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Abstract: This study introduces an innovative filter topology capable of providing simultane-
ous positive and negative gain outputs for one-fractional order LP, with high-pass, all-pass, and
fractional-order shelving filter responses. The circuit, utilizing multi-output second-generation
current-controlled conveyors, stands out as the first to deliver ten outputs, incorporating both integer
and fractional-order filter responses, without requiring additional components. Its current-mode
design simplifies the process, employing minimal active and grounded passive elements, making
it appropriate for low-voltage/low-power applications. The filter utilizes fifth-order Oustaloup
approximation and Foster type-I RC networks for fractional-order capacitors, providing enhanced
control over the transition slope. PSpice simulations confirmed a 1 kHz cut-off, showcasing low
power consumption, minimal noise, and a wide dynamic range, positioning the filter as suitable for
sensors, control, and acoustic applications.

Keywords: current-mode; Oustaloup approximation; foster type-I; one fractional-order filters;
fractional-order shelving filters; multi-output second-generation current-controlled conveyors
(MO-CCCII)

1. Introduction

Continuous-time analog filter design has gained widespread attention and holds
substantial significance, mainly due to its extensive range of practical applications. The
reason for this is the existence of a universal filter structure that can simultaneously provide
the outputs of low-pass (LP), high-pass (HP), and all-pass (AP) filters from a one-filter
structure. Universal filter structures, incorporating both LP and HP designs that constitute
fundamental components of high-order active filter structures, are widely recognized
for their crucial roles in an array of essential fields. These fields are biosensor systems,
electrocardiogram devices, phase-sensitive detectors, sensor-based instruments, control
systems, and data communication networks, thereby establishing universal filter structures
as key components [1,2].

Progress in analog active filter components has been remarkable, initiated by the
introduction of first-generation current conveyors (CCI) in 1968 [3], closely followed by
the emergence of second-generation current conveyors (CCII) in 1970 [4], attributed to
the pioneering work of Sedra and Smith. The development continued with the intro-
duction of third-generation current conveyors (CCIII) in 1995 [5], and shortly thereafter,
second-generation current-controlled conveyors (CCCII) were proposed to the literature by
Fabre [6]. This innovative progression has led to the adoption of numerous current-mode
(CM) and voltage-mode (VM) filter circuits, all built upon the foundations of the CCII
active filter component [7,8]. Filters are essential components in signal processing systems,
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impacting key areas like signal modulation, demodulation, amplification, and noise reduc-
tion. In contemporary applications, fractional-order calculus has gained prominence as a
favored filtering technique [9].

The establishment of fractional-order calculus occurred many years ago, but its current
prominence is attributed to its enhanced capacity for the improved design and modeling
of real-world objects, various natural phenomena, and systems [10]. It has found uses
in diverse disciplines such as control theory [11], bioengineering [12], biochemistry [13],
medicine [14], material science [15], agriculture [16], PV modeling [17], robotics [18], oscil-
lators [19], and electronic filters [2–22]. Consequently, fractional-order calculus has evolved
into a multidisciplinary pursuit, supporting various fields and establishing the foundation
for numerous innovative applications. In particular, the application of fractional-order
calculus applied to analog electronic filters has surged in popularity and established itself
as a significant research area in the literature. This arises from the fact that the frequency
responses of fractional-order filters are contingent not only on circuit components but also
on fractional-order parameters. The fractional-order parameter introduces an additional
degree of freedom, enabling precise control over stopband attenuation and the transition
slope from the passband to the stopband. As a result, fractional-order filters provide a
versatile design approach, meeting all the necessary filter specifications. To transform
analog integer-order filters into fractional-order filters, fractional-order passive components
known as fractional-order capacitors (FOCs) are required. FOCs are not yet commercially
available, but fractional-order filter approximation methods found in the existing literature
are utilized to construct them in filter circuits theoretically. To develop these approximation
methods, appropriately configured RC networks are employed in studies [21,23].

There are very few studies in the literature that involve the design of analog one-
fractional order filters using the CCII active filter component [2–20]. The first of these
studies was conducted by Radwan et al. (2008) [20]. By applying fractional-order calculus
to traditional integer-order filters, one-fractional order LP, HP, AP, and band-pass (BP) filters’
outputs were separately obtained. However, all of these filter structures are constructed
with passive elements and are VM filters. Another study conducted by Herencsar (2020) [24]
involved designing one-fractional order AP filters employing generalized first-kind five-
port current conveyors. Although the designed filters are CM filters, it was observed that
they provide only an AP filter responses. Kapoulea’s doctoral dissertation in 2022 [2]
presents the transfer functions and outputs of one-fractional order LP and HP filters,
thereby contributing to the literature in this area. However, filter outputs are theoretically
generated using only transfer functions for one frequency.

The adjustment for pitch in human speech perception, driven by its non-linear charac-
teristics, necessitates an effective solution. This requirement is effectively met by employing
shelving filters. Shelving filters are categorized into two primary groups: LP shelving filters
and HP shelving filters. LP shelving filters, in contrast to traditional LP filters, do not en-
tirely eliminate out-of-band frequencies but, instead, provide flexibility for amplification or
attenuation according to the researcher’s choice. They effectively transmit higher frequen-
cies, as well as those exceeding the predetermined cut-off frequency. HP shelving filters,
on the other hand, allow lower frequencies, including those below the predetermined
cut-off frequency, to pass through while granting the researcher the capability to amplify
or attenuate higher frequencies according to their preferences. This unique characteristic
stands out as one of the most notable advantages of shelving filters [25].

The first mention of fractional-order shelving filters was made by Fierro et al. (2019) [26].
According to this study, shelving filters were designed to provide a better listening experience
in the Equal Loudness Level Contours (ELLC) standard created by ISO226:2003 [27]. The
results of the study showed that the frequency magnitude response slope of the sound is less
than 20 dB/decade. It was decided that shelving filters should be designed as fractional-order
filters to achieve a slope of less than 20 dB/decade. This is because the frequency magnitude
response slope of fractional-order filters is 20·α dB/decade. In this context, α represents the
filter order, and it falls within the range 0 < α < 1. The study conducted by Fierro et al.
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(2019) [26] also encouraged researchers to design shelving filters as fractional-order in the
literature for a better utilization of sound frequencies.

