < δ for t ∈ [a − h, a] such that for t ∈ J0

inequality (43) holds for Y(t)|t∈J0 and X∗(t), where X∗(t) is the corresponding solution of
IP (25), (3) with initial function Φ∗(t). On the other hand, since according to Theorem 8 the
function X∗(t) is a W-bounded solution of IP (25), (3), and since Y(t)|t∈J0 is a W-unbounded
solution of (42) according to our assumption, we conclude that inequality (43) is impossible
to be fulfilled for Y(t)|t∈J0 and X∗(t), which contradicts our assumption. Thus, all solutions
of the inequality (43) are W-bounded.

Sufficiency: Let IP (42), (2) have only bounded solutions. Then, IP (25), (2) has, for
any Φ ∈ PC, only W-bounded solutions. Then, by virtue of Theorem 8, the zero solution of
system (25) is W-stable in the Lyapunov sense.
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6. On the Preservation of the Stability Properties

The aim of this section is, based on the obtained results in the previous sections,
to make clear the preservation of the W-stability properties of the system (25) under
nonlinear disturbances.

Definition 14. The function X ∈ C1−α will be called weighted Mittag–Leffler bounded (WML-
bounded) of order ω ∈ R+ if there exist t0 ∈ J0, a constant CX > 0, and a function a(t) ∈
PC(J0,R+) with a(t) = O(tα) such that |w(t)X(t)| ≤ a(t)Eω(CXΓ(ω)tω) for t ≥ t0. By
WMLω, we denote the subset of all WML-bounded functions of order ω in C1−α.

Definition 15. We say that the vector-valued functional F : J × PC → Rn is a damper of order
ω for system (1) if for any X(t) ∈ WMLω for the function FX(t) = (FX

1 (t), . . . , FX
n (t))T =

F(t, XT
t ) there exist a point t0 ∈ J0 and a constant C0 = C0(t0, X) > 0 such that the following

estimation |FX(t)| ≤ C0t−(ω+1) holds for t ≥ t0.

The next theorem establishes an a priori estimate of the solutions of IP (1), (2) with
initial functions Φ(t) ∈ PC.

Theorem 11. Let the following conditions be fulfilled.

1. The conditions of Lemma 6 hold.
2. The conditions C hold.
3. F(t, 0) = 0 and sup

t∈J
|ℓ(t)| = L∞ < ∞.

Then, any solution X ∈ C1−α of IP (3), (2) with initial function Φ(t) ∈ PC is WML-bounded
of order α.

Proof. Let Φ(t) ∈ PC be an arbitrary initial function and X ∈ C1−α be the corresponding
unique solution of IP (3), (2). Then, for t ∈ J0 from (3) we obtain that

|X(t)| ≤ ∥Φ∥(t − a)α−1 +

∣∣∣∣∣∣
0∫

−h

[dθV(t, θ)]X(t + θ)

∣∣∣∣∣∣
+

n
Γ(α)

t∫
a

(t − τ)1−α

∣∣∣∣∣∣
0∫

−h

[dθU(τ, θ)]X(t + θ) + F(τ, XT
τ )

∣∣∣∣∣∣dτ

≤ ∥Φ∥(t − a)α−1 + V sup
s∈[a,t]

|X(s)|+ V∥Φ∥

+
n

Γ(α)

∣∣∣∣∣∣
t∫

a

(t − τ)α−1

∣∣∣∣∣∣
0∫

−h

[∂θU(τ, θ)]X(t + θ)dθ

∣∣∣∣∣∣+
∣∣∣F(τ, XT

τ )
∣∣∣
dτ

∣∣∣∣∣∣
≤ V sup

s∈[a,t]
|X(s)|+ ∥Φ∥((t − a)α−1 + V) +

n(Ub + L∞)

Γ(α)

t∫
a

(t − τ)α−1 sup
s∈[a−h,τ]

|X(s)|dτ

≤ V sup
s∈[a,t]

|X(s)|+ ∥Φ∥((t − a)α−1 + V)

+
n(Ub + L∞)

Γ(α)

 t∫
a

(t − τ)α−1 sup
s∈[a,τ]

|X(s)|dτ(t − a)α∥Φ∥


≤ V sup

s∈[a,t]
|X(s)|+ ∥Φ∥

(
(t − a)α−1 +

n(Ub + L∞)(t − a)α

Γ(α)
+ V

)

+
n(Ub + L∞)

Γ(α)

t∫
a

(t − τ)α−1 sup
s∈[a,τ]

|X(s)|dτ. (47)
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Without loss of generality, we can assume that

sup
s∈[a,a+1]

X(s)

α∥Φ∥ = C∗ ≥ 1 when ∥Φ∥ > 0.

