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Abstract: In this paper, we investigate an initial value problem for a nonlinear fractional differential
equation on an infinite interval. The differential operator is taken in the Hadamard sense and the
nonlinear term involves two lower-order fractional derivatives of the unknown function. In order to
establish the global existence criteria, we first verify that there exists a unique positive solution to
an integral equation based on a class of new integral inequality. Next, we construct a locally convex
space, which is metrizable and complete. On this space, applying Schauder’s fixed point theorem, we
obtain the existence of at least one solution to the initial value problem.

Keywords: Hadamard fractional differential equation; initial value problem; locally convex space;
integral inequality

1. Introduction

For the purpose of problem-solving in many different domains, such as engineering
and control, fractional differential equations, or FDEs, are indispensable tools. Fractional
derivatives of the Hadamard, Caputo, Riemann-Liouville, and other varieties are the
subject of numerous studies on fractional differential equations. The boundary value and
initial value problems for nonlinear fractional equations have been extensively researched.
Most of the findings in this field relate to establishing the uniqueness and existence of
positive solutions on finite intervals.

The study of initial value problems is a direction that cannot be overlooked in arti-
cles dealing with the existence of solutions to fractional differential equations on infinite
intervals (see [1-12]).

Take the nonlinear fractional differential equation below as an example

Do, x(t) = f(t,x(t)), « €(0,1), t € (0,00), 1)

where D, denotes the Riemann-Liouville fractional derivative. By constructing a special
Banach space
H=%x(t)
— 1 —
E= {x(t) | x(t) € C1_(R ),}g‘glo T 0}, )
Kou et al. [1] employed fixed point theorems to obtain the global existence of solutions for
Equation (1) supplemented with the initial condition of the form

: 1-a
tli%1+t x(t) = xo 3)
on [0, 0). In [11,12], Zhu applied some new fractional integral inequalities to study global
existence results for the fractional differential Equation (1) with the initial condition (3).
In [3], for the initial value problem (1), (3) was proved to have solutions in C;_,(R™) by
constructing a special locally convex space and utilizing Schauder’s fixed point theorem.
Also, for this initial value problem, by using a Bielecki type norm and the Banach fixed
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point theorem, Tuan et al. [7] proved a Picard-Lindelof-type theorem on the existence and
uniqueness of global solutions.

Zhang and Hu [9] considered the unique existence of an approximate solution to the
following initial value problem

DEWx(t) = £(¢,x(+), DIV, 0 < t < oo,
x(0) =0,

where 0 < g(f) < p(t) <1, DSJ(:), Dg(j) denote derivatives of variable order p(t) and g(t).
Zhu et al. [6] investigated the existence results for fractional differential equations of
the form
{D;’x(t) = f(t,x(t) te[0,T)0<T <), g€ (1,2),

x(0) = ap, x'(0) = ay,

where D{ is a Caputo derivative and f satisfies the Caratheodory condition. Using a fixed
point theorem introduced by O’Regan in [13], the authors proved the existence of solutions
for the above initial value problem in C[0, T).

In [8], Boucenna et al. studied the following inital value problem of a nonlinear
fractional differential equation:

{D8‘+x(t) = f(t,x(t), DETx(t)),t € ] = (0,00),
Dg‘llx(O) = Xy, Ig:"x(O) = x1,

where D , is the Riemann-Liouville fractional derivative of order «, xp,x1 € R, 1 < a < 2,
f: ] x R? — R. The existence and uniqueness of the solutions were obtained through
some fixed point theorems in Sobolev space.

By taking the existing ideas of some of the above articles, we now discuss the existence
of solutions for the following initial value problem for the Hadamard fractional differential
equation:

Hpu x(t) = f(t,x(5), D x(t) DY, x(t), 1<t < +oo,
HDy 1x(1) = xo, (4)
Hjlzilxx(l) = X1,

wherel <a <2,0<B<a—-1<v<a f:]xR—=R,J=(1+c0)and f may be
singular at t = 1. HD# , denotes the Hadamard fractional derivative of order a and is
defined by

Hpt g(t) ="M T/ %g)(t)

1 n. .t n—a—1
:M(ti) /1 (mi) 8(5)%, n—l<a<mnmneN,

HDY g(t) =(6"g)(t), a=n€N,

and H \71”+_ * is the Hadamard fractional integral of order n — a, where § = t%, In(:) =
log,(-), N denotes the set of positive integers. We study the existence of one solution
to the initial value problem (4) in a weighted function space defined as C)1,(J) = {x €
cn| tl_i)rlnjr(lnt)/\x(t) exists}.

According to previous studies, the existence of global solutions of differential equations
on infinite intervals is based on two ideas: one is to construct a new function space to obtain
the boundedness on infinite intervals, and then to use fixed point theory to obtain the
existence of solutions of differential equations (see [1,4,5,8].) The other is to first study the
existence of solutions of the differential equation on a finite interval, that is, the existence of
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local solutions, and then to expand the solutions to infinite intervals in combination with
the continuous theorem (see [2,6,7,11,12]).

As stated in [2], the continuation theorems for nonlinear FDEs have not been derived
yet. Thus, it is inconvenient, even impossible, to obtain the global existence of solutions by
directly using the results on the local existence. In order to prove the existence of global
solutions, continuation theorems for the nonlinear fractional initial value problems must be
proved.

Integral inequalities play a significant role in discussions of the quantitative and quali-
tative behavior (such as boundedness, uniqueness, stability, and continuous dependence
on the initial or boundary value and parameters of solutions) of solutions to differential
equations, integral equations, and difference equations. These inequalities are being studied
by an increasing number of scholars due to their richness, and they have been generalized,
altered, and expanded in a wide range of ways, as can be seen in [11,12,14-16]. To the best
of our knowledge, inequalities with the Hadamard fractional integral have been studied
less frequently in the past.

The initial value problem (4) differs from the initial value problems in the refer-
ences [6,8]. The nonlinear term of the differential equation studied in [6] does not contain
any derivatives of lower order, while the nonlinear term of the equation in [8] has only one
special & — 1 order derivative Di‘;l. There is also the fact that the conditions in this paper
are weaker relative to the literature [6,8].

In Section 2, we prove a weakly singular inequality of the Hadamard fractional integral
type with a doubly singular kernel. Avoiding utilizing function spaces like (2) in Section 3,
we build a locally convex space which endows the whole space C;_, 1, (J) with the topology
induced by a sufficient family of semi-norms, and introduce some properties in this space,
in accordance with the idea of [3]. The inequality in Section 2 allows us to prove the
existence and uniqueness of the positive solution to the linear integral equation in Section 4,
after which we identify the existence of one solution to the initial value problem in the
space generated in Section 3.

2. Some Preliminaries and Lemmas

In this section, we present the preliminary results needed in our proofs later. From
here on, for a non-negative real number 8, we use 19ﬁ to denote the function defined on

JorJi = [1,00) by 84(t) = (In t)P=1/T(B). First of all, we list some basic lemmas about
Hadamard fractional derivatives and integrals.

Lemma 1 ([17,18]). Fora > 0,n = [a] + 1 and x € C(J) N L'(]), the solution of the Hadamard
fractional differential equation HD} x(t) = 0 is

wherec; e R (i=1,2,...,n).
Lemma 2 ([17,18]). Ifu € C(J) and HDﬁu € LY(]), then

Hae (DY u)(t) = u(t) + er(Int)* '+ ca(Int)* 2 + - +cp(Int)* ",
wherec; e R (i=1,2,...,n),n=[a] + 1.

Lemma 3 ([17,18]). Let « > 0.If u € L'(]), then the equality "D} (" 7% u)(t) = u(t) holds
ae.on J.

Lemma 4 ([17,18]). If B,v > 0, then
(D P, 0p(t) = b1 (D).
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2) HDLﬁﬁ(t) = 0p_,(t), provided that B — v > 0.
3) "Dl 8, i () =0n—-1<y<nj=12...,n

(4) HDlﬁJr HaY u(t) = Hjl'i_ﬁu(t), provided that v — B > 0.

Lemma 5 ([19]). Letn —1 < a < n,n € Nand I = [a, b] be a finite or infinite interval. Assume
that { fi Y22, is a uniformly convergent sequence of continuous functions on [a,b] and "DY , f;
exist for every k. Moreover assume that {H1D¥ o fr}iq converge uniformly on [a + €, b] for every
€ > 0. Then, for every x € [a,b], we have lim HD} fi(x) = HD§, lim fi(x).

k—oc0 k—oc0

The following inequality in Lemma 6 plays an important role in proving the unique-
ness of the solution to the integral Equation (20) corresponding to the initial value problem
(Theorem 7 in Section 4). The method of proof we employ is similar in concept to that of [15]
to obtain the following inequality involving an integral with a doubly singular kernel.

