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Abstract: Roller bearing degradation features fractal characteristics such as self-similarity and long-
range dependence (LRD). However, the existing remaining useful life (RUL) prediction models are
memoryless or short-range dependent. To this end, we propose a RUL prediction model based on
fractional Brownian motion (FBM). Bearing faults can happen in different places, and thus their degra-
dation features are difficult to extract accurately. Through variational mode decomposition (VMD),
the original degradation feature is decomposed into several components of different frequencies.
The monotonicity, robustness and trends of the different components are calculated. The frequency
component with the best metric values is selected as the training data. In this way, the performance
of the prediction model is hugely improved. The unknown parameters in the degradation model
are estimated by the maximum likelihood algorithm. The Monte Carlo method is applied to predict
the RUL. A case study of a bearing is presented and the prediction performance is evaluated using
multiple indicators.

Keywords: remaining useful life; roller bearings; self-similar; long-range dependence; fractional
Brownian motion; variational mode decomposition; degradation component selection

1. Introduction

The prediction of the remaining useful life (RUL) of roller bearings in machinery has
recently garnered interest [1] due to its significance in both mechanical engineering and the
development of sophisticated mathematical models. RUL is the time range between the
current time of perfect functioning and the failure [2] expected of all machineries due to their
intensive usage and consumption. The accurate RUL prediction of roller bearings can be
used to plan and forecast the repairment and maintenance of many industrial machineries,
like, e.g., wind turbines, helicopters and all vehicle engines [3]. However, degradation
uncertainty modelling remains a bottleneck for the improvement of the prediction accuracy
of RUL, which cannot be addressed by current deep learning approaches [4].

Due to the randomness of the degradation process [5], degradation models based on
stochastic processes are becoming more and more popular and preferred by researchers [6].
These models efficiently characterize the randomness of degradation, by, e.g., the Wiener
process (Brownian motion) [7–9], the Gamma process [10–12] and the inverse Gaussian pro-
cess [13,14]. Li et al. [15] discussed the Wiener process model in a small sample case. Zhang
et al. [16] summarized various RUL predictions based on the Wiener process. However, the
above processes are memoryless processes. That is, their increments are independent.
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Actually, long memory effects are very common in bearing degradation, which means
the degradation states of different time points are highly correlated. This property is also
called long-range dependence (LRD). Moreover, the autocorrelation function (ACF) of the
degradation process with LRD is non-integrable [17]. In this paper, fractional Brownian
motion (FBM) [18] is proposed to deal with the long memory effects of these degradation
data.

Considered as a fractional generalization of Brownian motion, the FBM is a Gaussian
stochastic process with LRD and self-similarity properties. The Hurst index H, also known
as the self-similarity parameter [19], is used to express the self-similarity characteristics
of time series and to measure their degree of LRD. The self-similarity parameter range
is (0, 1).

In particular, if H= 1/2, the process is memoryless Brownian motion. For 0.5 < H < 1,
the process is persistent, and thus one of LRD. In such a case, the future changing trend
is the same as the current fluctuation trend. When 0 < H < 0.5, the local process is
anti-persistent.

Bearing faults can happen in the outer race and/or inner race. If the fault only happens
in the outer race, the vibration transmission path from the fault point to the sensor remains
unchanged. The amplitude of the shock response remains similar. Therefore, feature
extraction is convenient. When the fault only happens in the inner race, the transmission
path for the vibration changes periodically due to the rotation of the fault point. The shock
response amplitude is also interfered with by the rotational frequency [20]. Meanwhile, a
large amount of energy is lost during the transmission process. Therefore, feature extraction
becomes difficult. If faults happen in both areas, these two kinds of vibration signals become
mixed in their characteristics, which makes vibration analysis more difficult. In this work,
variational mode decomposition (VMD) [21] is proposed to improve the accuracy of feature
extraction in roller bearing faults.

After the vibration signal decomposition, several different degradation components
are constructed. In order to improve the proposed model, several statistical metrics are cal-
culated for the different components. The importance of the degradation components can be
visualized from their metric values. The best component will be utilized for model training.

In this paper, a novel RUL prediction model containing three different steps is pro-
posed. In the degradation feature decomposition step, the extracted feature is decomposed
into several degradation components through the VMD algorithm. In the component
selection step, different metrics are used to evaluate the different degradation components.
The best component is selected as the health indicator (HI). In the last step, the Monte
Carlo algorithm is employed to obtain the RUL prediction. FBM with self-similarity and
long-range dependence is employed to drive the degradation simulations. Based on the ob-
servation data, the unknown parameters are estimated by maximum likelihood estimation
(MLE) [22].