Then, from (47) we have

|X(t)| ≤ ∥Φ∥
(
(t − a)α−1

(1 − V)
+

VΓ(1 + α) + n(Ub + L∞)(t − a)α

(1 − V)Γ(α)

)

=
n(Ub + L∞)

(1 − V)Γ(α)

a+1∫
a

(t − τ)α−1 sup
s∈[a,τ]

|X(s)|dτ

+

t∫
a+1

(t − τ)α−1 sup
s∈[a,a+1]

|X(s)|dτ +

t∫
a+1

(t − τ)α−1 sup
s∈[a+1,τ]

|X(s)|dτ

≤ |Φ∥
(
(t − a)α−1

(1 − V)
+

VΓ(1 + α) + n(Ub + L∞)(t − a)α

(1 − V)Γ(α)

)

+
n(Ub + L∞)

(1 − V)Γ(α)

α−1 sup
s∈[a,a+1]

X(s)(t − a)α +

t∫
a+1

(t − τ)α−1 sup
s∈[a+1,τ]

|X(s)|dτ


≤ |Φ∥

(
(t − a)α−1

(1 − V)
+

n(Ub + L∞)(1 + C∗)(t − a)α + VΓ(1 + α)

(1 − V)Γ(α)

)

+
n(Ub + L∞)

(1 − V)Γ(α)

t∫
a+1

(t − τ)α−1 sup
s∈[a+1,τ]

|X(s)|dτ.

Since (t − a)α−1 is monotone decreasing for t ∈ (a, a + 1], then sup
s∈[a+1,t]

|X∗(s)| ≤

sup
s∈[a,t]

w(s)|X∗(s)|, and hence,

sup
s∈[a+1,t]

|X(s)| ≤ ∥Φ∥
(

supt≥a+1(t − a)α−1

(1 − V)
+

n(Ub + L∞)(1 + C∗)(t − a)α + VΓ(α)
(1 − V)Γ(α)

)

+
n(Ub + L∞)

(1 − V)Γ(α)

t∫
a+1

(t − τ)α−1 sup
s∈[a+1,τ]

|X(s)|dτ

≤ ∥Φ∥
(

1 + V
(1 − V)

+
n(Ub + L∞)(1 + C∗)(t − a)α

(1 − V)Γ(α)

)

+
n(Ub + L∞)

(1 − V)Γ(α)

t∫
a+1

(t − τ)α−1 sup
s∈[a+1,τ]

|X(s)|dτ

sup
s∈[a+1,t]

|X(s)|≤∥Φ∥
(

1 + V
1 − V

+
n(Ub + L∞)(1 + C∗)(t − a)α

(1 − V)Γ(α)

)
Eα(

n(Ub + L∞)

(1 − V)
tα). (48)

Applying to (48) Theorem 2, we obtain that

sup
s∈[a+1,t]

|X(s)|≤∥Φ∥
(

1 + V
(1 − V)

+
n(Ub + L∞)(1 + C∗)(t − a)α

(1 − V)Γ(α)

)
Eα(

n(Ub + L∞)

(1 − V)
tα),

which completes the proof.

Remark 7. We note that Theorem 11 establishes that for Lipschitz-type nonlinear disturbances, all
solutions of IP (3), (2) with initial functions Φ(t) ∈ PC are WML-bounded of order α.
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The proof of the next theorem is based on the following practical variant of the well-
known Barbalat’s lemma.

Lemma 8 ([30]). Let f ∈ Lloc
1 (R+,R+) be a bounded function and lim

t→∞

t∫
0

f (s)ds < ∞. Then,

the relation lim
t→∞

f (t) = 0 holds.

Theorem 12. Let the following conditions be fulfilled:

1. The conditions of Theorem 11 hold.
2. The zero solution of system (25) is W-GAS.
3. There exists ω > α such that the vector-valued functional F : J × PC → Rn is a damper of

order ω.