Lemma 6. Suppose that a,b < land a+b > 1, q(t),g(t) € L®[1, T] are non-negative. If
u(t) € L°[1, T|(T > 1) is non-negative and satisfies

a—1
(lns)b_lu(s)%, forae. t € [1,T]. )

u(t) < q(t) +g(t) /; (ln i)

*(H)b *(4)) a1 _a \ @t
u(t) < Mexp<(igj1 (555 “nt)b)’f"”'e'te“’ﬂ’ ©

where g*(t) = sup q(s),g*(t) = sup g(s).
s€[1,4] se(1,t]

Proof of Lemma 6. First, suppose that q(t) = g, g(t) = g are constants; if the non-negative
function u € L®[1, T] and satisfies u(t) < g+g¢ flt (In é)ail(ln )P 1u(s) %, we claim

s

n(te(r a-1
u(t) < 1 _qu exp <g(l b((tlg(_lzl))) (lnt)b>, (7)

1
where to(r) = exp<((gB(a,b))_1r)““’1), r>01rn <ry,r < landry = gB(a,b)

(InT)**~1 is fixed. Since t,(r) is increasing and t(rg) = T, then 1 < to(ry) < T.
Leto(t) = ¢ +gflt (In é)”fl(lns)b_lu(s)%, thenv € C[1,T], u(t) < o(t), and

¢ a—1
v(t)gq+g/1 (m;) (lns)b_lv(s)%, fe LTl

We need to prove the conclusion (7) holds with v replacing u; it implies that it suffices to

suppose that u € C[1, T]. Denote u*(t) = sup u(s),t € [1,T|.Lett € (1,T], ¢ € (1,t] is
1<s<t

chosen arbitrarily. If ¢ < tg(rl), then,

o) g [ (nS)" tme ue)

<q+gB(a,b)(In(tg (1)) 71w (1) = g + i’ (¢).
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If te(r1) < ¢ < t, wehave

-1 ds

c
"Tg(r) G\* b—1 @ /g G\ ! b—1 as
u(g) §q+g./1 (lns) (Ins)”tu(s) S T8 s )<lns) (Ins)”tu(s)
8\n

S

¢ ds

<q-+g(n(ts(r)" " [F7 ()t (6) 2

5 -1 b=1
+g/ (lng)a (lns—ln 6 ) u*(t)@
e S te(r1) s

<gq+ g(h’l(tg(rl)))a—l Ag(ln s)h—lu*(s)% + gB(g, b)(hl(tg(rl)))a+b_lu* (t)

<q+ glnltg ()™ [ 09 6) S 4 ry 1),

We have arrived at the following conclusion after synthesizing the above findings,

u(e) < 4+ gn(rer))™ [ (ns) ()% + (6, € (1,1

Taking the supremum for ¢ € [1, t], we obtain

M*(t) < q + g(ln(tg(rl)))ail /t(lnS)bilu*(S)ﬁ.

“1—-n 1—n 1 S

By using the classical Gronwall’s inequality, we have

u(t) Su'(t) < 1 —qu exp (g (h‘b((tf (_”r)l)))al (In t)b>, forae. t € [1,T].

In (7), the parameter r; is indefinite; we then attempt to choose an “optimal” parameter

to . . 8(In(te (1)) b
guarantee that the inequality holds and that the term exp B(1=ry) (Int)” | is as

small as possible. Let

k(r) = (1—1)(In(tg(r)) =" = (1 - 1) ((gB(a, b)) ') =51, 1, = . ; 3

By calculation, we have «/(r.) = 0. r, is a maximum of «(r) and r,. < 1. If r, < ry, thatis

gB(a,b)(InT)**t=1 > 14 then r, is the ‘optimal’ parameter and we obtain

u(t) < E]b exp(g(ln(tg(r*)))al (lnt)b>

“a+b-1 a+b—1

b a—
B qb gm 1—a a+b—1 b
_g+b—1exp<a+b—1(bB(a,b)> (Int) ),fora.e.tE[l,T}. 8)

If r, > ro, or gB(a,b)(InT)**0~1 < 12 let t € [1, T| and choose an arbitrary ¢ € [1,#],

u@ <q+g [[(n)" ans)u(e) D
<q+ ¢B(a,b)(In T)+b=1y* (1)

<q+ = (t).

Taking the supremum for ¢ € [1,t] gives u(t) < u*(t) < HL’T{V t € [1, T]. Actually, thisis a
stronger conclusion than (8).
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Lastly, we will show that the conclusion also holds for the general case. For any
€(1,1],

u(t) <q*(t)+g"(7) '/; (ln ;)ﬂl(lns)b_lu(s)is, forae.t € [1,1].

According to the above conclusion, (8) is satisfied in [1, 7], that is

u(t) < q*(“')bexp<(3*(r))“bl ( 1 _a)>aih_l(lnt)b>, forae.t € [1,1],

a+b—1 a+b—1 \bB(a,b

therefore,

. g7 (0)b (g5 (1)1 [ 1—a st
u (T) < a+b_1exp< T b—1 (bB(g/b)) (lnT)b>,

Since T is arbitrary in (1, T], then we obtain the conclusion. [

3. The Locally Convex Space

For readers’ convenience, first, some basic concepts and properties of locally convex
and topological spaces are briefly reviewed (see the monographs [20-23] for further details).

Definition 1 ([20,21]). If (X, T) is a topology space, a base for T is a collection B C ‘T such that
T={UB|GcB}L
Beg

Lemma 7 ([20,21]). Suppose that X is a non-empty set, B C 2%, if B satisfies

(1) X= U B
BeB
(2)  If x belongs to the intersection of two basis elements By and By, then there is a basis element

B3 containing x such that B3 C By Ba.
Then, there is a unique topology with I3 as the topological base.

Definition 2 ([20,21]). A topological space X is said to be Hausdorff if whenever x and y are
distinct points of X, there are disjoint open sets U and V in X withx € Uandy € V.

Definition 3 ([20,21]). A topological space (X, T) is metrizable if the topology T is the metric
topology T, for some metric p on X.

Definition 4 ([22,23]). A real linear topological space (LTS) is a real linear space (vector space) X
together with a topology such that, with respect to this topology,

(1)  the map of X x X — X defined by (x,y) — x + y is continuous;
(2)  the map of R x X — X defined by («, x) — ax is continuous.

Definition 5 ([23]). A locally convex space (LCS) is an LTS, whose topology is defined by a family
of semi-norms P such that () {x ‘ p(x) =0} = {0}.
pEP

Lemma 8 ([22]). Xisan LTS, {p1, pa, ...} bea sequence of semi-norms on X, such that ﬁ {x] pu(x) =
n=1
0} = {0}. For x and y in X, define

o Cpalx—y)
2 T+ pu(x—y)
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Then, d is metric on X and the topology on X defined by d is the topology on X defined by the
semi-norms {p1, pa, ...}. Thus, X is metrizable if, and only if, its topology is determined by a
countable family of semi-norms.

From here up to Theorem 5, we always suppose that 0 < § < a — 1. Define a function
space as follows:

x| HDE MDY x e C(J), lim (int)~*x(1), (In#)2HF-«HDP x(p)

lim
t—1+
and tl_i)rﬂ(ln )2 HDY x(t) exist

X =

Consider the family P = {p; } ,en of semi-norms on X, where p,, : X — [0, c0) is defined by

pa(x) = sup (InB2*|x())|+ sup (InH)*"F*[HDf x(t)]

te(1,14n] te(1,14n]
+ sup (Int)V=eHDY x(p)].
te(1,1+n]

For every x € X, set Uy e := {y € X ’ pn(y — x) < €}, where ¢ > 0,n € N. All of the finite
intersection of elements of {U, ,, .} form a collection 5, that is

B={ ﬂ Uy ne ] x € X,Ny CN,S; C (0,00) have the same finite cardinality}.
neNy
€Sy
The function space denoted as X will be referenced in Section 4, where we will establish the
existence of solutions to the initial value problem (4) on a specific subset of this space. As a
result, the subsequent analysis will concentrate on investigating pertinent characteristics of
this particular function space.

Theorem 1. There exists a unique topology T such that B is a base for the topology.

Proof of Theorem 1. The condition (1) in Lemma 7 is clearly satisfied. Next, we will show
the condition (2) also holds. For any By, B, € B, where

my
B, = ﬂ (Uxi,nij,gij), nij € NiCNeg;e§ C R™ have the same finite cardinality m;(i = 1,2).
j=1

Suppose x € By () By, then Pn; (x—x;) < &ij,i=1,2,j=1,2,...,my/my. Choose a number
e satisfying

0<e< min{sij — pni],(x —x;),i=1,2,j=1,2,...,my/my}.
Define B3 = N (Ux,n,e), then x € B3 € B. This implies that B3 C By B. For each

nu€(NyUN>)
Yy € B, then py, (y — x) <gny € Ny UNy. Therefore, fori = 1,2,j =1,2,...,my/my,

p”i]'(y - xi) < Pn,-,-(y*x) + Pni]-(x - xi) <&t p”ij(x - xi) < &jj-

Hence, y € B1 N Bs.
Define

T={UcX | there is a subset By C B such that U = U B}.
BeBy

It is clear that 7 is a topology with B as the topological base. The proof of uniqueness can
be obtained directly by the definition. O
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Remark 1. In accordance with the theorem, a subset U of X is an open set if, and only if, for every

point xq in U, there exist p1,...,pn € Pandeq, ..., e, > 0such that ﬂ {xeX | pn(x —x0) <
=1

gj} € U. Moreover, for any x € X, the family By = {Bxn.