To the best of the authors’ knowledge, the existing literature comprises only four
studies on fractional-order analog shelving filters [28,29]. The pioneering work by Kapoulea
et al. (2020) [28] introduced two fractional-order shelving filters, encompassing LP and
HP designs. Employing Operational Transconductance Amplifiers (OTA) as active filter
elements, these VM filters have an electronic tunability property through the CFE method.
However, the circuits included a notable number of active filter elements. Subsequent
research by Kapoulea et al. in 2021 [30] extended this exploration, presenting two distinct
filter design approaches. The first focused on VM, LP, and HP fractional-order shelving
filters, utilizing the classic fractional-order bilinear transfer function. By contrast, the
second approach aimed to create VM power-law shelving filters by transforming the
integer-order transfer function into its corresponding power-law representation. Both
designs utilized a single second-generation voltage conveyor (VCII) as the active filter
element, approximated through the Oustaloup approximation tool and designed with a
Foster type-I RC network. A comparative analysis between classic fractional-order designs
and power-law designs revealed that the latter exhibited a reduction in the number of
passive elements, thanks to their inherent fractional-order characteristics. When configured
in a CM filter, power-law designs might require fewer passive elements, offering a simpler
circuit architecture. Consequently, the adoption of power law designs became unnecessary,
enabling the creation of circuits with fewer passive components.

A subsequent exploration of this subject was conducted by Pagidas et al. in 2022 [29].
In their research, fractional-order LP and HP shelving filters were designed, with oper-
ational amplifiers (op-amp) serving as the primary active filter components. The study
introduced a generalized framework for the development of fractional-order shelving filters.
In this innovative approach, the filters acquired fractional-order attributes by employing
the Oustaloup approximation technique, ensuring that the transfer functions’ ratio involved
two impedances. This strategic approach aimed to streamline the circuit complexity, as
discussed in a previous study by Kapoulea et al. (2021) [30]. Additionally, the fractional-
order shelving filters designed in Pagidas et al.’s study required a minimum number of
passive elements due to their ratio-based fractional-order nature. However, when shelving
filters are designed as CM systems, they inherently include a minimum number of passive
elements. Consequently, shelving filters can be engineered with fewer passive components
by means of direct and conventional fractional-order computations.

The most recent contribution to this topic was presented by Sen et al. (2023) [25].
CM, LP, and HP fractional-order shelving filters were designed using a modified current
feedback operational amplifier (MCFOA) as an active filter element. The filters in Sen
et al.’s study were designed as CM filters, containing a minimum number of grounded
passive elements, resulting in a simple design procedure and minimal circuit complexity.
The presented shelving filter circuits were made fractional-order using the Oustaloup
approximation tool and a properly configured Foster type-I RC network. Additionally, Sen
et al.’s study was the first to use the MCFOA active filter element to design fractional-order
shelving filters. Two input signals were applied to each of the created filters. All of the
fractional-order analog shelving filters mentioned in this literature are summarized in
Table 1.

This study is structured into two primary sections: CM one-fractional order filters,
and fractional-order shelving filters. Notably, these filters were not developed as separate
filter structures; rather, they are integrated into a single filter framework. In practical terms,
a single input signal is applied to the designed filter circuit, resulting in the generation
of multiple-output signals (ten outputs). The filter circuit simultaneously produces one-
fractional order LP, HP, and AP filter outputs with both positive and negative gains,
in addition to fractional-order shelving filter outputs with both positive and negative
gains. Despite the generation of numerous output signals, the presented filter circuit
maintains a straightforward design. The filter’s circuitry exclusively utilizes three multi-
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output second-generation current-controlled conveyors (MO-CCCII) and grounded passive
components. To incorporate fractional-order features into the designed filter, the Oustaloup
approximation method was chosen for its remarkable capacity to mold filter response
attributes. The Oustaloup approximation tool was constructed through appropriately
configured RC networks. In this study, the Foster type-I RC network was employed due
to its inclusion of a minimal number of capacitors and resistors, as well as its reasonable
sensitivity despite containing passive elements.

Table 1. Comparison of the characteristics of analog fractional-order shelving filter circuits from
the literature.

Ref. [22] [25] [26] [24] Proposed

Active Block OTA VCII OP-AMP MCFOA MO-CCCII

Configuration MOS
Transistors

MOS
Transistors NA BJT BJT

Mode of
Operation VM VM VM CM CM

Types of
Function

Fractioanl-Order
+LP, +HP

Shelving Filters

Fractional-Order
+LP, +HP

Shelving Filters
Power-Law
+LP, +HP

Shelving Filters

Fractional-Order
+LP, +HP

Shelving Filters

Fractional-Order
+LP, +HP

Shelving Filter

First-Order
+LP, +HP, +AP

One-Fractional Order
+LP, +HP, +AP

Fractional-Order
+LP, +HP

Shelving Filters

Capacitor
(Grounded
Capacitor)

+4(4)
+4(4)

+1(1)
+1(0)
+1(1)
+1(0)

+1(0)
+1(0)

+1(1)
+1(1) +2(0)

Resistor
(Grounded

Resistor)

+0(0)
+0(0)

+3(2)
+3(1)
+3(2)
+3(1)

+3(0)
+3(0)

+3(3)
+3(3) +4(4)

Tunability of
Cut-off

Frequency
YES NA NA YES YES

Tunability of
Gain YES NA NA YES YES

Power
Consumption NA 380.6 µW NA <1 mW <1 mW

Dynamic Range NA NA NA >60 dB >60 dB

Noise NA NA NA 842.3 pA/
√

Hz 129.4 pA/
√

Hz

THD (%) NA NA NA ≤1.5 ≤0.8

NA: not available.

In this study, the presented filter circuit was specifically designed for its outstanding
attributes, including its wide bandwidth, minimal power consumption, high linearity,
broad dynamic range, straightforward circuit structure, and adaptability for integrated
design, rendering it well-suited for applications in CM filters. Due to its compatibility with
CM filters, the CCCII active filter building block was preferred. The CCCII element demon-
strated better filter characteristics, including linearity, signal bandwidth, and dynamic
range, in comparison to op-amp-based filters [22]. To further enhance these characteristics,
the CCCII element was implemented using bipolar junction transistors (BJTs), as they are
more suitable for CM and low-power/voltage applications [25]. Furthermore, it was noted
that adjustments to the values of passive components within the circuit could alter the cut-
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off frequency and gain of the designed filter circuit. The filter presented circuit underwent
simulation using the PSpice program to validate its behavior. The simulation outcomes
confirmed that the cut-off frequency of the designed filter circuit was measured at 1 kHz.
From this cut-off frequency, it became apparent that the outputs of the fractional-order
filter could serve in control systems and sensor applications, whereas the outputs of the
fractional-order shelving filter could be applicable in acoustic applications. The designed
filter circuit, being CM-compatible and containing a minimal number of grounded pas-
sive components, offers benefits such as fewer components, reduced space requirements,
lower costs, and lower power consumption. Consequently, it can better meet the system
requirements in the mentioned application areas. Under these conditions, the filter circuit
designed to simultaneously provide both classical and fractional-order filters with multiple
outputs (ten outputs) is, to the best of the authors’ knowledge, a first in the literature.