The remaining sections of the paper are structured as follows: in Section 2, the fractal
characteristics of the FBM are discussed. Section 3 provides the degradation modelling
method based on FBM. In Section 4, a RUL prediction framework with three different
steps is described. In Section 5, a set of actual bearing degradation data is used for RUL
prediction, and the results are evaluated. Section 6 concludes the paper.

2. Long-Range Dependence and Fractional Brownian Motion

In this section, some fundamental properties of LRD and FBM are shortly summarized,
by focusing, in particular, on the self-similarity property of FBM.

2.1. Fractional Brownian Motion

Brownian motion B(t) or the Wiener process is a stochastic process with the following
properties:

(1) Its increments B(t)− B(s), s < t are independent.
(2) Its increments B(t)− B(s), s < t follows a normal distribution with a zero mean.
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(3) The stochastic process is continuous.
(4) The initial value is 0, i.e., B(0) = 0.

To describe the fractal dimensions of some real data, Mandelbrot proposed a fractional
extension of the Weiner process, i.e., FBM [23]. For the kernel function (t− s)H−0.5 with
s ≤ t, 0 ≤ t, FBM is described as a stochastic integral driven by Brownian motion.

BH(t) =
1

Γ
(

H + 1
2

){∫ 0

−∞
[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s) +

∫ t

0
(t− s)H− 1

2 dB(s)
}

, (1)

In Figure 1, the time units represented by the X-axis are not standard time units such
as seconds and minutes. This is because our research focuses on simulating the path of
FBM, where each unit on the X-axis essentially represents a step or stage in the simulation
process. This specific time unit selection, although non-standard, is crucial for this study as
it allows us to express and analyze the temporal dynamic characteristics of FBM paths in a
more precise way.
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Figure 1. Simulated FBM signals: (a) H = 0.3, (b) H = 0.5, (c) H = 0.8.

2.2. Fractional Brownian Motion

We can see from Figure 1 that the irregular behavior of FBM in a small time inter-
val resembles the whole behavior of the FBM, such that FBM is a self-similar stochastic
process [24]. The autocorrelation function (ACF) of FBM is expressed as

E(BH(t)BH(s)) =
1
2

(
t2H + s2H − |t− s|2H

)
, (2)

Considering τ = t− s ≥ 0, we have

ACFFBM(τ) =
1
2
(t2H + s2H − τ2H), (3)

When the Hurst index is lower than 0.5, the decaying rate of the ACF is close to
exponential. In such cases, the random process is short-range dependent. Brownian motion
is a special case of FBM where the Hurst exponent is 0.5 and the increments are independent.
Only if the Hurst exponent is greater than 0.5 is FBM long-range dependent.

3. Degradation Modelling and Parameter Estimation
3.1. Stochastic Model Based on FBM

For a degradation process with independent increments, the degradation model is
represented by [25]

dx(t) = η(t; Ω)dt + σdB(t), (4)

where dx(t) is the increment of the degradation process, η(t; Ω) is the drift coefficient, Ω is
a vector with unknown parameters, and σ is a constant diffusion coefficient.



Fractal Fract. 2024, 8, 183 4 of 13

To describe a degradation process with self-similarity and LRD characteristics, we
propose that FBM replaces Brownian motion in the diffusion term. The degradation model
is rewritten as

x(t) = x0 + η(t; Ω) + σBH(t), (5)

where BH(t) is FBM.
The drift coefficient η(t; Ω) in (5) is given by aϕ(t), and ϕ(t) has three types of formu-

lations [24]:
M1 : x(t) = x0 + at + σBH(t), (6)

M2 : x(t) = x0 + atb + σBH(t), (7)

M3 : x(t) = x0 + aebt + σBH(t), (8)

where M1, M2 and M3 represent linear, power law and exponential drifts, respectively.