Bine = {y € X | pu(y — x) < €} is a neighborhood-base at x with respect to T . Therefore, a set V

is a neighborhood of x with respect to T if and only if there exist n € N, e > 0 such that By, C V.

Theorem 2. (X, T') is Hausdorff, LCS, and metrizable.

Proof of Theorem 2. We claim that the conclusion ﬂ {x € X | pu(x) = 0} = {0}

is sustained. If not, there exists xg € X,xg # 0 such that p,(x9) = 0,Vn € N, ie,
sup (Int)2~*|xo(t)| = 0. Then, xo(t) = 0,t € (1,n+1],¥n € N. Hence, xo(t) = 0,t €
te(1,1+n]
(1, 0), which is a contradiction. In light of this, for any x,y € X and x # y, there exists
pn € P such that p,(x —y) # 0. Choose a positive number € satisfying p,(x —y) > € > 0.
SetU = {z | pu(x—2) < §},V ={z| pu(y —z) < §}; itis apparent that U, V are open
sets containing x and y, respectively, and U NV = &. Therefore, we know the topology
must be Hausdorff.

To prove that (X, T7) is an LCS, by Definitions 4 and 5, it suffices to prove (X, 7)) is
an LTS. From the properties of the semi-norm, we can reach the conclusion that the vector
space operations (addition and scalar multiplication) are continuous with respect to the
topology T .

Define a metric p on X by

i _n Pn(x—y)
=1 1+Pn(x_y)

let 7, be the topology induced by p. According to Lemma 8, we know 7, coincides with 7.
By Theorem 1, the topology is generated by a countable family of semi-norms; it follows
that topology 7 is metrizable. [

Theorem 3. A sequence {uy} C X converges to 0 with respect to T if, and only if, it satisfies the
following conditions:

@ {u}, {HDﬁuk}, {"DY. u} converge uniformly to 0 on any compact set I C J.

(i) {(Int)>*ur(t)}, {(Int)>+F-= HDlﬁ+uk(t) }A(n )2V = HDY u (t)} converge to 0 when
t = 14,k — oo uniformly with respect to T, i.e., for any € > 0, there exists 6 > 0 and
ko € N such that for all k > ko, t € (1,14 ),

_ 3 _ &
|(n > ue(8)] < 3, |(Int)**P M, (1)) <

€ _
3 () HADY ()] < 5. 9)

OJ

Proof of Theorem 3. We first show that the sufficiency holds. Suppose that {u;} C X
satisfies (i), (i7). Let V be an arbitrary neighbourhood of 0 with respect to 7. From Remark 1,
we have n € N and ¢ > 0 such that By, C V. Due to the condition (ii), we choose
ko € N,é > 0 such that (9) holds.

For 6 > n, then for all k > ky, we have

pu(up) = sup (InH)2 *ug(H)| + sup (Int)>F-4HDP 4y (1)

te(1,1+n] te(1,1+n]
+ sup (Int)*" DY (1] <
te(1,14n]

then, we obtain uy € By, C V forall k > k.
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Ford <mn,let]=[5,n],¢ =min{§(Inn)*"2 §(Inn)* P2, £(Inn)* "2} According

to the condition (i), there exists k; € N such that for all k > kq, t € I, we obtain
ug(t)] < €, |HDf+”k(t)| <&, MDY u (1) <¢.
Consequently, for all k > k; and t € I, we infer

(In )2 %[u ()] < (In£)2~%' < (Inn)? % < g

(In£)>B=HDE 4 (1)) < (Inp)2H2¢ < (Inn)2HA2g

IN
WIm W m

(lnt)2+1/71x|HD11/+uk(t>| < (lnt)ZJrUﬂxgl < (1n1’l)2+v7“£, <

These three inequalities imply that p,, (uy) < ¢; then, for all k > max{k, k1 }, we conclude
that uy € By, C V. Hence, {1t} C X converges to 0 with respect to 7.

Next, we will prove the necessity holds. Suppose {u;} C X converges to 0 with
respect to 7. In order to show (i) holds, choose an arbitrary compact set I C ], let
I =min{t |t € I},r = max{t |t € I}. Then,1 < <r <ooand I C [I,r]. For Ve > 0, let
¢ = min{(In1)?~%¢, (In1)>"F~%, (In1)>+V~%¢}, let n be a natural number with n > r. By, ¢
is a neighborhood of 0 with respect to 7, based on the convergence of {1y}, there exists
ko € N such that uy € By,  for all k > k. Then, for all k > ko, t € I, we have

(In D> lug(5)] < (Int)* ™ |ue ()] < pu(ie) < €,

(In0)> P~ 1DE ()] < (in )2 HDP (1)) < pulig) < €,

(In D> HDY g ()] < (Int)> [ IDY ()] < pu(i) < €,
therefore,
()] < €(In)*2 <, [MDP (1) < € (Inl)* P2 <,
DY u(t)] < &(Inl)* V2 <e,
these mean that {u(#)}, {HDﬁuk(t)}, {HDY, u(t)} converge to 0 on I.

Now, let us prove that (i7) holds. For any &€ > 0, since BO,L% is a neighborhood of 0

with respect to 7, there exists kg € N such that pq (1) < % for all k > kg. Then, for all
k > ko,t € (1,2), we have

_ € _ €
(It~ ()] < pr(u) < 5, (In )P~ HDL (1)) < pr(wp) < 3,

(In > 1Dy ()] < pr(ug) <

[SS I

Thus, the proof is completed. [
Theorem 4. The metrizable locally convex space (X,T) is complete.

Proof of Theorem 4. Choose an arbitrary sequence {u} in (X, 7). We will prove that the
sequence {uy } is convergent by the following five steps.

Step 1 Forany t € J, {u(t)}, {HDf+uk(t)} and {"DY  u(t)} are Cauchy sequences
in R.

Lett € ] be arbitrarily fixed, e > 0,n € Nand n > t.Sete’ = min{(Int)>~%, (Int)2F%,
(Int)>tV"*¢}. Since {uy} is a Cauchy sequence and By , . is a neighborhood of 0 with respect
to T, there exists kg € N, for any k,m > ko, we have uy — uy, € By, . Then,

()2 e (t) = um(1)] < pun (e — um) < €,
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(n 2B ADL (g () — (1)) < pu(uag — 1) < €,
and
(Int)> = 1DY, (upe () — wm ()| < po (e — ) < €.

Whence,

[ug(t) = um(£)] < (In8)* 2 <&, "D (u(t) = um ()| < e,
DY (k1) — um(1))] < e.

It follows that {u(t)}, {HDl/3 (1)} and {HDHuk( )} are Cauchy sequences in R. Let
u(t),v(t), w(t) be the limits of {u(t)}, {HD1+ x(t)} and {HD‘1’+uk(t)}, respectively, i.e.,

lim . (t) = u(t), klgglo HDf+uk(t) =o(t), klgglo HpY up(t) =w(t), te].  (10)

k—o00
Step 2 {uy—u}, {HDﬁuk —v}and {HD‘1’+uk — w} satisfy the condition (7) in Theorem 3,

ie.,

{u — u}, {H D U —v}and {H D7 ux — w} converge uniformly to 0 a1
on every compact set I C |.

Since {uy} is a Cauchy sequence in X, just as the proof of necessity of Theorem 3, the
conclusion (11) is satisfied. Meanwhile, by (11), we have u,v,w € C(J).
Step 3 For any € > 0, there exists kg € N such that for Vk > ko, t € (1,2), then,

(In )l (t) = u(t)] < 5, (6> HDP, (1) —o(1)] <

U)\m

(12)
(Int)>=*|TD] g (1) — w(t)| <

S

In fact, since By ¢ is a neighborhood of 0 with respect to T, there exists kg € N, for all
k,m > ko, up — uy € Bo,l,g; as a result, for all k > ko, t € (1,2), we have

(n )24 ADE (1w () — i (1)] <

()] <

(In )2~ g (1) — um (1)] <

(In )= 9] ((t) —

7

W[ M

<t
3’
Uy

w\m

The conclusion (12) is obtained let m — oo.
tep 4 The limits lim (Int)>~*u(t), lim (Int)>*#~%o(t) and lim (In#)2T"~*w(t) ex-
Step e1m1st_1)r1n+(n) u(),tirlrbr(n) v(t) an t—1>IE-<n) w(t) ex
ist.
We first prove the limit lim (Int)
t—1+
(12) that there exists ky € N such that

2=4(t) exists. In fact, for any & > 0, it follows from

oM

(nt)2 % ug(t) — u(t)| < =, forall k > ko, t € (1,2). (13)

UJ

Choose k1 € N with k; > ko, since the limit tlhin (Int)?>~*uy, (t) exists, it results that there
-1+
exist0 < € < 1and § > 0, such that forall t,s € (1,1 + €) with |t —s| < J, we have

| (I t)> g, (1) — (Ins)*“u, ()] < (14)

LI m

Then, for t,s € (1,2) with |t — s| < §, combining (13) and (14), we have

|(Int)2%u(t) — (Ins)>*u(s)| <.
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Similarly, we infer that lim (Int)>*#~%(t) and lim (Int)>T'~%w(t) exist.
t—=1+ t—1+

Step5 HDP u(t) = o(t), DY, u(t) = w(t),t € J.