In the second section of the paper, the methodologies employed are discussed. First,
the block structure, definition equations, and internal circuitry of the MO-CCCII active
filter element are presented. Following this, one-fractional order filters are explained, and
towards the end of the section, fractional-order cascaded filters are detailed. The third
section provides the circuit diagram of the filter designed using the MO-CCCII active filter
element, including the transfer functions of one-fractional order filters and fractional-order
cascaded filters. In the fourth section, simulation results of the designed filter circuit are
demonstrated through PSpice program simulations. Finally, the fifth and sixth sections of
the paper address the discussions and present the conclusions of the study.

2. Methods
2.1. Multi-Output Second-Generation Current-Controlled Conveyors (MO-CCCII)

CCCII, introduced by Fabre [6], have been presented in the literature as a valuable tool
for enhancing the design of analog filters. The CCCII functions as an active filter element,
providing electronic tunability and minimizing the number of passive components in circuit
design by utilizing the internal resistance (Rx) in its X-terminal [10,31]. In this study, the ±Z-
terminal of the CCCII was duplicated using current mirrors, resulting in the generation of
multi-output (seven outputs) second-generation current-controlled conveyors (MO-CCCII).
The duplication of the ±Z-terminals led to a reduction in the number of current conveyors
in the designed filter circuit. The schematic symbol of the MO-CCCII is illustrated in
Figure 1, and the current–voltage relationships between its independent terminals are
provided in Equation (1).

Iy = 0
Iz = ±λIx
Vx = βVy + Rx Ix

(1)

Here, ±λ symbolizes the frequency-dependent non-ideal current gain, while β denotes the
voltage gain. The internal resistance, denoted by Rx, is expressed as follows:

Rx =
VT
2I0

(2)
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In the given equation, VT is the thermal voltage, and I0 is the bias current of the
MO-CCCII. In our study, the ideal state of the MO-CCCII (where the non-ideal current λ
and voltage gains β are considered as one, and the internal resistance is assumed to be zero)
was considered to obtain the transfer functions of the filter circuit (see Sections 3 and 4).
The active filter building block of the MO-CCCII was constructed based on bipolar junction
transistors (BJTs) to enhance its performance in current-mode operations. Therefore, the
MO-CCCII is ideal for CM applications and low-voltage/low-power system implementa-
tions. The internal structure of CCCII is shown in Figure 2.
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2.2. One-Fractional Order Filters

Traditional continuous-time filters have integer orders. However, recently, fractional-
order calculus has been applied to these filters [2–22]. The use of fractional-order calculus
provides an additional degree of freedom to the filter, allowing for sharper control of the
transition slope from the passband to the stopband. This extra degree of freedom not only
offers a significant advantage to the filter but also provides design flexibility. LP filters
represent a domain of application for fractional-order filters. Equation (3) presents the
transfer function of a one-fractional order LP filter [2].

H(s) = K· (ω0)
α

sα + (ω0)
α (3)

The α exponent in the expression 20·α dB/decade, representing the frequency magni-
tude response slope of fractional-order filters, is denoted as an exponent in Equation (3).
In both cases, α is the fractional order of the filter, and it lies in the range 0 < α < 1.
In Equation (3), K represents the constant term indicating the gain of the filter, and ω0
represents the cut-off frequency of the filter. The amplitude and phase responses of the
one-fractional order LP filter shown in Equation (3) are given in Equations (4) and (5),
respectively.

|H(ω)| = K· 1
[(

ω
ω0

)2α
+ 2

(
ω
ω0

)α
cos

(
απ
2
)
+ 1

]1/2
(4)

∠H(ω) = − tan−1




(
ω
ω0

)α
sin

(
απ
2
)

(
ω
ω0

)α
cos

(
απ
2
)
+ 1


 (5)

One-fractional order HP filters represent another domain of application for fractional-
order filters. The transfer function of a one-fractional order HP filter is given in Equation (6).
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The amplitude and phase responses of the one-fractional order HP filter shown in Equation (6)
are given in Equations (7) and (8), respectively.

H(s) = K· sα

sα + (ω0)
α (6)

|H(ω)| = K·

(
ω
ω0

)α

[(
ω
ω0

)2α
+ 2

(
ω
ω0

)α
cos

(
απ
2
)
+ 1

]1/2
(7)

∠H(ω) =
απ

2
− tan−1




(
ω
ω0

)α
sin

(
απ
2
)

(
ω
ω0

)α
cos

(
απ
2
)
+ 1


 (8)

One-fractional order AP filters represent another domain of application for fractional-
order filters. The transfer function of a one-fractional order AP filter is given in Equation (9).
The amplitude and phase responses of the fractional-order AP filter’s transfer function are
provided in Equation (10) and Equation (11), respectively.

H(s) = K· s
α − (ω0)

α

sα + (ω0)
(9)

|H(ω)| = K·

[(
ω
ω0

)2α
− 2

(
ω
ω0

)α
cos

(
απ
2
)
+ 1

]1/2

[(
ω
ω0

)2α
+ 2

(
ω
ω0

)α
cos

(
απ
2
)
+ 1

]1/2
(10)

∠H(ω) =




((
ω
ω0

)α
cos

(
απ
2
)
− α

)
+

(
j
(

ω
ω0

)α
sin

(
απ
2
))

((
ω
ω0

)α
cos

(
απ
2
)
+ α

)
+

(
j
(

ω
ω0

)α
sin

(
απ
2
))


 (11)

2.3. Fractional-Order Shelving Filters

The nonlinear nature of human auditory perception requires pitch compensation. The
best way to address this is through equalization filters. Owing to the advantages provided
by fractional-order calculus to analog filters, the design of shelving filters has also begun to
incorporate fractional-order characteristics [22–28]. The most significant advantage that
fractional-order calculus provides to equalization filters is the extra degree of freedom (α),
allowing for a better listening experience in the ELLC standard by effectively utilizing the
sound frequency [25]. Equation (12) presents the transfer function (HFO) of fractional-order
equalization filters in its most comprehensive perspective.