3.2. Parameter Estimation

Referring to (5), the degradation process is described as

x(k) = x0 + aϕ(tk) + σBH(tk), (9)

The observed data can be expressed as X = (x1, x2, . . . , xN)
T, where X0 is the initial

value. The function vector and FBM vector are denoted as ϕ = (ϕ(t1), ϕ(t2), . . . , ϕ(tN))
T

and BH = (BH(t1), BH(t2), . . . , BH(tN))
T. Equation (9) is rewritten as

X = X0 + aϕ+ σBH , (10)

X obeys X ∼ N(X0 + aϕ, σ2Q), where

Qi,j = cov
(

BH(ti), BH
(
tj
))

=
1
2

[
t2H
i + t2H

j −
∣∣ti − tj

∣∣2H
]
, (11)

Then, the density function of X is

f (X) =
(

2πσ2
)−N/2

|Q|−1/2 exp

{
− 1

2 (X− X0 − aϕ)TQ−1(X− X0 − aϕ)

σ2

}
, (12)

The log-likelihood function is obtained as follows:

`(Ω |X ) = −N
2

ln(2πσ2)− 1
2

ln|Q| − 1
2σ2 (X− X0 − aϕ)TQ−1(X− X0 − aϕ), (13)

The logarithmic likelihood function of parameter b in the drift function is represented as

`(b |X ) = −N
2
− 1

2
ln[det(2πQ)]− N

2
ln

 1
N
(X− X0)

TQ−1(X− X0)−

[
ϕTQ−1(X− X0)

]2

NϕTQ−1ϕ

, (14)

To obtain the maximum likelihood estimation (MLE) of parameters a and σ2, the
partial derivative of (21) is set to be zero, and then

â =
ϕTQ−1(X− X0)

ϕTQ−1ϕ
, (15)
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σ̂2 =
1
N

(X− X0)
TQ−1(X− X0)−

[
ϕTQ−1(X− X0)

]2

ϕTQ−1ϕ

, (16)

Due to the nonlinearity of the exponential and power law drifts, obtaining the analyti-
cal forms of b is a difficult task [26]. Thus, the fminsearch function in MATLAB, employing
the Nelder–Mead simplex algorithm, is designed to find the minimum of an unconstrained
function. This tool is instrumental in optimizing parameters or solving problems where the
objective is to minimize a specific criterion without predefined bounds [27]. The estimated
values of a and σ2 can be calculated by (15) and (16). Computing a function vector based on
such a drift function involves evaluating the drift function at various points or conditions
to generate a series of values that constitute the vector.

4. Three-Step RUL Prediction Model for Roller Bearings

In this section, we propose a RUL prediction model with three different steps: degra-
dation feature decomposition, degradation component selection and Monte Carlo RUL
prediction. A flow chart of the RUL prediction model is provided in Figure 2.
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In the degradation feature decomposition stage, the variational mode decomposition
(VMD) algorithm is proposed to separate different degradation feature components from
the vibration signal. In the degradation component selection stage, different metrics are
calculated to select the best component. The selected component will be considered the
HI, which is the training data for the degradation simulation driven by FBM. In the Monte
Carlo RUL prediction stage, multiple degradation simulations are conducted and their
mode is considered the point prediction.

4.1. Degradation Feature Decomposition

VMD is a new method of signal decomposition, proposed by Dragomiretskiy et al. [28]
in 2014. This method is to decompose the original signal into a K limited bandwidth IMFS
(intrinsic mode function). It can be described as follows:

uk(t) = Ak(t) cos(ϕ(t)), (17)
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where ωk(t) is the instantaneous phase of the k-th intrinsic mode function, Ak(t) is the
instantaneous amplitude of the k-th intrinsic mode function and y(t) is the value of the
original signal at time t, represented by the Ak(t) and ωk(t) determinants.

Each IMF is concentrated at the center frequency ωk, and the bandwidth can be
estimated by its Gaussian smoothed offset signal. Due to the sparseness of VMD, it can be
deemed a constrained variational problem, as expressed by

min
{uk}{ωk}

{
∑
k
‖∂t

[(
σ(t) +

j
πt

)
uk(t)

]
ei−jωkt‖

2

2

}
, (18)

where {uk} is the kth IMF and {ωk} is the frequency center of different components. uk
satisfies

K

∑
k=1

uk = x(t), (19)

To solve the constrained variational problem, an augmented Lagrange function is
introduced [29]. The problem can be written in the form

L({uk}, {ωk}, λ) = a∑
k
‖∂t

[(
σ(t) +

j
πt

)
uk(t)