For any k € N and compact set I C ], we know HDeruk,H Dy, ug € C(I). From (11),
we have {H Df L ug — o} and {HDY, u; —w} converge uniformly to 0 on I, according to
Lemma 5, then

HDE,u(t) = "D, (lim wy(1)) = lim HDE u (1) = o(t),t € 1,
ADY u(t) = FDY, (lim (1) = lim "D} ue(t) = w(t), t € I,

Since [ is arbitrary, we know HDlﬁJru(t) =o(t), HD’f+u(t) =w(t),te].
Summarizing the above steps, it follows from Theorem 3 that {uy — u} converges to 0
with respectto 7. [J

Theorem 5. Let (X, T") be a metrizable locally convex space, then Y C X is relatively compact in
(X, T') provided that it satisfies the following conditions:

(i) Y is pointwise bounded on J;

(ii) Y is equicontinuous on |;

(iii) Y is equiconvergent at 1+, i.e., for every € > O there exists § > 0 such that forally € Y,t €
(1,1+ ) one has

(Int)2 %y (t) — tlim (Int)22y(t)| <e,
—1+

(Int)> B HDP y(r) - Jlim (In $)2Hb—a leﬂy(t)‘ <e

and

(Int)2 = 1D y(#) — lim (Inp)+— Hpm(t)‘ <e

Proof of Theorem 5. Define another linear space

X ={iec(n) | nn*F-=HDP (1) 2i(t)) € C(),

(Int)2 =+ HDY_ (In)*2ii(t)) € C() }.
Consider a family P = {P, }nen of semi-norms on X, where 7, : X — [0, 00) is defined by
(i) = max (1) + max |(int)F - HDE, (1nf)* ()

+ max |(Int)>TV =2 HDY ((Int)*2u(t))], Vi € X.

Let 7 be the topology induced by the family P, with the proof of Theorems 1, 2, and 4,

we know (X, T') is also a locally convex space which is metrizable and complete. Obvi-

ously, the convergence klim iy = i in (X, T) is exactly the uniform convergence, then
— 00

Jim 7 (£) = @(t), lim (In )P~ HDP (Int)* 2i(t)) = (Int)2 2 HDP ((Int)*20(t))
—00 —00
and lim (Int)>"=*HDY ((Int)* 210 (t)) = (Int)>=*HDY ((Int)*~2i(t)) on every com-

k—o0
pact subset I C J;. Then, 7 is the topology of compact convergence.
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For any u € X, associated with this function, we define a new function i : J; — R

as follows:
_ (Int)2~*u(t), te],
() = {th‘}i (InE2%u(t), t=1. (15)

It is clear that € C(J;). For any t € ], we have
(Int)> P-4 HDL ((Int)*2ii(t)) = (Int)> == DL u(t) e C())

and (Int)*™V=*HDY ((Int)*~20(t)) = (Int)>=*HDY u(t) € C(J). If we define tlirln
S1+

(Int)2+h—« HDﬁu(t) as the value of (Int)2+tF—« HDlﬁJr((lnt)"“zﬁ(t)) att = 1; likewise,
we take tlir? (Int)2v=«HDY u(t) as the value of (Int)**V~*HDY ((Int)*~2i(t)) att = 1.
S1+

Then, we deduce that
(InH)ZP=«HDP (In$)*20(t)), (In£)>*=* DY ((In1)*2ii(t)) € C(J1)-

Hence, ui € X.

Choose an arbitrary subset Y C X satisfying (i) — (iii),let Y = { € X |y € Y}, where
7/ is defined as the formula (15), then Y is pointwise bounded and equicontinuous on Jj.
By the Arzela—Ascoli theorem, it follows that Y is relatively compact in (X, 7). Let {y)} be
any sequence in Y, for every k € N, imitating the formula (15), we rewrite vy as v, then
{fx} C Y. So, there must be a subsequence {yiyandy € X such that Yk, — Y with respect

to 7. Then,

{0, =7}, { P HDL (n)* 255, (1) — (it P~ HD], (nt)*25(t)) |,
and { (In )= HDY, (In)* 27 (1) — (0> HDY (1) 25()) ) (16)
converge uniformly to 0 on every compact set I; C J;.
Let y(t) = (Int)*23(t), then y € X. In order to show that {ykj — y} converges to 0
with respect to 7, we only need to verify that the sequence satisfies all the conditions of

Theorem 3.
For any compact set I C ], there exists Mj > 0 such that r?alx{(ln £)*=2, (Int)*=F=2,
€

(In t)“‘”‘z} < M. From (16), we know for any & > 0, there exists jy € N such that

€

55,0 = 5] < 3/ 1m0 FD (It 2(37, ()~ 7O < 77

|(In )=+ I ((In)* =2 (g (1) = §(1)))| < Mil

Vt € I,j > jo.
Then, for Vt € I,j > jo, we have
i, (1) — y(B)| = (In6)* 2|y (1) — 5(1)] <,
| HD&(%(O —y(1)] = (nt)* P2|(Int)>+F HDﬂ((lnt)“*z(yNkj(t) —y®)))l <e
| 1DV, (i, (1) =y ()] = (In6)* 72| (In ) PV DY, ((In#)* =2 (3, (1) — 7(1)))] <.
These imply that

{yk]. -y}, {HDeryk], — HDﬁy}, {HDﬂykj - H’Dhy} converge uniformly

to 0 on compact set I.

(17)
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From (16), we know {yj(t) — (1)}, {(Int)2+p—= HDlﬁJr((lnt)"‘_z(yNkj(t) —y(t)))} and
{(Int)>Hv—=a HDL((lnt)”"z(]};j(t) —¥(t)))} converge uniformly to 0 on [1,2]. For any
e > 0, there exists j; € Nsuch that for any j > j;,t € [1,2], we have

[7,() = F(0)] < 5, [(n 2P~ 1DE ()25 (6) = (1) < 5,
[(n ey = HDY (n )2 (5, () = 7(0)| < 3,
(I 0>y, (1) = y(B)] < 5, ()P HDE, (e (1) —y()] < 3,

(18)
(Int)>=*TDY (g, (1) — y(1))] <

w\m

From (17) and (18), all the conditions in Theorem 3 hold; it follows that {yk], — Yy} converges
to 0 with respect to the topology 7. Consequently, Y is relatively compactin (X, 7). O

Now, we assume that § = & — 1. Define another function space as follows:

3% Hpa—1,, Hpyv 2— L% : Hpa—1
= D D D
X {x | x, "Df ', MDY x € C()), Lll}}r(lnt) (t),tliq}r 11 x(t) and

tlir{1+(ln 2= HDY x(t) exist}.

Consider the family P = {p, } of semi-norms on X, where 7, : X — [0, 0) is defined by
pn(x) = sup (Int)>*[x(t)| + sup \HDﬁlx(tﬂ
te(1,1+n] te(1,1+n]

+ sup (Int)*™4HDY x(t)|,x € X,n € N.
te(1,14n]

Let Uyne = {y € X | Pn(y — x) < €}. Just like the set B and T, applying these sets

llx ne, We construct some new sets Band 7. Then, we arrive at the same conclusions as
Theorems 2-5, which are fully summarized in the following Theorem 6.

Theorem 6.

1) (X, T)is Hausdorff, LCS, and metrizable.
(2) A sequence {u;} C X converges to 0 with respect to T if, and only if, it satisfies the following
conditions:

(@) {uwe}, (DY e}, {HDY, wi} converge uniformly to 0 on any compact set I C J;

(i) {(Int)>*u(t)}, {HDﬁluk(t)}, {(Int)>V=2HDY u(t)} converge to 0 when t —
1+, k — oo uniformly with respect to T, i.e., for Ve > 0, there exists § > 0 and kg € N
such that

o

(In 6> 2u(8)] < =, [P (1)) < =

(.)J
(O8]

(19)
|(In )™= HDY ()] < 5,for all k > ko, t € (1,1+9).

(3)  The metrizable locally convex space (X, T') is complete;
(4) Let (X,T) be a metrizable locally convex space, then Y C X is relatively compact in (X, T)
and satisfies the following conditions:

(i) Y is pointwise bounded on J1;
(ii) Y is equicontinuous on [1;
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(iii) Y is equiconvergent at 1+, i.e., for every € > there exists § > 0 such that for all
yeY,t€ (1,14 0) onehas

(Int)2%y(t) — lim (In t)z_“y(t)‘ <e,

Hpa—1 - Hpa—1
m Dﬁ y(t) — lim Dﬁ y(t)‘ <eg,

t—1+

and

(£ HDY y(f) ~ lim (In)**"~* HD‘l’+y(t)’ <e

For convenience, we will uniformly denote the function spaces X and X as X. Depend-
ing on the range of B, we will use the space X or X accordingly.

4. Main Results

First, we list the following conditions which will be used in the the subsequent
theorems.