HFO(s) =
√

GLGH ·
(τ0s)α +

√
G√

G(τ0s)α + 1
(12)

In the transfer function, G represents the gain of fractional-order shelving filters, where
G ≡ GL/GH . Here, GL denotes the asymptotic low-frequency gain, and GH denotes the
asymptotic high-frequency gain [25,28]. If GL > GH , it behaves like a fractional-order
LP filter, and if GL < GH , it functions as a fractional-order HP filter. In the HFO transfer
function, τ0 is the time constant, and τ0 = 1/ω0 . The system’s poles and zeros are placed
around the cut-off frequency (ω0) at equal intervals (on a logarithmic scale), as shown in
Equation (13).

ωP = ω0G− 1
2α , ωZ = ω0G

1
2α (13)
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In the equation, ω0 is the cut-off frequency of the filter, and it is equal to the geometric
mean of the pole ωP and zero ωZ frequencies ( ω0 =

√
ωP·ωZ). Moreover, by keeping the

G and ω0 terms constant in the equation, it is evident that the locations of ωP and ωZ can be
adjusted based on the filter order (α). However, in integer-order filters (α = 1), they cannot
be altered. Substituting the expression given in Equation (14) into the HFO transfer function
provided in Equation (12) yields the amplitude and phase responses of the HFO transfer
function. These responses are given in Equation (15) and Equation (16), respectively.

sα = ωα·
[
cos

(απ

2

)
+ j sin

(απ

2

)]
(14)

|HFO| =
√

GLGH ·
[
(ωτ0)

2α + 2
√

G(ωτ0)
α cos

(
απ
2
)
+ G

G(ωτ0)
2α + 2

√
G(ωτ0)

α cos
(

απ
2
)
+ 1

]1/2

(15)

∠HFO(ω) = tan−1

[
(ωτ0)

α sin
(

απ
2
)

√
G + (ωτ0)

α cos
(

απ
2
)
]

− tan−1

[ √
G(ωτ0)

α sin
(

απ
2
)

1 +
√

G(ωτ0)
α cos

(
απ
2
)
] (16)

The locations of ωP and ωZ as stated in Equation (13) are determined by utilizing the
lower (ωL) and upper (ωH) cut-off frequencies. The slope of the gain during the transition
from the passband to the stopband, indicated in Equation (17), can be fine-tuned according
to the order of the shelving filter, presuming that the G and ω0 terms of the shelving filter
are predefined. The influence of the pole and zero positions on the lower and upper cut-off
frequencies is given in Equation (18).

slope =
20 log(G)

log
(

ωL
ωH

) (dB/dec) (17)

ωL,FO = ωP·
[√

1 + cos2
(απ

2

)
− cos

(απ

2

)]1/α

,

ωH,FO = ωZ·
[√

1 + cos2
(απ

2

)
+ cos

(απ

2

)]1/α
(18)

Substituting the expressions for ωP and ωZ from Equation (13) into Equation (18)
yields Equation (19). In Equation (19), it is evident that the ωL and ωH cut-off frequencies
are symmetrically positioned around the ω0 cut-off frequency. Moreover, alterations in the
filter order enable the adjustment of the locations of the ωL and ωH cut-off frequencies. The
slope is calculated as given in Equation (20).

ωL,FO = ω0G− 1
2α ·

[√
1 + cos2

(απ

2

)
− cos

(απ

2

)]1/α

,

ωH,FO = ω0G
1

2α ·
[√

1 + cos2
(απ

2

)
+ cos

(απ

2

)]1/α
(19)

slopeFO =
20α log(G)

log

√
1+cos2( απ

2 )−cos( απ
2 )√

1+cos2( απ
2 )+cos( απ

2 )
− log(G)

(dB/dec) (20)

3. Fractional-Order Filters Designed Using MO-CCCII
3.1. One-Fractional Order LP, HP, and AP Filters

Utilizing the CM MO-CCCII, a filter circuit with multiple outputs (ten outputs) was
designed, as presented in Figure 3. Applying fractional-order calculus to filter circuits,
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the capacitors within the presented filter circuit, shown in Figure 3, were converted into a
fractional-order configuration.
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The designed filter circuit outputs are categorized into two main sections. In the first
section, one-fractional order LP, HP, and AP filter outputs are obtained, featuring both
positive and negative gains. One-fractional order filters are further categorized into LP,
HP, and AP filters. Taking into account the impedance of the fractional-order capacitor,
characterized by an α degree, and incorporating the pseudo-capacitance (Cα) as defined by
Z(s) = 1/Cαsα, Equation (21) reveals the transfer function of the positive-gain fractional-
order LP filter derived from Equation (3). Additionally, Equation (22) outlines the specific
values for the gain (K) and cut-off frequency (ω0) of the filter. The term C1α in the equation
represents the fractional-order capacitor. The only difference between the positive-gain
one-fractional order LP, HP, and AP filters and the negative-gain one-fractional order LP,
HP, and AP filters is that the gains of the filters in the former are positive.
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The designed filter circuit outputs are categorized into two main sections. In the first
section, one-fractional order LP, HP, and AP filter outputs are obtained, featuring both
positive and negative gains. One-fractional order filters are further categorized into LP,
HP, and AP filters. Taking into account the impedance of the fractional-order capacitor,
characterized by an α degree, and incorporating the pseudo-capacitance (Cα) as defined by
Z(s) = 1/Cαsα, Equation (21) reveals the transfer function of the positive-gain fractional-
order LP filter derived from Equation (3). Additionally, Equation (22) outlines the specific
values for the gain (K) and cut-off frequency (ω0) of the filter. The term C1α in the equation
represents the fractional-order capacitor. The only difference between the positive-gain
one-fractional order LP, HP, and AP filters and the negative-gain one-fractional order LP,
HP, and AP filters is that the gains of the filters in the former are positive.

HFOLP(s) =
R1

R2
·

(
1

C1αR3

)α

sα +
(

1
C1αR3

)α (21)

K =
R1

R2
and ω0 =

(
1

C1αR3

)1/α

(22)

The transfer function of the positive-gain fractional-order HP filter, obtained according
to Equation (6) in Section 2.2, is given in Equation (23). The gain (K) and cut-off frequency
(ω0) of the filter are provided in Equation (24).

HFOHP(s) =
R1

R2
· sα

sα +
(

1
C2αR4

)α (23)

K =
R1

R2
and ω0 =

(
1

C2αR4

)1/α

(24)
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The transfer function of the positive-gain fractional-order AP filter, obtained according
to Equation (9) in Section 2.2, is given in Equation (25). The gain (K) and cut-off frequency
(ω0) of the filter are provided in Equation (26).