]
ei−jωkt‖

2

2
+ ‖x(t)−∑

k
uk(t)‖

2

2

+

〈
λ(t), x(t)−∑

k
uk(t)

〉
(20)

where a is the penalty factor and λ is the Lagrange multiplier. The IMFs uk and correspond-
ing center frequencies ωk can be updated using (21) and (22):

ûn+1
k (ω) =

x(ω)−
K
∑

i=1,i<k
un+1

i (ω) +
λn(ω)

2

1 + 2α
(
ω−ωn

k
)2 , (21)

ω̂n+1
k =

∞∫
0

ω
∣∣∣un+1

k (ω)
∣∣∣2dω

∞∫
0

∣∣∣un+1
k (ω)

∣∣∣2dω

, (22)

The Lagrange multiplier λ is updated into

λ̂n+1(ω) = λn(ω) + τ

(
x(t)−

m+1

∑
k

ûn+1
k (ω)

)
, (23)

The update process is carried out repeatedly until (24) is satisfied.

∑
k
‖ûn+1

k − ûn
k ‖

2
2/‖ûn

k ‖
2
2 < ε, (24)

The convergence accuracy is typically set as 10-6.

4.2. Metric-Based Degradation Component Selection Algorithm

In order to choose a suitable component, monotonicity, robustness and trendability
are applied for this evaluation. The monotonicity metric is described as follows [30–32]:{

Mon+(X) =
No. o f d/dx>0

K−1 + No. o f d2/d2x>0
K−2

Mon−(X) =
No. o f d/dx<0

K−1 + No. o f d2/d2x<0
K−2

, (25)

where X is the HI (health indicator) sequence, K represents the number of HI values and
d/dx = xk+1 − xk and d2/d2x denote the difference and the second-order derivatives
of X, respectively. No. o f corresponds to the number of the positive and the negative
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difference. Mon+(X) and Mon−(X) represent the positive monotonicity and the negative
monotonicity, respectively. The robustness is expressed as [33]

Rob(X) =
1
K

K

∑
k=1

exp

(
−
∣∣∣∣∣ xk − xT

k
xk

∣∣∣∣∣
)

., (26)

where xk is the HI value at tk and xT
k is the mean trend value at tk, calculated by smooth

method. The trendability is denoted as [34]

Tre(X) =
K
(

∑K
k=1 xktk

)
−
(

∑K
k=1 xk

)(
∑K

k=1 tk

)
√[

K∑K
k=1 x2

k −
(

∑K
k=1 xk

)2
][

K∑K
k=1 t2

k −
(

∑K
k=1 tk

)2
] , (27)

Higher values of these metrics represent a better performance.

4.3. Monte Carlo Simulation for RUL Prediction

In general, the RUL at tk is defined as the first time when the degradation process
reaches the failure threshold ω [35]:

Lk = inf{lk > 0 : x(tk + lk) ≥ ω|x(0) = 0}, (28)

where Lk represents the RUL at the kth observed time. Because the result of the model is not
fixed; one calculation result is not necessarily correct. In order to come close to the actual
value, the Monte Carlo method is used to predict the RUL, generating a large number of
simulation paths. The mode of the Monte Carlo simulation is considered the predicted
value.

The increment at interval ∆t can be expressed as follows:

x(tk + (j + 1)∆lk) = x(tk + j∆lk) + σBH(∆lk) + a[ϕ(tk + (j + 1)∆lk)− ϕ(tk + j∆lk)] (29)

The future path after j intervals at tk is

x(tk + (j + 1)∆lk) = x(tk + j∆lk) + σBH(∆lk) + a[ϕ(tk + (j + 1)∆lk)− ϕ(tk + j∆lk)] (30)

where BH(∆lk) ∼
(

0, (∆lk)
2H
)

.
The principles of the Monte Carlo RUL prediction model are depicted in Figure 3.
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5. Case Study

In this section, a concrete test example is given to show the efficiency and reliability of
our method.