Hypothesis 1. There exist three constants J, vy, 0 and non-negative functions ¢, y, 1, w, such that
¢(t) € Cogm(]), 9(t) € Com()), 1(t) € Cyin(]), w(t) € C_g m(J) and @(t) + p18x—y-1(t)
w(t) > 0,t € JJwhere0 < d < a—1,0 <y <a—-B—-1(if0 < p<a—-1)or0 <
y<a—v(iff=a—-1),0€ (14+v—al)and min{2a —v—-356,2a —v—-B—7(0 < B <
a—1),20 —2v+ ¢} > 2. In addition, g, uy are two arbitrary positive constants satisfying
po = [xol, 1 = [xa.

Hypothesis 2. f(t,x,y,z) : ] x R® — R is continuous and

[f(txy,2)] <(t) + () ]x] + n(8)]yl + w () (]z — 1100y 1(5)]
+M119a7v71(5)),v(t,x,y,z) eJx R3.

Remark 2. Sincea —1 < v < &, 8,_,_1(t) just adopts the definition form as above, and according

to the properties of the gamma function, its true expression is Oy, _1(t) = — %&"_}"3 (Int)*—v=2,

it is obvious that 9, _,_1(t) <0, Vt € |.

For convenience, we introduce some notations:

Mg, = sup (Int)*“¢(t), My, = sup (In £ow(t),t=2,T,

te(1,j] te(1,]]
My, = sup (Int)"y(t), My, = sup (Int) Cw(t),t =2,T,
te (1] te(1,]

My = max{Myp, My2, My2, My2}, Mr = max{M, 1, My, My, Mo},
H(t) = max{(In£)* 72, (Int)* P72, (Int)* " 02} 0 < p < — 1),
Hy(t) = max{(Int)*°=2, (Int)~7, (Int)*"V+e=2},

Remark 3. By direct calculation, we know if t € (1, ¢], then
H(t) — (lnt)maX{tX7(571,0{7ﬁ7771,0{*1/+Q*1}71.
Ift € [e,oo), H(t) = (In t)min{txféf1,a7137771,a7v+gfl}71. Let

o max{a —5—1L,a—B—vy—1la—v+o—1}, te(le];
CImin{fa—6—La—p—y—La—v+o—1}, teeoco).



Fractal Fract. 2024, 8, 191

15 of 30

Then, 8 € (0,1) and we can rewrite the function H(t) as H(t) = (Int)?~1. Similarly, let

o — max{e —6—1,1—vy,a—v+o—1}, te(le;
e min{fa —6—1,1—y,a—v+o0—1}, € [e ).
Then, we have 61 € (0,1) and Hy(t) = (Int)%—1.
Theorem 7. Assume that Hypothesis 1 holds. Then, the integral equation

t

a—1
) (¢(s) + p(s)u(s)

S
("D, u(s) + w(s) DY u(s)) S

1 t
u(t) =poBa(t) + p10a-1(t) + m/l <1n 0)
has a unique positive solution u € X.

Proof of Theorem 7. For each T > 1, when 0 < B < a — 1, we define a Banach space
X[1, T] as follows:

x ] x, FDP x, HDY, x € C(1,T), lim (Int)**x(t),

X[l T] _ t—=1+
! . 2+B—a HpyB . 24v—a H .
tlﬁuﬂ(ln t)2HP~*HDP x(t) and tlirlrbr(lnt) T HDY L x(t) exist

which is equipped with a norm

I¥llx,,, = sup (nH2“x(t)] + sup (Int)F=5[1DE, x(1)]
te(1,T] te(1,T]
+ sup (lnt)2+v_“|HD{+x(t)|.
te(1,T)

Similarly, when § = « — 1, we also denote

x| HDy I H DY x e C(1, 7], lim
=1+

X[l'ﬂ - ; Hpa—1 ; 24+v—a Hpyv ;
tlirlrhr D, "x(t) and tlirfhr(lnt) Dy, x(t) exist

(Int)>~%x(t),

a Banach space by defining a norm

Ixllx,7 = sup (InH)>"*[x(t)| + sup [FDITTx(b)] + sup (Int)** "Dy x(1)].
te(1,T] te(1,T] te(1,T]

Denote a set P C X[1, T| with the form
p= {x € X[, T] | x(t) > 0, D u(t) > 0,7 DY, u(t) — ey 1(t) > 0,t € (1, T]}.
Clearly, P is a cone of X[1, T].

Next, we define an operator At : P — P by

a—1

(Ar)() =pot(®) + it a0+ s [ (03) (00 + v @

+7(6)1D u(s) + w(e) DY () T
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From Lemma 4, applying the operator Df 4 to A7, we have
1 ¢ F\ @ B—1
HD1ﬁ+(ATM)(f) =po0y—p(t) + P10 —p-1(t) + I’(T—ﬁ)/l (ln s>
d
(9(5) + p(s)u(s) +51(s)"DE, u(s) + w(s) DY u(s) ) 2,
0<p<a—1) (22)
t
D (Aru) (1) =m0+ [ (9(6) +9(s)u(s) + () D u(s)

()DL ()2, (B = a—1)

. x—v—1
MDY (Ari) (1) =pot-1(0) + inbaa (0 + s [(102) (o)

I(a—v). s
Fp()us) + 1) MDE u(s) + () 1DYu()) 2.

When 0 < g <a—1,forany u € P,t € (1,2], using Hypothesis 1, we have

nt)2—« a1
I () 09+ 95huts) +75)"Df e

+(©)"Du(s) £

Ma(Inb)*e
I'(a)
+B(a,a— B — 7y —1)(Int)*27F77
$B(,a — v+ g 1)(In 0220 fullx, |
- T(a)
(Int)* P77+ Bla,a —v+o-— 1)(1r1t)"‘_v+g) ||M\|Xm]}r

[B(zx,a —1)(In t)ZIX*Z + (B(a,zx _5— 1)(11,1 t)2u7275

[B(uc,oc —1)(Int)* + (B(zx,oc —6—-1)(Int)*° +Blo,a —p—y—1)

Int)2tB—a [t a—p-1
‘(T(fx)—ﬁ) /1(1“t> (@(s) + $(s)u(s) + ()" Df u(s)

S

+w(s)"DY, u(s) %
M « a—
gr(“fﬁ) [Bla—pB,a—1)(In)*+ (Ble—B,a—6—1)(Int)* + Bl - B,

x—B—7-1) (lnt)“*ﬁ*7 +Bla—Ba—v+o— 1)(lnt)“7v+g) ”u”X[LT]}’

n 24+v—an a—v—1
’(lr(;)jv) /1t<1nt) (9(s) + 9(s)u(s) +n(s)"DF u(s)

"D u(s) 5|

M,
I'(ae—v)

a—B—y—1)(Int)* P74 Bla—v,a —v+o— 1)(1r1t)"‘_”+9) ||u\|xm]

<

[B(a —v,a—1)(Int)* + (B(uc —v,6—6—1)(Int)* " + Ba —v,

(23)

(24)

(25)

(26)
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If 1 < T < 2, then we choose t € (1, T] and change M, to My in the above formula. By
virtue of (24)—(26), let t — 1+, then,

n#)2—« a—1
tim S0 [ (1n2) 006) 4 9(5)u(s) + 161D ()

+ w(s)HDhu(s))% o,

nt)2tp—u a—p-1
i gy (n0) o0t e

+ w(s)HD{+u(s))@ o,

(27)

h’lt 24+v—un

a—v— l
tl_lmr A ) )+ p(s)u(s) + ()DL u(s)

w(s )HD1+u(S))

When = a — 1, by the same deduction method, we have

nt)2—« a—1
| ﬂril) /; <ln t) (9() + P(s)u(s) + 7(5) 1D () + w(s) DY, (s)) 2

5 S
M

<7

“I(a)
+B(a, @ —v+g—1)(InH* ) fullx, |,

[B(ac,(x —1)(Int)* + (B(zx,tx —5—1)(Int)*° 4+ B(a,1 — v)(Int)*~7

[0+ 96 + 16D () + 0(6) 1D )

(Int)*1 (Int)*=2=1  (Int)!=7  (Int)r—vte-l
<
v [ W0 (Q (007 B0 D

n 24+v—a a—v—1
‘(11"(tac)—+1/) /; (lnt> (p(s) + ¢(s)u(s) +n(s)"Df u(s)

+ o)y u(e) |

M,
<72
“T(a—v)

FB(a—v,1— ) (Nt + Bla— v, — v+ g~ 1)(Int) ) fulx, . |

[B(DC —v,a—1)(Int)* + (B(oc —v,0—6—1)(Int)*°

then,

S

nt)2—a gt a—1
tim BT [ (1) (060 + plou(s) 409D )

d
+ w(s)HDﬁu(s)) ?S =0,

tim [ (9(6) +($)u(s) +1(6)" D Huls) + () DY u(9) E =0, @9

=14 S

nt)2tv—a a—v—1
L t(hﬁ) (9() + p(u(s) + 7(s) "D u(s)

t—>1+ T(a—v) s
ds

+ w(s)HDg+u(s)) ==o.
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By (27) and (28), we deduce lim (Int)>~*Aru(t), lim (Int)>+F=# HDlﬁJrATu(t)
t—=1+ t—14

0<B<a—-1), tlir1n+ HDﬁlATu(t), and tlir1n+(ln t)>rv=oH DY Aru(t) exist. From (21),
— —

for any u € P, we know

. a—1
ATu(t) I]/l()ﬁ,x(t) + ]/llﬁzx—l(t) + 1_,(106) '/1iE (ln ;) [q)(S) + 1181 (s)a)(s)} @

S

t a—1
+ﬁ/1 (lnD [w(s)u(s)+17(s)HDf+u(s)
+as) (MDY uts) — 8 a(9))] 5
s
Hypothesis 1 naturally gives the conclusion Au(t) >0, t € J. Likewise, /! Dl/g L (Aru)(t) >
0 and HDL(ATM)(t) — 110 —y_1(t) > 0, € J. According to the above assertions, it
follows that A7 : P — P is well-defined. Due to Hypothesis 1, we can easily show that At
is completely continuous.