HFOAP(s) =
R1

R2
·
sα −

(
1

C1αR3

)α

sα +
(

1
C1αR3

)α (25)

K =
R1

R2
and ω0 =

(
1

C1αR3

)1/α

(26)

3.2. Fractional-Order LP and HP Shelving Filters

The second part of the designed filter circuit yielded outputs from fractional-order
shelving filters, encompassing both LP and HP variants, exhibiting both positive and
negative gains. Fractional-order shelving filters are categorized into two sections: first, LP
fractional-order shelving filters, which directly pass frequencies higher than the predefined
cut-off frequency while adjusting the transmission of lower frequencies through amplifica-
tion or attenuation; and second, HP fractional-order shelving filters, which directly pass
frequencies lower than the predefined cut-off frequency while adjusting the transmission
of higher frequencies through amplification or attenuation. Considering the impedance of
the fractional-order capacitor with an α degree and the pseudo-capacitance, the transfer
function of the positive-gain LP fractional-order shelving filter, derived from Equation (12),
is expressed in Equation (27). Equation (28) is obtained from Equation (27), giving the
filter’s shelving gain (G) and time constant (τ0), with C1α representing the fractional-order
capacitor. The only difference between positive-gain LP and HP fractional-order shelving
filters and negative-gain LP and HP fractional-order shelving filters is that the filter gains
are negative in the latter.

HFO(s) =
sα +

(
1 + R1

R2

)(
1

C1αR3

)

sα + 1
C1αR3

(27)

√
GLGH =

√
G and G =

(
1 +

R1

R2

)

τ0 =

[
C1αR3√

G

]1/α (28)

Secondly, HP fractional-order shelving filters directly pass frequencies below the speci-
fied cut-off frequency, while amplifying or attenuating higher frequencies. The transfer func-
tion of the positive-gain HP fractional-order shelving filter, obtained from Equation (12), is
given in Equation (29). Equation (30) is obtained from Equation (29), giving the filter’s shelv-
ing gain (G) and time constant (τ0), with C2α representing the fractional-order capacitor.

HFO(s) =

(
1 + R1

R2

)
sα + 1

C2αR4

sα + 1
C2αR4

(29)

√
GLGH =

1√
G

and G =

(
R2

R1 + R2

)

τ0 =

[
C2αR4√

G

]1/α (30)

The components C1α and C2α in the designed filter circuit depicted in Figure 3 represent
fractional-order capacitors. In this study, the Oustaloup approach was chosen as the method
for creating fractional-order capacitors due to its superior characteristics in gain responses.
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The Oustaloup approach could be constructed using either Foster or Cauer RC network
types. However, in this study, the Foster type-I RC network illustrated in Figure 4 was
employed because it features a minimal number of capacitors and resistors, demonstrates
reasonable sensitivity despite its passive elements, and is closer to real-world applications.
The impedance of the fractional-order capacitor is transformed into a rational integer-order
transfer function using an n-th degree approximation, as expressed in Equation (31).

Z(s) =
Bnsn + Bn−1sn−1 + · · ·+ B1s + B0

Ansn + An−1sn−1 + · · ·+ A1s + A0
(31)
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The coefficients Ai and Bi(i = 0...n) in Equation (31) denote positive coefficients.
For the designed filter, the number of resistors required is n, while the number of capacitors
is n + 4. Equation (32) determines the values of resistors and capacitors in the Foster type-I
RC network depicted in Figure 4. The expressions k, ri, and pi provided here represent
residues, gains, and poles, respectively, in the equation given in Equation (31) [23].
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4. Simulation Results of the Designed Filter Circuit Using the MO-CCCII Element

The filter circuit, incorporating the multiple-output (ten outputs) CM and MO-CCCII
active element as shown in Figure 3, underwent simulation using the PSpice program.
Through the simulation, the transfer functions of the filter were validated, with the cut-
off frequency recorded at 1 kHz. The filter circuit, which is capable of simultaneously
delivering both integer-order (first-order LP, HP, and AP) and fractional-order filter outputs,
features a straightforward circuit structure. Comprising only four grounded resistors and
two fractional-order capacitors, the circuit features R1 = R2 = 20 kΩ and R3 = R4 = 31.8
kΩ. For this specific filter circuit, exclusively the negative gain outputs of the fractional-
order shelving filters were derived, with R1 = 15 kΩ and R2 = 30 kΩ. In this context,
C1α and C2α symbolize the fractional-order capacitors, with their values determined as 5
nF/1 − α at a 1 kHz cut-off frequency, as illustrated in Figure 3.

A fifth-order Oustaloup approximation tool was utilized to generate fractional-order
capacitors. This methodology, demonstrated through the Foster type-I RC network de-
picted in Figure 4, was employed to determine the fractional-order (α) of the designed filter
at values of 0.7, 0.8, and 0.9. The calculation of the passive elements in the Foster type-I
RC network corresponding to each fractional order was carried out using Equation (32).
To conform to the more readily available E96 series outlined in IEC 60063, the calculated
values of the passive elements underwent rounding. This adjustment enhances the feasi-
bility of implementing the designed filter in real-world applications. Table 2 provides the
values of the passive elements in the Foster type-I RC network, calculated according to
Equation (32) and rounded to comply with the E96 series. Furthermore, gain and phase
simulations for the Foster type-I RC networks were conducted for all fractional orders,
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The coefficients Ai and Bi(i = 0 . . . n) in Equation (31) denote positive coefficients. For
the designed filter, the number of resistors required is n, while the number of capacitors is
n + 4. Equation (32) determines the values of resistors and capacitors in the Foster type-I
RC network depicted in Figure 4. The expressions k, ri, and pi provided here represent
residues, gains, and poles, respectively, in the equation given in Equation (31) [23].
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4. Simulation Results of the Designed Filter Circuit Using the MO-CCCII Element

The filter circuit, incorporating the multiple-output (ten outputs) CM and MO-CCCII
active element as shown in Figure 3, underwent simulation using the PSpice program.
Through the simulation, the transfer functions of the filter were validated, with the cut-off
frequency recorded at 1 kHz. The filter circuit, which is capable of simultaneously deliver-
ing both integer-order (first-order LP, HP, and AP) and fractional-order filter outputs, fea-
tures a straightforward circuit structure. Comprising only four grounded resistors and two
fractional-order capacitors, the circuit features R1 = R2 = 20 kΩ and R3 = R4 = 31.8 kΩ.
For this specific filter circuit, exclusively the negative gain outputs of the fractional-order
shelving filters were derived, with R1 = 15 kΩ and R2 = 30 kΩ. In this context, C1α and
C2α symbolize the fractional-order capacitors, with their values determined as 5 nF/1 − α
at a 1 kHz cut-off frequency, as illustrated in Figure 3.

