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Abstract: In this article, we consider the following fractional (p, q)-Laplacian problem (−∆)s1
p u +

(−∆)s2
q u + V(x)(|u|p−2u + |u|q−2u) = f (u) + λ|u|r−2u, where x ∈ RN , (−∆)s1

p is the fractional p-

Laplacian operator ((−∆)s2
q is similar), 0 < s1 < s2 < 1 < p < q < N

s2
, q∗s2

=
Nq

N−s2q , r ≥ q∗s2
, f is a C1

real function and V is a coercive function. By using variational methods, we prove that the above
problem admits a sign-changing solution if λ > 0 is small.
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1. Introduction

For the fractional (p, q)-Laplacian problem

(−∆)s1
p u + (−∆)s2

q u + V(x)(|u|p−2u + |u|q−2u) = f (u) + λ|u|r−2u, (1)

we will prove it admits a sign-changing solution, where x ∈ RN , 0 < s1 < s2 < 1 < p <

q < N
s2

, q∗s2
= Nq

N−s2q , r ≥ q∗s2
, V : RN → R is a positive continuous function and f : R → R

is a continuous real function.

1.1. Physical Background

The definition of the fractional p-Laplacian can be seen in [1]. For the physical
background, we refer the reader to [2–7]. These papers tell us that the fractional p-Laplacian
can describe financial markets, optimization, phase transformation, semi-permeable film,
anomalous diffusion and minimal surface problems. Problem (1) models two different
materials and it is called the double-phase equation (see e.g., [8]).

1.2. Related Works and Our Main Results

Recently, many authors have been concerned with the fractional (p, q)-Laplacian
equations. For the critical and supercritical cases, the existence of multiple solutions is
obtained in [8]. In the meantime, for the problem

(−∆)s
pu + (−∆)s

qu + V(x)(|u|p−2u + |u|q−2u) = K(x) f (u), x ∈ RN , (2)

where s ∈ (0, 1), 1 < p < q < N
s , V : RN → R, Isernian [9] showed that it admits a positive

ground state solution. In 2022, the existence of the least energy sign-changing solution
of problem (2) was given by Cheng et al. in [10]. We also quote the papers [11–13] for
the p-Laplacian or fractional p-Laplacian in a bounded domain. For other results, please
see [1,8,14–20] and the references therein.

The main goal of the present paper is to investigate the problem in (1). We assume that

(V) V ∈ C(RN ,R), 0 < V0 = inf
x∈RN

V(x) and lim
|x|→+∞

V(x) = +∞, where V0 > 0 is

a constant.
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( f1) f ∈ C1(R,R) and lim
|t|→0

f (t)
|t|p−1 = 0.

( f2) there is σ ∈ (p, q∗s2
), C > 0 such that | f (t)| ≤ C(|t|p−1 + |t|σ−1).

( f3) there exists θ ∈ (q, q∗s2
) such that 0 < θF(t) ≤ f (t)t for all |t| > 0, where F(t) =∫ t

0 f (s)ds.

( f4) the map t 7→ f (t)
|t|q−1 is strictly increasing for all |t| > 0.

Theorem 1. Let 0 < s1 < s2 < 1 < p < q < N
s2

, q∗s2
= Nq

N−s2q , r ≥ q∗s2
, (V) and ( f1)− ( f4)

hold. Then there is λ0 > 0 such that Problem (1) possesses one sign-changing solution w0 when
λ ∈ (0, λ0).

Remark 1. r ≥ q∗s2
is called critical or supercritical. We do not confirm that w0 is a least energy

sign-changing solution.

1.3. Our Motivations and Novelties

Like [21], a natural question for us is

For the (p, q)-Laplacian problem (1), does there exist a sign-changing solution?

Our motivation in this paper is to give this question an affirmative answer. It is
different from [22,23] since (10), (11) and (15) are new and crucial.

1.4. Methods

We summarize our methods here. We adopt the idea from [22] or [24] to cut off the
functional (see (4)). Then we shall prove (6) admits a minimizer w0. Furthermore, we need
to prove that the minimizer w0 is a critical point of Iλ,K (see (5)). Finally, we borrow the
idea from [22] to make a L∞-estimation such that ∥w0∥L∞(RN) ≤ K, which implies that we
do not make any truncations.

1.5. Organization

This paper is organized as follows. Section 2 provides some preliminaries. Section 3
is divided into two parts, which will prove Theorem 1. The last Section is the conclusions
and our future direction. Throughout this paper, we use the standard notations.