Obviously, in order to show that the integral Equation (20) has a unique positive
solution, it suffices to show that the equation has a unique positive solution in X[1, T| for
each T > 1, that is, to prove that the operator AT has a unique fixed point in P. According
to the Leray-Schauder alternative theorem, to prove that At has a unique fixed point,
we need to show that £(Ar) = {x € P: x = AArxforsome0 < A < 1} is bounded.
Suppose that there exists A € (0,1) such that u(t) = AAru(t),t € (1, T],u € P. We discuss
it separately in the two cases:

1 0<p<a-—-1
In view of (21) and Hypothesis 1, one has

(In )2 |u(t)| = Ant)>~*|Agu(t)|

2—a t a—1
< H0 gyt (Inh) MT/ (m;) ((ns)* =2+ (ns)*u(s)
1

) M- T T
+ (Ins)™7 HD’eru(s) + (Ins)® HDLu(s))%
< M0 gyt Bas ) e (29)

I'(a) I'(a—1) I'(a)

4 If\éf)(ln e t <ln :)a_lH(s)u(s)dSs

a—v—1
<g1(t) + %(m preve | t (m;) H(s)ll(s)%,

where ¢4 (t) = % Int+ % + B(?&;l)MT(ln H*,U(s) = (Ins)>*|u(s)| + (Ins)2+F—=|H

Dl’5+u(s)| + (Ins)2™=*|"DY_u(s)|. Likewise, by (22) and (23), we have

(Int)2 P~ 1DP _u(t)|
¢ a—v—1
§¢2(t)+y7T(lnt)2”*“/l <1nt> H(S)U(s)§, (30)
and
(Int)>*"=* "Dy u(t)|

t a—v—1 s
<¢3(t) + F(iVITv)(ln 1?)2“’*”‘/1 (ln ;) H(s)U(s)d—, (31)
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where ¢o(t) = g Int + .t ; 5+ B (50:9)1)MT(1nt) $3(t) = lyy Int+

z 1&;1/;)“) + B(i (IXV ”;) U Mr(Int)*. Adding the left and right sides of (29)—(31), respectively,

we obtain an inequality about the function U ()

() <pu(t)+ a(t) + a0) + | 75 * I

(2 [ (n ) 1H<s>u< >ds @)

S

50 [ () e ue,

S

where g(t) = ¢1 () + o (t) + pa(t), g(t) = [% [ %} (In )2+~ 9 is defined

in Remark 3. An application of Lemma 6 yields

Uut) < Z_(t) 1 exp<(ga*_(:)b)u_+bll (b;(;’i)>m(lnt)b>,for ae. te[l1,T].

Since the functions g and g are increasing, it is immediately seen that

b a—1
9(T)b (M)t (1—a N\ oy
S U= 1P o1 \wBayy) U7

Consequently, we deduce that

Mr.

lullx, = sup (It ~*[u(t)| + sup (nH)>F-4HDE u(t)
te(1,T] te(1,T]
+ sup (Int)*™=%|"DY_ u(t)|
te(1,T)

<3 sup U(t) <3M7p+1.
te(1,T)

When 8 =a —1,let Uy (t) = (Int)>%|u(t)| + \HDi‘;lu(tﬂ + (Int)>P =4[ HDY u(t)|, we
estimate each of the three terms of the function U; separately.

nt)2—a a—1
(2 (o) <gr()+ S M [ (1n2) (09 ()

1 (ins) "7 HDLu(s) + (Ins)? Hpm(s))?

t

¢ a—v—1
<¢1(t) jLI{\gI{XT)(lnt)”V”‘/1 (ln S) Hy(s)Uy(s)—

d
(lnt)“ 1+MT/ H] Ul( ) SS

ds
s’

MDY Mu(t)] <

(lnt)"‘ Ly Myp(Ing)ttv==

- /1 t(lns)“*”*lHu SUABES

a—v—1
) mewE T

s s

(In t)2+V_“|HDI{+M(l‘)| <¢3(t) + r(li\/I_TV)(lnt)2+v—o¢ /1t(1r1
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Adding the estimation results of the above three inequalities, we have

My
a—1

+ (1;1(2?1;)0‘) /1t (ln ;) “7V*1Hl (s)Uy (s)%

¢ a—v—1 S
—n+a) [ (D) meoh e, @)

(ln t)2+1/71x

I'(a)

Uy (t) <gr(t) + po + + (Inp) e

(InH)* L + ps(t) + MT(

S

2+v—a
where g1 (£) = ¢1(£) + po + 225 (In£)* 1 + g3 (£), g1 (1) = Mr (L= + (Inpyv-e
+ (h;(tizj)’ ! ) . Applying Lemma 6 again, we have

() < 0P exp((gi‘(t))H“( 1—a))aib—1(lm)b>,

“a+b-1 a+b—1 \bB(ab

Hence, according to the fact that the functions g; and g are increasing, we deduce that

ltllx, zy = sup (In8)>~*[u(t)] + FDITu(®)] + (In )= FD] u(1)]

te(1,7T)
<3 sup U;(t)
te(1,T)
b a—1
q(T)b (g1(T))a1 (1 —a a1 b
<3a+b71exp a+b—1 \bB(a,b) (InT)" ) +1.

By virtue of the Leray—Schauder alternative theorem, At has a fixed point # € P. Based on
the operator’s expression and conditions, the fixed point of the operator At is confirmed to
be positive.

Finally, we will show that the fixed point is unique. Suppose there is another fixed
pointv € X[1,T]. Let Z(t) = (Int)>*[u(t) — o(t)| + (In )2 F~*[HDE w(t) — HDP o(t)| +
(Int)2v=*HDY u(t) — HDY o(t)|,t € (1,T],(0 < B < a —1). Similar to the derivation
shown above, we obtain

n 2—u t a—1
20 <= [ (1n5) [pte)1n(s) = o6s)1 + 6) "D, i) ~ D, ots)
O u(s) = #DY0(6)[] S

(lnt)2+ﬁﬂx t ¢ a—p—-1
+ W/l <1ns> [lp(s)Iu(s> —o(s)| +17(s)[1DE, u(s) — HDE, v(s)]

o) PDYu(s) — P DY, 0(s) |

n 24+v—an t a—v—1
T (lr(ta)jv)/l (hlz) [#’(S)Iu(S) —o(s)| +5(s)[" DL u(s) — HDP v (s)]

+(s) DY u(s) — DY, o(5) ]

Mr Mr Mr 24v—n !
S(rox) Ttap " r(«—v/))““” e

=g(t) /f <1“ t) T 129,

S S
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where g is defined in (32). For p = a — 1, let

Z1() =(n £ *Ju(t) — ()| + 1D u(t) — H D3 Mo (t)|
+ (e DY u(t) — MDY o(t)],t € (1,T),

then Z;(t) < g1(t) [{(In£)*™"~ Yns) 17, (s s)%, where g is defined in (33). Applying
Lemma 6 we derive Z(t) < 0,Z;(t) <0,Vt € (1, T], which means thatu =v. [

Next, we will establish a subset of the function space X by utilizing the unique
positive solution of the integral equation as defined in Theorem 7. Subsequently, we will
demonstrate the existence of the fixed point of nonlinear integral operators to establish the
existence of a solution for the initial value problem.

Theorem 8. Suppose that Hypotheses 1 and 2 hold. Then, for any xo, x1 € R, the initial value
problem (4) has at least one solution x € X.

Proof of Theorem 8. Obviously, a function x € X is a solution of the initial value problem
(4) if, and only if, it is a solution of the integral equation

a—1
() = 300a(8) + 31010+ s [ (n2) 76, ¥ D x(6) 1 DY x(9) T o0

S

Consider an operator A : X — X defined by

¢ a—1 s
Ax(t) = x00a(t) + x10,—1(f) + 1“(1a) /1 <ln t) f(s,x(s),2 Dﬁx(s),H th(s))dg

S

In order to show that the integral Equation (34) has a solution, it suffices to prove that the
operator A has a fixed point. Based on the condition Hypothesis 1 and Theorem 7, we
know A is well-defined. Next, we will prove that A has at least one fixed point in X.