5.1. Data Description

In this section, the degradation process of a bearing data set is provided to test the
validity of our proposed theory. The data were generated by the Intelligent Maintenance
Systems (IMS) [36]. Four bearings are fixed on a shaft. The speed is constant at 2000 RPM.
A 6000 lbs radial load is applied onto the bearing and shaft. For each bearing, data set 1
has two accelerometers, and data sets 2 and 3 have one accelerometer. The installation
location is as shown in Figure 4. Each data set includes a run-to-failure experiment and its
sampling rate is 20 kHz. The whole operational life data of bearing 3-Ch5 in set No. 1 is
adopted. The first 43 files were recorded every 5 min and the remaining files were recorded
every 10 min. The recording time was from 22 October 2003 12:06:24 to 25 November 2003
23:39:56. Figure 5 shows the vibration signal.
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5.2. HI Construction of the Experimental Bearing Data

In order to extract the degradation trend, the vibration signal is decomposed into
eight degradation components by VMD [37]. These degradation components are shown in
Figure 6. Monotonicity, robustness and trendability are calculated for these eight compo-
nents and the results are shown in Table 1.
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Table 1. IMFs’ performance evaluation.

Metric IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Monotonicity 0.9702 1.0424 1.0135 1.0604 0.9955 1.0388 0.9811 1.0099
Robustness 0.9873 0.9593 0.9445 0.9584 0.9487 0.9389 0.9600 0.9093
Trendability 0.0900 0.4366 0.4056 0.4382 0.3557 0.3210 0.3727 0.3435

According to Table 1, IMF4 is selected as the training data, because it performed the
best in all three indexes [38]. The failure threshold is set as ω = 200 and the RUL prediction
starts from the 1800th time point.

5.3. RUL Prediction and Performance Evaluation

The self-similar parameter is estimated using the R/S method and its value is 0.86.
Therefore, the HI is both self-similar and LRD. Other parameters are estimated by MLE.
Through the Monte Carlo method, the probability density distribution (PDF) of the RUL
can be simulated and the selected degradation model is M2. Obviously, the degradation
process of the bearing is nonlinear and non-exponential. The utilization of M1 and M3 is
inappropriate.

Figure 7 shows the PDF prediction of the proposed model. In the early stages, the
distribution of its prediction results is scattered. As the RUL decreases, the distribution of
the prediction results becomes more concentrated.
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A Long short-term memory neural network (LSTM) model is selected for a model
comparison. Its prediction results can be found in Figure 8. The RUL prediction model
based on Brownian motion neglected the self-similarity and LRD of the degradation, which
means it has an inferior approach.
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Figure 9 shows the estimated RUL and the actual RUL for both prediction algorithms.
The exponential transformed accuracy (ETA) [39] is applied to evaluate their performance.
The formulas are expressed as

ETAi =

{
exp(− ln(0.5)Eri/5) if Eri ≤ 0
exp(ln(0.5)Eri/20) if Eri > 0

, (31)

where Eri is the percent error, defined by

Eri = 100× ActRULi − ˆRULi
ActRULi

(32)

The final score is the average of all results. A higher score represents better perfor-
mance. Furthermore, the root mean squared error (RMSE) and mean absolute percentage
error (MAPE) are also used for this evaluation and their results are shown in Table 2.

Table 2. Predictive effect evaluation.

Model ETA RMSE MAPE

M2 04713 29.8189 13.7429
M3 0.3238 52.7707 33.0301
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6. Conclusions

In this study, we have employed the self-similarity and long-range dependence char-
acteristics of Fractional Brownian Motion to model the uncertainty in bearing degradation.
The introduction of the variational mode decomposition algorithm has enabled us to suc-
cessfully separate different frequency components of the degradation, thereby enhancing
the model’s interpretability and predictive accuracy. The combination of feature decom-
position and component selection has proven effective in constructing the optimal health
indicator, accurately capturing key aspects of the bearing degradation process. Our research
not only offers a novel perspective and tool for modeling bearing degradation but also
significantly supports the reliability and safety management of mechanical systems through
its improved predictive accuracy.

Despite these advancements, the Gaussian assumption underlying the FBM model
does not always hold, suggesting that future research might need to incorporate stochastic
processes with non-Gaussian characteristics. Moreover, exploring new feature decom-
position techniques and component selection strategies will be crucial in optimizing the
model’s performance and extending its applicability across a wider range of scenarios. In
summary, our work lays a new theoretical foundation and application framework for the
development of bearing health monitoring and prediction technologies, pointing the way
forward for future research and practice.
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LRD long-range dependence
RUL remaining useful life
FBM fractional Brownian motion
VMD variational mode decomposition
ACF autocorrelation function
MLE maximum likelihood estimation
LSTM Long short-term memory neural network
HI health indicator
IMFS intrinsic mode function
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