• C or Ci (i = 1, 2, ...) denote some positive constants (possibly different from line to
line) and C(·) denotes some positive constant only dependent on ·.

• ∥ · ∥Ll (1 < l < ∞) is the standard norm in the usual Lebesgue space Ll(RN).
• For a function u(x), u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0}. Clearly, u =

u+ + u−.
• R+ := [0,+∞).

2. Preliminary Results

From now on, we always assume that (V) and ( f1) − ( f4) hold unless a special
statement is made. We continue to use the notations and work space Ws,p(RN) as in [8].
Since the potential V is coercive, we introduce the subspace

E =

{
u ∈ Ws1,p(RN)

⋂
Ws2,q(RN) :

∫
RN

V(x)(|u|p + |u|q)dx < ∞
}

equipped with the following norm ∥u∥ = ∥u∥1 + ∥u∥2, where

∥u∥1 =

(
[u]ps1,p +

∫
RN

V(x)|u|pdx
) 1

p
, ∥u∥2 =

(
[u]qs2,q +

∫
RN

V(x)|u|qdx
) 1

q
.
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For [·]s1,p and [·]s2,q, see [8]. Formally, the corresponding energy functional of (1) is

I(u) =
1
p
∥u∥p

1 +
1
q
∥u∥q

2 −
∫
RN

F(u)dx − λ

r

∫
RN

|u|rdx, u ∈ E. (3)

It is well-known that the functional I is not well-defined on E. In order to overcome
this difficulty, similar to [22],

hλ,K(t) :=

{
f (t) + λ|t|r−2t, if |t| ≤ K,
f (t) + λKr−σ|t|σ−2t, if |t| > K,

(4)

where K > 0, σ ∈ (θ, q∗s2
).

Thus, it holds that

(h1) lim
|t|→0

hλ,K(t)
|t|p−1 = 0, and for any ε > 0, there exists a positive constant C(ε) > 0 such that

|hλ,K(t)| ≤ ε|t|p−1 + (1 + λKr−σ)C(ε)|t|σ−1 , ∀ t ∈ R.

(h2) 0 < θHλ,K(t) ≤ hλ,K(t)t ∀|t| > 0, and hλ,K(t)t − qHλ,K(t) is increasing with respect
to t, for all t > 0 where Hλ,K(t) =

∫ t
0 hλ,K(s)ds.

(h3) the map t 7→ hλ,K(t)
|t|q−1 is strictly increasing for all |t| > 0.

For the auxiliary functional

Iλ,K(u) =
1
p
∥u∥p

1 +
1
q
∥u∥q

2 −
∫
RN

Hλ,K(u)dx, (5)

(h1) implies that Iλ,K ∈ C1(E,R). We want to prove that

mλ,K := inf
u∈Mλ,K

Iλ,K(u) (6)

admits a minimizer, where the corresponding Nehari manifold Mλ,K is given by

Mλ,K = {u ∈ E : u± ̸= 0, ⟨I′λ,K(u), u±⟩ = 0}. (7)

3. Proof of the Main Results
3.1. Some Lemmas

To begin with, we give several lemmas that will be used in the sequel.

Lemma 1. For any u ∈ E with u± ̸= 0, there is a unique pair (su, tu) of positive numbers such
that suu+ + tuu− ∈ Mλ,K. Moreover,

Iλ,K(suu+ + tuu−) = max
(s,t)∈R+×R+

Iλ,K(su+ + tu−).

Proof. The proof is standard (see e.g., [21]). For u ∈ E with u± ̸= 0, we can deduce from
(h1) and (h2) that there exist C1(λ, K), C2(λ, K) > 0 such that

Hλ,K(u) ≥ C1(λ, K)|u|θ − C2(λ, K)|u|p. (8)
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Let s, t ≥ 0, ϕλ,K(s, t) := Iλ,K(su+ + tu−). One has

ϕλ,K(s, t)

≤ 1
p
∥su+ + tu−∥p

1 +
1
q
∥su+ + tu−∥q

2

+ C2(λ, K)sp∥u+∥Lp + C2(λ, K)tp∥u−∥Lp

− C1(λ, K)sθ∥u+∥Lθ − C1(λ, K)tθ∥u−∥Lθ .