The following discussion will proceed under this assumption 0 < g < a — 1. Let
¢(t) be the unique solution to the integral Equation (20). It is easily seen that §(t) >

0H Dﬁ LC(t) > 0,H DY, ¢(t) — p10s—y—1(t) > 0,Vt € J. Based on this function, we construct
a subset Q) C X as below

0 { e X | x()] < &), ["DF, x(0)] <" DF g(1), }
|HD1+x( ) xlﬁaﬂ/fl(t)’ SH D¥+€(t) - lulﬂafvfl(t)/ Vt € ]

Then, () is a nonempty closed convex subset of X. For any x € (),t € ], by Hypothesis 2,
we have

x—1
AX(O)] <[xal8a(0) + lalua (04 s [ (D) [0+ pls)1x(s)
1)/ DL, x(s)] + w(s) (1"DY 2(5) = 311 ()] + jrdamua () | 5
a—1

<uote(t) +1n0ua®)+ i [ (102) (006) 490
£(s)"DE, 2(s) + wls)"DY, 2(5)) 2 = 2),

ds
s

t x—p—1
HDE, Ax(1)| = xoﬂa,s<t>+xm,sl<t>+r(;_m / (mf) #(s.%(6),

S

ds
HDF x(s) DY x(s)) T
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S

F9(5)E(s) +1()1DE E(s) + w(s)"DY, 2(5)) 2 = HDf e(o),

<poOu_p(t) + p18e_p1(t) + 1“(041—[3) /1t (m t)a/sl (q)(s)

and

DY, Ax(t) — 2183y (1)]

t a—v—1 5
=|x00x—v(t) + F(oclv) /1 <ln t) f(s,x(s),H Derx(s),H th(s))d?

S

t

<hote s+ iy (08) T (005 + 002

()DL, E(5) + ()DL 6)) T = HDL () — B (1)

Therefore, Ax € Q.

Next, we will show that A : (3 — ) is continuous. For any x € (), let V be a
neighborhood of Ax with respect to the topology 7, by Remark 1, there exist n € N, r >
0 such that B4y, € V. In order to show A is continuous at x, it suffices to find a
neighborhood U of x and prove that A(U) C By, ,-

In (24)—(26), replacing the function u(t) with the function ¢(t), these estimates still
hold. Let t — 1+, the right-side functions of these estimates give the limit 0. For r > 0,
there exists dy € (0,1) such that

e [ ()" (o) + w0120 40928, 29
F)"D},86)) 2| <
oo [ 7 o 4y 40 260 .
Fawls )HDLC ) | <

sop [E D10 1) (g9 + 961200 0061, 209

te(1,14-6)] I'(a—v) s

Y ds r
+w(s)"DY,8(0)) 2| < 15
Let
Mya, sup (Int)°p(t)(Int)>~*&(t), sup (Int)Ty(t)(Int)> P HDE (),
— te(1,2] te(1,2]
M> = max ’
sup (Int) %w(t)(In t)2+"*“ HDL@(t)
te(1,2]

fort € (1, 2}, the following conclusions are satisfied:

[ (96 + $(6)6(6) + 15" Df,5(6) + ()DL, 8(9)) ©

M (Int)*~1  (Int)*0=1  (Int)*F=r=1  (Int)r-v+e-l
Sl (P | a—6—1 a—B—y—-1 a—-v+o-1

}—>O,t—>1+.

ds
s

rm [ ()T (o0 w0 4 DE,266) + oD 60) S

S
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My 2a—v-2 20-v—5-2

<2 IBa—v,a— s

<y [B@ v )M 4 B~ 6~ 1)(In )
+Ba—v,a—p—vy—1)(Int)2*v-F-172

+Bla —v,a —v+0— 1)(lnt)2“*2v+972] —0,t—1+.

For the foregoing dy, we have

len(l—i-n 1+l>0 s
i r ey A CORLOEORT DR <0
d
e >Hz>m< )5 < op .
In(1 24v—a 144 S\ &Vl
(n(r?z_xn—))w J (I“HS 0) (9(5) +p(s)e(s) + ()" DF 8(5)
d
+w(s)"DYL ()T < o7
On the other hand, set
Hpb
te[lrr;;,)iJrn]C(t)’te[l%%,)iJrn] D 5()
Mz::max Hpv (t) +2 (lnt)"“V—Z
ey D16+ 200

then f is uniformly continuous on [1 + &y, 1 + 1] x [—M¢, M¢]%. Hence, choose a positive
number ¢, for any t € [14 0,1+ n],u;,v;,w; € [—Mg, Mg](i = 1,2) with [ug — up| <
€, |v1 — v <€, |w; —wy| < ¢, the following inequality is satisfied

I'(a+1)r

12In%(1+n) 7

|f(t, u1,01,w1) — f(t,uz,v2,w2)| <

LetU = By, NQ), wherer, = min { [In(1+4dp)]> ¢, [In(1+80)]* P %, [In(1+6)]> TV e},
then U is a neighborhood of x. It remains to prove that Ay € Bay . for any y e U ie,

pn(Ay — Ax) < r.Forany y € Ot € [1+4dp,1+ n], then |y(t)| < M€,|HD1+y( )| <
Mg and

PDYy(5)] <DV (1) = mBav1 () + |x18a—y-1(1))]

—HDY &(1) + (m + |135%1|X)(_1;;1/ —a

)(hnf)"‘*V*2 < M.

Foranyy € U, t € [1+dg,1+ n], we have |y(t) — x(t)| < re(Int)* 2 < ¢, |HD1+y( ) —

HDer ()| < rx(Int)*P~2 < eand |HD1+y( ) — HD‘1/+ ()| < ry(Int)*"v=2 < e. Accord-
ing to (35)—(37), we deduce that

sup (Int)2~*|Ay(t) — Ax(t)]

te(1,1+n]
< sup (In t)27“|Ay(t) — Ax(t)|+  sup (lnt)zf"‘|Ay(t) — Ax(t)]
te(1,1400] te[1+6p,14n]
2(Int)2—* f< t)‘“ Hpyb
< sup |——— [ (In- @(s) +(s)¢(s) +n(s)" Dy, ¢(s)
te(l,ll—:&)-éo]’ I'(a) /1 S (

()" DY, 6() 2
(Int)>—*

0 a—1
+ T () (00 + 908 +a0 DR 69

te[14-6p,14n]
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ds
+w(s)DY.86)) T
(lnt)z 13 ( t)ﬂ(l .y
+  sup S In @(s) +(s)¢(s) +1(s) "Dy, &(s)
te[1+0p,1+n)] I'(a) /+50 5 (
ds
+w(s)"DY,8(s)) T
<l 1ol In*(1+n) T(a+)r 7
120724 T(a+1) 12In*(1+n) 3
Similarly, we have
sup (Int)>F[HDP Ay(t) — HDP Ax(r)| < L. (39)
te(1,14n] 3
Again, according to (35) and (37), we have
(h’l t)2+1/ﬂx t< t>avl /5 }
su — In - s, D s
tE(l,llj-(Sg} F(DC*V) A S f( y< ) 1+y< ) l+y( ))
—f(s,x() Dﬁ D1+x )
2(11‘1 t)2+1/70c ( ) B
S e v rn &(s) +n(s)" Dy, E(s)
t€(1,1+6] [(a—v) / (
ds
+w(s)"DYE(s)) T
r
=
(lnt)2+"7"‘ t ( t>u¢vl /3 o
su —— In - s,Y(s), D s
B A el N L B 1 CTORE WORERTE)
v ds
7f(s’x(s)’HDerx(S)rHDler(s)) s
< In®(1+n) T(a+1)r r
“T(a—v+1)12I0°(14+n) 127
Meanwhile, by (36),
(lnt)2+v—a .1+50( t)tx—v—l b o
sup S In f(s:y(s)," Diy(s),” Dyy(s)
tE[1480,1+1] I'(a—v) /1 s ( 1+ 1+ )
v ds
—f(s,x(s),H Dﬁx(s),H DHx(s)) .
z(ln(l_'_n))erV*lX 1+6 1_|_50 a—v—1
T A (¢66) +(e)z05)
ds r
+1()D] (5) +w(s)" DY E(5)) T < g5
Therefore, synthesizing the above conclusions, one has
sup (Int)2~*HDY Ay(t) —H DY, Ax(t)| < = (40)
te(1,14n] 3
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From (38)—(40), we obtain

pn(Ay — Ax) = sup (Int)*™"[Ay(t) — Ax(t)|

te(1,1+n]

+ sup (lnt)2+ﬁ_“|HDf+Ay(t) _H Df+Ax(t)|
te(1,14n]

+ sup (lnt)2+”_"‘\HD¥+Ay(t) —H 1L Ax(t)] <,
te(1,1+n]

which implies that Ay € Bay,, C V, on account of the arbitrariness of y, we have
A(U) C V and A is continuous at x.