A fifth-order Oustaloup approximation tool was utilized to generate fractional-order
capacitors. This methodology, demonstrated through the Foster type-I RC network depicted
in Figure 4, was employed to determine the fractional-order (α) of the designed filter at
values of 0.7, 0.8, and 0.9. The calculation of the passive elements in the Foster type-I RC
network corresponding to each fractional order was carried out using Equation (32). To
conform to the more readily available E96 series outlined in IEC 60063, the calculated values
of the passive elements underwent rounding. This adjustment enhances the feasibility of
implementing the designed filter in real-world applications. Table 2 provides the values of
the passive elements in the Foster type-I RC network, calculated according to Equation (32)
and rounded to comply with the E96 series. Furthermore, gain and phase simulations
for the Foster type-I RC networks were conducted for all fractional orders, as depicted
in Figure 5. The simulation results indicate that the bandwidths of the Foster type-I RC
networks are suitable for both acoustic and control-system applications.
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Table 2. The values of passive elements needed for the Foster type-I RC network, utilized to derive
the fractional-order capacitor with C = 5 nF/1 − α at 1 kHz (α = 0.7, 0.8, and 0.9).

Fractional-Order (α)

Element 0.7 0.8 0.9

R0 (Ω) 887 422 150

R1 (kΩ) 3.32 2 887

R2 (kΩ) 5.9 4.12 2.1

R3 (kΩ) 12.7 10.2 6.04

R4 (kΩ) 44.2 43.2 30.9

R5 (kΩ) 1070 2320 6650

C1 (nF) 4.99 9.09 22.1

C2 (nF) 12.4 19.1 39.2

C3 (nF) 18.7 24.9 45.3

C4 (nF) 20.5 23.2 35.7

C5 (nF) 13 9.31 6.81
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The filter circuit was implemented using three MO-CCCII active elements, which
were derived by duplicating the ±Z-terminals through the use of current mirrors from
the CCCII active element. This contributed to reducing the number of active elements in
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the circuit. Furthermore, to enhance its suitability for CM studies and low-power/voltage
applications, the MO-CCCII active element was designed with a BJT-based configuration
(see Figure 2). The internal structure of the MO-CCCII element, as shown in Figure 2,
incorporates the DC voltage sources +VEE = −VCC = + V and the DC current sources
I0 = 13 µA. PNP (PR100N)- and NPN (NR100N)-type BJT transistors were employed in the
internal arrangement of the MO-CCCII, with their parameter values outlined in Table 3.

Table 3. Model of the bipolar array transistors NR100N and PR100N.

.MODEL NR100N NPN (IS = 121 × 10−18, BF = 137.5, VAF = 159.4, +IKF = 6.974 × 10−3, ISE = 36 × 10−16,
NE = 1.713, BR = 0.7258, VAR = 10.73, +IKR = 2.198 × 10−3, RE = 1, RB = 524.6, RBM = 25, CJE = 0.214 × 10−12,
+RC = 50, VJE = 0.5, MJE = 0.28, CJC = 0.983 × 10−13, VJC = 0.5, MJC = 0.3, +XCJC = 0.034, CJS = 0.913 × 10−12,
VJS = 0.64, MJS = 0.4, FC = 0.5, +TF = 0.425 × 10−9, TR = 0.425 × 1010−8, EG = 1.206, XTB = 1.538, XTI = 2)

.MODEL PR100N PNP (IS = 73.5 × 10−18, BF = 110, VAF = 51.8, +IKF = 2.359 × 10−3, ISE = 25.1 × 10−16,
NE = 1.650, BR = 0.4745, VAR = 9.96, +IKR = 6.478 × 10−3, RE = 3, RB = 327, RBM = 24.55, CJE = 0.180 × 10−12,
+RC = 50, VJE = 0.5, MJE = 0.28, CJC = 0.164 × 10−12, VJC = 0.8, MJC = 0.4, +XCJC = 0.037, CJS = 1.03 × 10−12,
VJS = 0.55, MJS = 0.35, FC = 0.5, +TF = 0.610 × 10−9, TR = 0.610 × 10−8, EG = 1.206, XTB = 1.866, XTI = 1.7)

The first phase of the study involves presenting the gain responses of the one-fractional
order LP and HP filters, as shown in Figure 6. Phase simulations were conducted to observe
both the positive and negative gain outputs of the one-fractional order LP and HP filters
simultaneously, and the simulation outcome are presented in Figure 7.
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Another output from the designed filter is the one-fractional order AP filter with
positive gain. The gain response of this filter is given in Figure 8. Similar to other types
of one-fractional order filters, a phase simulation was conducted to observe both positive
and negative gain outputs of the one-fractional order AP filter simultaneously, and the
simulation result is presented in Figure 9.
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positive gain.

Another output from the designed filter is the one-fractional order AP filter with
positive gain. The gain response of this filter is given in Figure 8. Similar to other types
of one-fractional order filters, a phase simulation was conducted to observe both positive
and negative gain outputs of the one-fractional order AP filter simultaneously, and the
simulation result is presented in Figure 9.

The tunability of the cut-off frequencies and gains for the one-fractional order filter
outputs was achieved by adjusting the values of the passive elements within the designed
filter (see Figure 3). This modification provides an additional advantage to the designed
filter. To illustrate the filter’s tunability, the positive-gain one-fractional order LP output
(α = 0.9) was examined. By adjusting only the value of the R3 element while keeping other
passive elements constant, changes were observed exclusively in the cut-off frequency.
These changes in the cut-off frequency are shown in Figure 10. Similarly, adjusting only
the value of the R1 element while keeping other passive elements unchanged resulted in
variations in the filter’s gain. The variations in the filter gain are presented in Figure 11.
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passive elements constant, changes were observed exclusively in the cut-off frequency.
These changes in the cut-off frequency are shown in Figure 10. Similarly, adjusting only
the value of the R1 element while keeping other passive elements unchanged resulted in
variations in the filter’s gain. The variations in the filter gain are presented in Figure 11.
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Figure 9. Phase responses of the one-fractional order positive-gain AP filter (α = 0.7, 0.8, and 0.9)
with positive (solid lines) and negative (dashed lines) gains.
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Figure 10. Fractional-order (α = 0.9) LP filter (a) gain and (b) phase response. The R3 resistance
is tunable within the 63.6 kΩ – 10.6 kΩ range, while the f0 cut-off frequency is tunable within the
500 Hz–3 kHz range.