(9)

Denote (RN)+ := {x ∈ RN : u(x) ≥ 0} and (RN)− := {x ∈ RN : u(x) < 0}. It
holds that

∥su+ + tu−∥p
1

=sp
∫
(RN)

+ dy
∫
(RN)

+ dx
|u+(x)− u+(y)|p

|x − y|N+ps1

+
∫
(RN)

− dy
∫
(RN)

+ dx
|su+(x)− tu−(y)|p

|x − y|N+ps1

+
∫
(RN)

+ dy
∫
(RN)

− dx
|tu−(x)− su+(y)|p

|x − y|N+ps1

+ tp
∫
(RN)

− dy
∫
(RN)

− dx
|u−(x)− u−(y)|p

|x − y|N+ps1

+ sp
∫
RN

V(x)
∣∣u+

∣∣pdx + tp
∫
RN

V(x)
∣∣u−∣∣pdx.

(10)

Obviously,

∫
(RN)

− dy
∫
(RN)

+ dx
|su+(x)− tu−(y)|p

|x − y|N+ps1

≤max{|s|p, |t|p}
∫
(RN)

− dy
∫
(RN)

+ dx
|u+(x)− u−(y)|p

|x − y|N+ps1
.

(11)

The result also holds for the third integral in (10). We can estimate the term ∥su+ +
tu−∥p

2 similarly. Thus, we obtain

ϕλ,K(s, t) → −∞ as |(s, t)| → +∞. (12)

Note that ϕλ,K(0, 0) = 0. The continuity of ϕλ,K shows that it admits a global maximum
point (su, tu) ∈ R+ ×R+.

Next, similar to ([21], Lemma 2.3), we can prove that the maximum point cannot be
achieved on the boundary of (0,+∞)× (0,+∞).

The remaining part sets out to prove the uniqueness. We divide it into two cases. Case
1: For u ∈ Mλ,K. If there exists a pair s̄ > 0, t̄ > 0 such that s̄u+ + t̄u− ∈ Mλ,K. We shall
discuss the case 0 < t̄ ≤ s̄. Clearly, ∫

RN
hλ,K(s̄u+)s̄u+dx

≤s̄p∥u+∥p
1 + s̄q∥u+∥q

2
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+ s̄p
∫
(RN)−

∫
(RN)+

|u+(x)− u−(y)|p−1u+(x)− |u+(x)|p
|x − y|N+s1 p dxdy

+ s̄p
∫
(RN)+

∫
(RN)−

|u−(x)− u+(y)|p−1u+(y)− |u+(y)|p
|x − y|N+s1 p dxdy

+ s̄q
∫
(RN)−

∫
(RN)+

|u+(x)− u−(y)|q−1u+(x)− |u+(x)|q
|x − y|N+s2q dxdy

+ s̄q
∫
(RN)+

∫
(RN)−

|u−(x)− u+(y)|q−1u+(y)− |u+(y)|q
|x − y|N+s2q dxdy

:= s̄p∥u+∥p
1 + s̄q∥u+∥q

2 + s̄p A1 + s̄p A2 + s̄q A3 + s̄q A4.

u ∈ Mλ,K gives∫
RN

hλ,K(u+)u+dx = ∥u+∥p
1 + ∥u+∥q

2 + A1 + A2 + A3 + A4. (13)

If s̄ > 1, in view of (h3), we obtain

0 <
∫
RN

[
hλ,K(s̄u+)

(s̄u+)q−1 − hλ,K(u+)

u+q−1

](
u+

)qdx

≤(s̄p−q − 1)∥u+∥p
1 + (s̄p−q − 1)A1 + (s̄p−q − 1)A2

<0.

(14)

This is a contradiction. Similarly, we can have t̄ ≥ 1. Therefore, s̄ = t̄ = 1. Case 2: For
u /∈ Mλ,K. Using the method in ([25], page 90), the desired conclusion is obtained.

Lemma 2. There exists β > 0 such that ∥u±∥ ≥ β for all u ∈ Mλ,K.

Proof. For u ∈ Mλ,K, we only prove the result for u+. It is easy to check that

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(u+(x)− u+(y))
|x − y|N+ps1

dxdy

≥
∫
RN

∫
RN

|u+(x)− u+(y)|p

|x − y|N+ps1
dxdy.