Then, the zero solution of IP (1), (2) (or IP (3), (2)) with initial function Φ(t) ∈ PC∗

is W-GAS.

Proof. Let Φ∗(t) ∈ PC∗ be arbitrary and X∗(t) be the corresponding unique solution of
IP (1), (2) (or (3), (2)). By virtue of Theorem 11 we have that X∗(t) is WML-bounded of
order α. We introduce the function F∗(t) ≡ F(t, X∗T

t ), t ∈ J0, and using (28) and (34) define
the functions X̃(t) and X(t) as follows:

X̃(t) =
a∫

a−h

[dsΦ̃∗(s − a)]Q(t, s), (49)

X(t) =
t∫

a

H(t, s)D1−α
a+ F∗(s)ds. (50)

Then, from Theorem 6 it follows that X̃(t) is the unique solution of IP (25), (2) with
initial function Φ∗(t), and by virtue of Theorem 7 the function X(t) is the unique solution
of IP (24), (2) with F(t) ≡ F∗(t) and initial function Z(t − a) ≡ 0 , t ∈ [a − h, a]. Thus,
X̃(t) +X(t) is a solution of IP (2), (1) (IP (3), (2)), and hence, we have that

X∗(t) = X̃(t) +X(t) =
a∫

a−h

[dsΦ̃(s − a)]Q(t, s) +
t∫

a

H(t, s)D1−α
a+ F∗(s)ds. (51)

From (49) and Corollary 3 it follows that

lim
t→∞

|X̃(t)| = lim
t→∞

∣∣∣∣∣∣
a∫

a−h

[dsΦ̃(s − a)]Q(t, s)

∣∣∣∣∣∣ ≤ lim
t→∞

(∥Φ̃∥)|Q(t)| ≤ ∥Φ∥ lim
t→∞

|Q(t)| = 0. (52)

Consideringthe function

G(t) =
t∫

a

 τ∫
a

H(τ, s)D1−α
a+ F∗(s)ds

dτ, (53)

obviously the integrand X(τ) =
τ∫
a
H(τ, s)D1−α

a+ F∗(s)ds is a continuous function at any

τ ∈ J0, and hence,
d
dt

G(t) = X(t) for t ∈ J0 too. From (53) it follows that
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|X(τ)| ≤

∣∣∣∣∣∣
τ∫

b

H(τ, s)D1−α
a+ F∗(s)ds

∣∣∣∣∣∣ ≤ Γ−1(α)|H(t)|

∣∣∣∣∣∣
τ∫

a

 d
ds

s∫
a

(s − η)α−1F∗(η)dη

ds

∣∣∣∣∣∣
= Γ−1(α)|H(τ)|

∣∣∣∣∣∣
τ∫

a

(τ − η)α−1F∗(η)dη

∣∣∣∣∣∣ ≤ (αΓ(α)−1)|H(τ)|
τ∫

a

|F∗(η)|d(τ − η)α

≤ Γ−1(1 + α)|H(τ)| sup
s∈[a,τ]

(|F∗(s)|sα)

≤ Γ−1(1 + α)|H(τ)|
(

sup
s∈[a,b]

(|F∗(s)|sα) + sup
s∈[b,τ]

(|F∗(s)|sα)

)

≤ Γ−1(1 + α)|H(τ)|
(

sup
s∈[a,b]

(|F∗(s)|sα) + sup
s∈[b,τ]

(C0s−(ω+1)sα)

)
. (54)

Since ω > α and the zero solution of the system (25) is W-GAS, then by virtue of
Theorem 9 we have that H∞ = supt∈J0 |H(t)| < ∞, and hence, |g(τ)| is bounded on J0.
Then, from (53) and (54) it follows that

Γ−1(1 + α)|H(τ)|
(

sup
s∈[a,b]

(|F∗(s)|sα) + sup
s∈[b,τ]

(C0s−(ω+1)sα)

)

|G(t)| =

∣∣∣∣∣∣
∫ t

a

 τ∫
b

H(τ, s)D1−α
a+ F∗(s)ds

dτ

∣∣∣∣∣∣ ≤ Γ−1(1 + α)

t∫
a

|H(τ)| sup
s∈[a,τ]