Figure 11. Fractional-order (α = 0.9) LP filter gain response. The R1 resistance is tunable within the
range of 20 kΩ–50 kΩ, while the gain K is tunable within the range of 1–2.5.

The second phase of the study presented the gain responses of both positive and
negative LP and HP fractional-order shelving filter outputs. The gains and phase responses
of both the positive and negative outputs of the LP fractional-order shelving filter are
shown in Figure 12.
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Figure 10. Fractional-order (α = 0.9) LP filter (a) gain and (b) phase response. The R3 resistance
is tunable within the 63.6 kΩ–10.6 kΩ range, while the f0 cut-off frequency is tunable within the
500 Hz–3 kHz range.



Fractal Fract. 2024, 8, 181 16 of 24

Fractal Fract. 2024, 1, 0 16 of 25

(b)

Figure 10. Fractional-order (α = 0.9) LP filter (a) gain and (b) phase response. The R3 resistance
is tunable within the 63.6 kΩ – 10.6 kΩ range, while the f0 cut-off frequency is tunable within the
500 Hz–3 kHz range.

Figure 11. Fractional-order (α = 0.9) LP filter gain response. The R1 resistance is tunable within the
range of 20 kΩ–50 kΩ, while the gain K is tunable within the range of 1–2.5.

The second phase of the study presented the gain responses of both positive and
negative LP and HP fractional-order shelving filter outputs. The gains and phase responses
of both the positive and negative outputs of the LP fractional-order shelving filter are
shown in Figure 12.

(a)

Figure 12. Cont.

Figure 11. Fractional-order (α = 0.9) LP filter gain response. The R1 resistance is tunable within the
range of 20 kΩ–50 kΩ, while the gain K is tunable within the range of 1–2.5.

The second phase of the study presented the gain responses of both positive and
negative LP and HP fractional-order shelving filter outputs. The gains and phase responses
of both the positive and negative outputs of the LP fractional-order shelving filter are
shown in Figure 12.

Fractal Fract. 2024, 1, 0 16 of 25

(b)

Figure 10. Fractional-order (α = 0.9) LP filter (a) gain and (b) phase response. The R3 resistance
is tunable within the 63.6 kΩ – 10.6 kΩ range, while the f0 cut-off frequency is tunable within the
500 Hz–3 kHz range.

Figure 11. Fractional-order (α = 0.9) LP filter gain response. The R1 resistance is tunable within the
range of 20 kΩ–50 kΩ, while the gain K is tunable within the range of 1–2.5.

The second phase of the study presented the gain responses of both positive and
negative LP and HP fractional-order shelving filter outputs. The gains and phase responses
of both the positive and negative outputs of the LP fractional-order shelving filter are
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Figure 12. (a) Gain and (b) phase response of the positive-gain (solid lines) and negative-gain (dashed
lines) LP fractional-order (α = 0.7, 0.8, and 0.9) shelving filter.

The gains and phase responses of both the positive and negative outputs of the HP
fractional-order shelving filter are shown in Figure 13.
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Figure 13. (a) Gain and (b) phase response of the positive (solid lines) and negative (dashed lines)
HP fractional-order shelving filter (α = 0.7, 0.8, and 0.9).

Figure 12. (a) Gain and (b) phase response of the positive-gain (solid lines) and negative-gain (dashed
lines) LP fractional-order (α = 0.7, 0.8, and 0.9) shelving filter.
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The gains and phase responses of both the positive and negative outputs of the HP
fractional-order shelving filter are shown in Figure 13.
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The gains and phase responses of both the positive and negative outputs of the HP
fractional-order shelving filter are shown in Figure 13.
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Figure 13. (a) Gain and (b) phase response of the positive (solid lines) and negative (dashed lines)
HP fractional-order shelving filter (α = 0.7, 0.8, and 0.9).
Figure 13. (a) Gain and (b) phase response of the positive (solid lines) and negative (dashed lines)
HP fractional-order shelving filter (α = 0.7, 0.8, and 0.9).

Table 4 presents the key characteristics in the frequency behaviors for the LP and
HP fractional-order shelving filter outputs from the designed filter. The values given
in parentheses in Table 4 present the theoretical gain and phase responses derived from
Equations (15) and (16). Conversely, the values outside the parentheses denote the gain
and phase responses acquired through simulation. Figure 14 presents both the theoretical
and simulated gain and phase responses of the LP and HP fractional-order shelving filters.
In this figure, the solid lines represent the simulated gain and phase responses, while the
dashed lines correspond to the theoretical responses.

The frequency response of the fractional-order shelving filter outputs is tunable
through adjustments to the passive elements’ values within the filter design (see Figure 3),
providing an additional advantage to the filter. To highlight the filter’s adjustability, we
specifically examined the positive-gain fractional-order LP shelving filter output (α = 0.9).
Altering only the R3 element’s value while keeping other passive element values con-
stant revealed changes solely in the cut-off frequency. These modifications in the cut-off
frequency are illustrated in the gain and phase graph in Figure 15.
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Table 4. Summary of the simulated frequency response characteristics of the fractional-order LP and
HP filters with α = 0.7, 0.8, and 0.9. The values in parentheses correspond to those derived from the
transfer functions provided in Equations (15) and (16).

Parameter
Fractional-Order (α)

0.7 0.8 0.9

Filters LP HP LP HP LP HP

Gain @ f0 (dB) 2.85
(3)

2.86
(3)

2.91
(3)

2.92
(3)

2.98
(3)

2.96
(3)

Phase @ f0(
◦) −12.05

(−12.3)
+12.09
(+12.3)

−14.3
(−14.5)

+14.28
(+14.5)

−16.51
(−17)

+16.54
(+17)

fL (Hz) 226.3
(222)

225.4
(222)

245.2
(252.1)

248.4
(252.1)

266.6
(275.17)

271.5
(275.17)

fH (kHz) 4.39
(4.48)

4.41
(4.48)

3.88
(3.97)

3.93
(3.97)

3.56
(3.63)

3.6
(3.63)

Slope (dB/dec) −3.81
(−3.95)

+3.85
(+3.95)

−4.49
(−4.52)

+4.5
(+4.52)

−4.95
(−5.08)

+5.01
(+5.08)
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HP fractional-order shelving filter outputs from the designed filter. The values given
in parentheses in Table 4 present the theoretical gain and phase responses derived from
Equations (15) and (16). Conversely, the values outside the parentheses denote the gain
and phase responses acquired through simulation. Figure 14 presents both the theoretical
and simulated gain and phase responses of the LP and HP fractional-order shelving filters.
In this figure, the solid lines represent the simulated gain and phase responses, while the
dashed lines correspond to the theoretical responses.
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Figure 14. The simulated (a) gain and (b) phase responses for fractional-order (α = 0.7, 0.8, and 0.9)
LP and HP shelving filter circuits, with simulation (solid line) and the corresponding theoretical (the
dashed line) results calculated using Equation (15) and (16).