(15)

Combining with (h1), it is shown that

∥u+∥p
1 + ∥u+∥q

2 ≤ ε
∫
RN

|u+|pdx + (1 + λKr−σ)C(ε)
∫
RN

|u+|σdx. (16)

Choosing ε = V0
2 , we obtain

1
2
∥u+∥p

1 + ∥u+∥q
2 ≤ C∥u+∥σ, (17)

which implies the desired conclusion.

Lemma 3. mλ,K > 0.
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Proof. For u ∈ Mλ,K, with (h2), (10), (15) in hand, we have

Iλ,K(u) =Iλ,K(u)−
1
θ
⟨I′λ,K(u), u+⟩ − 1

θ
⟨I′λ,K(u), u−⟩

≥
(

1
p
− 1

θ

)
∥u+∥p

1 +

(
1
q
− 1

θ

)
∥u+∥q

2

+

(
1
p
− 1

θ

)
∥u−∥p

1 +

(
1
q
− 1

θ

)
∥u−∥q

2.

(18)

Jointly with Lemma 2, we derive mλ,K > 0.

Lemma 4. mλ,K is achieved.

Proof. Let {un} be a minimization sequence. Since θ > q > p, similar to (18), we obtain

mλ,K + on(1) ≥
(

1
p
− 1

θ

)
∥u+

n ∥
p
1 +

(
1
q
− 1

θ

)
∥u+

n ∥
q
2

+

(
1
p
− 1

θ

)
∥u−

n ∥
p
1 +

(
1
q
− 1

θ

)
∥u−

n ∥
q
2.

(19)

Thus, {u±
n } is bounded in E. Using ([26], Lemma 2.5), up to a subsequence, there

exists a u0 ∈ E satisfying u±
0 ̸= 0 and

lim
n→∞

∫
RN

hλ,K(u±
n )u

±
n dx =

∫
RN

hλ,K(u±
0 )u

±
0 ddx. (20)

Here, we only prove u±
0 ̸= 0. If not, in consideration of (10), we deduce that

0 = ⟨I′λ,K(un), u±
n ⟩ ≥

1
p
∥u±

n ∥
p
1 +

1
q
∥u±

n ∥
q
2 + on(1). (21)

This is in contradiction with Lemma 2. Based on Lemma 1, there exist s0, t0 > 0 such
that 〈

I′λ,K(s0u0
+ + t0u0

−), s0u0
+
〉
=

〈
I′λ,K(s0u0

+ + t0u0
−), t0u0

−〉 = 0. (22)

Obviously, similar to (10), un ∈ Mλ,K shows that ⟨I′λ,K(u0), u+
0 ⟩ ≤ 0. Similarly,

⟨I′λ,K(u0), u−
0 ⟩ ≤ 0. In the spirit of ([27], Lemma 3.2), we have 0 < s0, t0 ≤ 1. Using (10)

again, we find that
∥s0u0

+ + t0u0
−∥p

1 ≤ ∥u0
+ + u0

−∥p
1 . (23)

Taking into account (h2), we have

mλ,K

≤Iλ,K
(
s0u0

+ + t0u0
−)− 1

q
〈

I′
(
s0u0

+ + t0u0
−),

(
s0u0

+ + t0u0
−)〉

≤ lim inf
n→∞

(
Iλ,K(un)−

1
q
〈

I′λ,K(un), un
〉)

= lim
n→∞

Iλ,K(un) = mλ,K.

(24)

It indicates that s0u0
+ + t0u0

− is the minimizer.

3.2. Proof of Theorem 1

We are devoted to proving Theorem 1 in this section. From Lemmas 1–4, we find
that (6) possesses a minimizer w0 := s0u0

+ + t0u0
−. There are two methods to ensure that

the minimizer w0 is a critical point of Iλ,K. One method can be seen in ([21], Section 3).
The other method can be used as ([28], lemma 3.6). Using a standard Moser iteration (see
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e.g., [22] or [23]), we can draw the conclusion that λ0 > 0 such that ∥w0∥L∞(RN) ≤ K when
λ ∈ (0, λ0). Thus, w0 is a sign-changing solution of the initial problem (1), which means
that in (4), we do not make any truncations.

4. Conclusions and Future Studies

With the above analysis made, the following conclusions can be drawn. Under the
assumptions of Theorem 1, problem (1) admits a sign-changing solution. As mentioned in
Remark 1, the sign-changing solution w0 does not necessarily mean that it is a least energy
sign-changing solution. Our future work will study the ground state or least energy sign-
changing solution to (1). Maybe it is an open problem since it appears as the supercritical
term |u|r−2u.
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