(|sαF∗(s)|)dτ

≤ Γ−1(1 + α)bα sup
s∈[a,b]

|H(τ)||F∗(s)|(b − a) + Γ−1(1 + α)

t∫
b

|H(τ)| sup
s∈[b,τ]

(C0s−(ω+1)sα)dτ

≤ Γ−1(1 + α)bα sup
s∈[a,b]

|H(τ)||F∗(s)|(b − a) + Γ−1(1 + α)H∞C0t−(ω+1)+α+1

and, hence, lim
t→∞

|G(t)| < ∞. Then, by virtue of Lemma 8 we have that lim
t→∞

|X(τ)| = 0, and

thus, from (51) and (52) it follows that lim
t→∞

|X∗(t)| = 0, which completes the proof.

7. An Example

Example 1. Let n = 1, the lower terminal a = 0, α ∈ (0, 1), h > 0, p, b, c ∈ R, U(t, θ) =
aH(t) + bH(t − h), V(t, θ) = pH(t − h), and ϕ ∈ PC([−h, 0]). Then, IP (25), (2) obtains the
following form:

Dα
a+(x(t) + px(t − h)) = cx(t) + bx(t − h), t ∈ (0, ∞), (55)

x(t) = ϕ(t), t ∈ [−h, 0], Dα−1
a+ x(0+) = ϕ(0). (56)

According to the results obtained by us in Section 3, IP (55), (56) has a unique solution, which
we will find an explicit representation of in this example.

To obtain an explicit representation of the solution we will use the approach based on the Laplace
transform (LT) introduced in [31] for the case of Caputo-type derivatives. Below, we assume that
|p| < 1, and then, by virtue of theorem 3 in [17] the LT can be applied correctly to Equation (55).
Denote the LT of x(t) by

x̂(s) = L(x(t); s) =
∫ ∞

0
e−stx(t)dt, ϕ̂(s) =

∫ 0

−h
e−stϕ(t)dt.
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Applying the LT to both sides of (55) and taking into account (56) we have

sα x̂(s) + sαe−sh p(x̂(s) + ϕ̂(s))− (ϕ(0) + pϕ(−h)) = cx̂(s) + be−sh(x̂(s) + ϕ̂(s)),

and hence,

x̂(s)
(

1 − b − psα

sα − c
e−sh

)
=

ϕ(0) + pϕ(−h)
sα − c

+
b − psα

sα − c
e−shϕ̂(s). (57)

For any s ∈ C with |s|α > |c|, we have the series expansion(
1 − b − psα

sα − c
e−sh

)−1
=

∞

∑
k=0

(b − psα)k

(sα − c)k e−ksh

and then, from (57) it follows that

x̂(s) = (ϕ(0) + pϕ(−h))
∞

∑
k=0

(b − psα)k

(sα − c)k+1 e−ksh + ϕ̂(s)
∞

∑
k=0

(b − psα)k

(sα − c)k e−ksh. (58)

Substituting into (58) the expression (b − psα)k =
k

∑
i=0

(
k
i

)
(−1)i pisiαbk−i we obtain that

the LT of x̂(s) has the following form:

x̂(s) = (ϕ(0) + pϕ(−h))
∞

∑
k=0

(
k

∑
i=0

(
k
i

)
(−p)ibk−i siα

(sα − c)k+1

)

+ϕ̂(s)
∞

∑
k=0

(
k

∑
i=0

(
k
i

)
(−p)ibk−i siα

(sα − c)k

)
. (59)

For simplicity we will assume that ϕ(t) ≡ ϕ0 ∈ R, t ∈ [−h, 0], and then, we have that

ϕ̂(s) = ϕ0s−1(e−sh − 1). (60)

Consider the three-parameter Mittag–Leffler (Prabhakar) function

Eγ
α,β(z) = Γ−1(γ)

∞

∑
j=0

Γ(j + γ)zj

j!Γ(αj + β)

introduced in [32], where β, γ ∈ R. For z = ctα, t ≥ 0, Re s > 0 with |s|α > |c| the LT of

the function eγ
α,β(t; c) = tβ−1Eγ

α,β(ctα) is L(eγ
α,β(t; c); s) =

sαγ−β

(sα − c)γ
and when h ≥ 0 (see

theorem 1.31 in [33]) we have that the following relation holds:

L−1
(

sαγ−β

(sα − c)γ
e−sh, t

)
=

{
eγ

α,β(t − h; c), t ≥ h,
0, t < h.