Finally, we will show that A(Q) is relatively compact in X. Due to Theorem 5, what
we need to do is to prove that A(Q)) satisfies those three conditions (7)-(iii) of the theorem.
Since A(Q}) € O C X, all the functions in A(Q)) are controlled by ¢(t), then A(Q) is
pointwise bounded on J. The next task is to show that A(Q)) satisfies the condition (ii).
Let t; € | be arbitrarily chosen, then choose n; € N and a real number 4; such that
1<a; <ty <14 mnq.Set

Mnlzmax{ sup (lnt)Zf”‘(p(t), sup (lnt)‘slp(t)(lnt)zf”‘g(t),
te(1,14n) te(1,14nq]

sup (Int)7y(t)(Int)>HF-« HDﬂ_C(t), sup (Int) Cw(t)(Int)> V=2 HDY &(t) }
tG(l,lJrl’ll] t€(1,1+n1]

For any z € A(Q), there exists y € Q) such that z(t) = Ay(t). For any t1,t, € [a1,1+ nq]
with t; < tp, one has

|2(t2) = z(h)] = |Ay(t2) — Ay(t1)]

__%(Zg’(hqt ) (hltl)“1’_%4F(L%1J1)’(h1t2> ~(Inf)* 2’
ds

ty a—1
sl () Aoy D) Dty
f -1 s
= [ (0 2) fsve) DLy DYy S

S

<ILJ(CO|) | In f) — In t1|(x_1 + 1_,(‘|XX1_|1>‘(11'1 tz)(x—Z — (11’1 tl)a_Z‘
1 t ¢ a—1 ¢ a—1 J
trwh|(n%) - <1“ sl) DMLy DL ye)|T @
1 ty ¢ a—1 ) d

For convenience, the latter two integrals (41) and (42) are estimated separately.

1 of foy a—1 a1
Ly )
<rglmtz = [ (006 96 167D, 6) + 0(6) DY 5(5)) %
(In(1+n))*7" | (In(l4m))* "
a—1 x—0—1

N (In(1 4+ n7))* P~ (In(1 + nyq))*vHe-l
a—p—v—1 a—v+o—1 ’

ds
s

F(s,y(s), DY, y(s), M DY y(s))| =

i |lnt2 — 11’1t1|a71 |:

M
~I(a)
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1 ta £\ 471 s
iy ) (n2) [ D) P oty |5
(In(14 1))~ /tz a2 €—2-5 a2
S v
= T(a) My, | [(lns) + (Ins) + (Ins)
+(lns)“_V—2+Q] dss
(In(1 +nq))* ! |Inty —Int ¥~ |Inty —Inty 071
<
N ) B e e sy
lInt, —Int1|* P71 |Inty — Inty [r-vHe-t
x—p—y—-1 a—v+o—1

Synthesizing the above inequalities and substituting them into (41) and (42), we further
obtain

2(t2) —z(t1)] = |Ay(t2) — Ay(t1)
|xo]

<71t—lt“71&1ta72_1ta,2
_F(DC)|n2 nl| +1_.([x_1)‘(1'12) (nl) ‘
My, 1 [(n(1+n1)* T (In(1+nq))* 0!
Inty —Intq|*
+I"(“)|n2 nl‘ |: a—1 T a—0—1
(In(1 4+ nl))“—5—7—1 (In(1+ nl))a—v+g—1 w)
a—p—y-1 x—v+o—1
(11‘1(1 + 111))"‘—1 M | Int, —Inty |1x—1 N | Int, —Int |1x—(5—1
F(“) m o —1 x—0—1
[Int; —Int |“*.B*7*1 |Int, —In t1|a7v+971
a—p—r-1 x—v+o—1
Let t; — t1, by (43), it follows that |z(t;) — z(#1)| — 0. In the same way, we have
|HD§+Z(t2) - HDf+Z(tl)| — 0, tp = 1t1. (44)

Asregards MDY z(t;) — DY z(t1)|, we first make the following estimates.

e ()

Sr(i\filv) /1f1 (m 12)"‘*1/71 B (1ntsl)"‘V1’ [(lns)oﬁz + (lns)"‘*zf‘s

S
+(Ins) P2 4 (lns)“*’/*“@} %
M, ) N e N
<71 x—2 a—2—6 a—p—2—vy K—v—2+0

[(in %)_ ~ ()" — (In)* )],

1 tz tz a—v—1 . ﬁ . ) ds

v, (1“5) £ (s, 9(6). DY y()," DYy y(s))|
My

“T(a—v+1)

t a—v
+ (lnal)"‘_"_HQ} (ln t2> .

1

[#(s,y(5).7 D, ()" DY, y(s))| 2

S

[(inan)*=2+ (Inay)* 270 + (inay )*#=27

Combining the above conclusions, we infer
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7Dy, 2(t>) — DY z(t1))|
sr(lﬁ'w\(ln t)* "1 — (In tl)"‘_"_l‘ + W‘(h‘ £)* "2 — (In tl)a—v—2’
e ()T = ()T w0, B0 Do) |
e (0 2) syt D i) D e |
Sr(lﬁ' m ‘(hl £)*" 1~ (In tl)""”’l‘ + W‘(ln £)* V"2 _ (In tl)“*"*zl (45)
+ F(“MM [(mal)H +(Inay)* 270 4 (Inay o2

+ (1na1)“*’f*2+@} [(m iz)H ~ ((Int)* " — (In tl)””’)}

F—

+ (Inap)*

Tla—v+1)
t &a—v
P27 4 (Inay )"V =2+) (ln f) =0 o
1

f

[(Ina)* 2 + (Ina; )x=2-9

Whence, by virtue of (43)-(45), the condition (if) is satisfied.

Now let us verify that condition (iif) is also true. Note the fact hrln Int = 0, combining
t=1+

this limit with (27), we conclude that for any € > 0, there exists §; > 0 such that for all
t € (1,14 61) one has

|xo] np< £
min{T(a), [(a —B)} ™ <2

and
nt)2—a gt a—1 S
L= () (00 + 926 + 99" DL (0) + 0(s) DY EEN T < 5,
np2HB—a ot a—p—1
RO [ (D) 0+ 96126 + 160728, 69+ (o) DL E6)E < &,
ds
5

I(a—B)

nt)2tv—e a—v—1
O () 06+ 906)206) +0(6)*DE(s) + (9 DE.(5)

For any y € (), by (27) and Hypothesis 2, we infer that
X1

X
lim (Int)?>~*Ay(t) = I’(Tl—l) tl_l}IE_(lnt)erﬁ ”‘HD/5 LAy(t) = Ta—p—1)

t—1+
2+v—a Hpyv *1
lim (Int) Dy, Ay(t) = Ta—v=1)"

t—1+

Consequently, forany y € Q,t € (1,1 + 1), we have

(e~ Ay(e) ~ lim (Int)2* Ay (o)

|0 (Ing)2e ot/ ! 8
R (ms) (q»<s>+¢<s><:<s> 0(s)"Df, 509
+ w(s)HDm(s))% —to=

(In )= DL, Ay(r) — lim (ine)*#~* "DY, Ay (1)
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nt)? B—a ot x—p—1
<l e S () (o9 porete)
ds

+1(9)"DF,E(s) + w(s) DY, 8(s) ) T <o,
and

(int)*=* DY, Ay(e) — lim (Int)>' HDhAy(t)’

X nt)2tv—a a—v—1
STt Ty f () (i
ds

+1(5)1D, 8(5) + w(5)1DY,5(5) ) 2

<e.

When B = a — 1, the continuity and compactness of the operator A are obtained in the
same way, omitted here.

To sum up, A : O — Q is continuous and A(Q) is relatively compact in X. According
to Schauder’s fixed point theorem, A has at least one fixed point in (), then the initial value
problem (4) has at least one solution. [

The subsequent example will serve to further substantiate the practicality and validity
of Theorem 8.

Example 1. Consider the following initial value problem of the fractional differential equation:

D] (1) = £t u(0) DY, ult) P D (),
HpD> u(1) =1, o)

where f(t,x,y,z) = i(14—%) — 5 (Int)"3 (1+%) + ( L, +t2>|x|%ln(1+
I( £)10
2
5

jx[2) + 0 |y 3 (1 +
(Int)10
(1+2),9(t) = —5 +2,5(t) = 2V o(t) = (lnt)%<1+%>,andoc =9p=1v=

%,(5 = %,7 = %,Q = %,xo =1,x1 = =1, 9 = 1,41 = 2, then all the parameters a, B, v
and the functions ¢, P, n, w satisfy Hypothesis 1 and min{2a —v — 6,20 —v - — (0 < B <
a—1),20 —2v + 0} > 2. Moreover, |f(t,x,y,z)| < @(t) + ¢(t)|x| +n(t)|y| + w(t)(|z —
X109y 1 ()] + m18a_v_1(t)), (t,x,y,2) € ] x R3, then the hypothesis Hypothesis 2 holds.
Theorem 8 guarantees that the initial value problem (46) has at least one solution u € X.

5. Conclusions

This study investigates the existence of solutions to the initial value problem associated
with a Hadamard-type fractional order differential equation on an infinite interval. The
equation’s nonlinear term incorporates lower-order derivatives of the unknown functions.
Initially, a weak singular inequality for Hadamard fractional integrals with a doubly singu-
lar kernel is derived, and subsequently applied to demonstrate the existence of a unique
solution to the integral equation corresponding to the original initial value problem. Rather
than employing the traditional approach of establishing global solutions for differential
equations on infinite intervals, a fixed point theorem on a metrizable complete locally
convex space is utilized to establish the existence of at least one solution to the initial
value problem.
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