(61)

Denoting as usual by [t] the greatest integer number less or equal to t for any t ∈ R, from (59),
(60), and (61), it follows that the solution x(t) of IP (55), (56) possess the representation

x(t) = ϕ0(1 + c)
[ t

h ]

∑
k=0

(
k

∑
i=0

(
k
i

)
(−p)ibk−iek+1

α,α(k−i)+1(t − hk; c)

)

−ϕ0
[ t

h ]

∑
k=0

(
k

∑
i=0

(
k
i

)
(−p)ibk−iek

α,α(k−i)+1(t − hk; c)

)

+ϕ0
[ t

h ]+1

∑
k=0

(
k

∑
i=0

(
k
i

)
(−p)ibk−iek

α,α(k−i)+1(t − hk + h; c)

)
. (62)
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Remark 8. Note that the approach used by the presentation of the solution x(t) of IP (55), (56)
can be extended to obtain a presentation of the solutions with step functions (with one jump of the
first kind in the interval [−h, 0]) as initial functions, and hence, as a consequence, a presentation of
the generalized fundamental matrix Q(t, s) can be obtained. But this idea, as well as a numerical
simulation via the methods developed in [34–37], is beyond the area of this article and can be a theme
for future research.

8. Conclusions and Comments

In this paper, we have studied a general class of nonlinear disturbed neutral linear
fractional systems with derivatives in the Riemann–Liouville sense and distributed delays.
As motivation for this study we can refer to the meaningful physical interpretations of
models with these Riemann–Liouville fractional derivatives presented in [7]. Mainly, we
have studied the most important, from the point of view of applications, and the technically
more complicated case, when the lower terminal of the Riemann–Liouville derivatives
coincides with the end point of the initial interval. First, it was proved that the initial
problem for these systems with discontinuous initial functions possesses a unique solution
under some natural assumptions. It is worth mentioning that the assumptions used to
derive this result are similar to those used in the case of systems with first-order derivatives,
and as far as we know this is the first result on this theme. Then, as a consequence
of the obtained result, we have proved the existence and uniqueness of a fundamental
matrix and a generalized fundamental matrix for the studied neutral linear homogeneous
system. The existence of the fundamental matrices have allowed us to establish an integral
representation for the solutions of the initial problem for the homogeneous system and also
for the corresponding inhomogeneous system. Furthermore, for fractional systems with
Riemann–Liouville derivatives we have introduced a new concept for weighted stabilities
in the Lyapunov, Ulam–Hyers and Ulam–Hyers–Rassias senses. Note that the introduced
concept coincides with the classical stability concept for the cases of integer-order or
Caputo-type derivatives. To prove the applicability of the introduced concept it was proved
that the zero solution of the homogeneous system is weighted stable if and only if all its
solutions are weighted bounded; this result is well known for systems with first-order
derivatives and is also established for the case of systems with Caputo-type derivatives
in our former works. In addition, for the homogeneous system it was established that
the weighted stability in the Lyapunov sense and weighted stability in the Ulam–Hyers
sense are equivalent if and only if the inequality appearing in the Ulam–Hyers definition
possesses only bounded solutions. Finally, we have derived natural sufficient conditions
under which the property of weighted global asymptotic stability of the zero solution of
the homogeneous system is preserved under appropriate nonlinear disturbances.

In our point of view the main contributions in the article can be highlighted as follows:

• A new concept was introduced for weighted stabilities in the Lyapunov, Ulam–Hyers
and Ulam–Hyers–Rassias senses; it coincides with the classical stability concept for
the cases of integer-order or Caputo-type fractional derivatives.

• Sufficient conditions have been obtained which guarantee that the weighted stability in
the Lyapunov sense and the weighted stability in the Ulam–Hyers sense are equivalent.

• Sufficient conditions have been given under which the property of weighted global
asymptotic stability of the zero solution of the homogeneous system is preserved
under appropriate nonlinear disturbances.

As a future perspective for research we think that it will be important from the point
of view of applications to establish explicit-type sufficient conditions which guarantee
weighted stability in the Lyapunov or Ulam–Hyers senses.
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