The frequency response of the fractional-order shelving filter outputs is tunable
through adjustments to the passive elements’ values within the filter design (see Figure 3),
providing an additional advantage to the filter. To highlight the filter’s adjustability, we
specifically examined the positive-gain fractional-order LP shelving filter output (α = 0.9).
Altering only the R3 element’s value while keeping other passive element values con-
stant revealed changes solely in the cut-off frequency. These modifications in the cut-off
frequency are illustrated in the gain and phase graph in Figure 15.

Figure 14. The simulated (a) gain and (b) phase responses for fractional-order (α = 0.7, 0.8, and 0.9)
LP and HP shelving filter circuits, with simulation (solid line) and the corresponding theoretical (the
dashed line) results calculated using Equation (15) and (16).



Fractal Fract. 2024, 8, 181 19 of 24

Fractal Fract. 2024, 1, 0 19 of 25

Table 4. Summary of the simulated frequency response characteristics of the fractional-order LP and
HP filters with α = 0.7, 0.8, and 0.9. The values in parentheses correspond to those derived from the
transfer functions provided in Equations (15) and (16).
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2.98
(3)

2.96
(3)

Phase @ f0 (◦)
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(−12.3)

+12.09
(+12.3)

−14.3
(−14.5)

+14.28
(+14.5)
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(−17)

+16.54
(+17)
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(252.1)

248.4
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(275.17)

271.5
(275.17)

fH (kHz) 4.39
(4.48)

4.41
(4.48)

3.88
(3.97)

3.93
(3.97)

3.56
(3.63)

3.6
(3.63)

Slope (dB/dec) −3.81
(−3.95)
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(−4.52)
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Figure 15. The (a) gain and (b) phase response of the fractional-order (α = 0.9) LP shelving filter.
The R3 resistance is tunable within the 63.6 kΩ–10.6 kΩ range, while the f0 cut-off frequency is
tunable within the 500 Hz–3 kHz range.

Figure 15. The (a) gain and (b) phase response of the fractional-order (α = 0.9) LP shelving filter. The
R3 resistance is tunable within the 63.6 kΩ–10.6 kΩ range, while the f0 cut-off frequency is tunable
within the 500 Hz–3 kHz range.

The total harmonic distortion (THD (%)) values were obtained through the positive-
gain fractional-order LP shelving filter output (α = 0.9) given in Figure 3. To calculate the
THD (%) values, the DC current sources (I0) in the filter structure were set to 13 µA, and the
cut-off frequency ( f0) of the filter was set to 1 kHz. Then, different sinusoidal signals in the
range of 0.1 µA to 500 µA were applied to the input of the designed filter, with the input
frequency matching the cut-off frequency. It was observed that the corresponding THD
(%) values were smaller than 0.8. The graph showing the THD (%) values is presented in
Figure 16.

The dynamic range, a pivotal concept in filter design, outlines the relationship between
the largest input signal accommodated by the filter and the smallest input signal necessary
for its operation, as expressed in Equation (33). With the THD (%) values obtained from
the designed filter, input signals spanning from 0.1 µA to 500 µA can be applied to the
filter. As a result, the dynamic range of the designed filter exceeds 60 dB, indicating its
provision of an extensive dynamic range. Additionally, both power consumption and noise
analysis were conducted for the designed filter. The simulation results indicate that the
power consumption is less than 1 mW for a single 2.5 V supply. The total output noise of
the designed filter was measured as 129.4 pA/

√
Hz.

∆R = 20 log(
IINMAX

IINMIN

) (33)
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The Monte Carlo analysis tool within the PSpice program was employed to examine
the sensitivity of the internal values of the BJT transistor to variations in passive circuit
elements. The analysis comprised 100 runs, targeting the positive-gain low-pass fractional-
order (α = 0.9) shelving filter output. Initially, a Monte Carlo analysis with a 20% tolerance
was performed for the saturation currents (IS), early voltages (VAF), and internal resistances
(RB, RC, and RE) of the BJT. The analysis results, including gain and phase graphs, are
presented in Figure 17. Comparing the standard deviation values (0.408 dB and 0.041◦)
with the nominal values provided in Table 4 (2.98 dB and −16.51◦), it is evident that the
designed filter circuit exhibits reasonable sensitivity characteristics.

Figure 16. THD (%) graph obtained through the positive-gain fractional-order LP shelving filter
output (α = 0.9).

The Monte Carlo analysis tool within the PSpice program was employed to examine
the sensitivity of the internal values of the BJT transistor to variations in passive circuit
elements. The analysis comprised 100 runs, targeting the positive-gain low-pass fractional-
order (α = 0.9) shelving filter output. Initially, a Monte Carlo analysis with a 20% tolerance
was performed for the saturation currents (IS), early voltages (VAF), and internal resistances
(RB, RC, and RE) of the BJT. The analysis results, including gain and phase graphs, are
presented in Figure 17. Comparing the standard deviation values (0.408 dB and 0.41◦)
with the nominal values provided in Table 4 (2.98 dB and −16.51◦), it is evident that the
designed filter circuit exhibits reasonable sensitivity characteristics.

Second, the BJT parameter values were reinstated for the positive-gain fractional-order
LP filter (α = 0.9) output. Subsequently, to observe the sensitivity of the shelving gain (G)
outlined in Equation (28) to variations in the filter, a Monte Carlo analysis was conducted
by adjusting only the resistance values of R1, R2, and R3 with a 10% tolerance. Figure 18
displays the results of the analysis, presenting the gain and phase graphs. Comparing the
standard deviation values (0.29 dB and 0.028◦) with the nominal values in Table 4 (2.98 dB
and −16.51◦), it is evident that the designed filter circuit exhibits reasonable sensitivity.
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Figure 17. The Monte Carlo analysis results of the (a) gain and (b) phase of the positive-gain fractional-
order LP shelving filter (α = 0.9) with different parameter tolerances (20% tolerance) at the cut-off
frequency f0 = 1 kHz.

Second, the BJT parameter values were reinstated for the positive-gain fractional-order
LP filter (α = 0.9) output. Subsequently, to observe the sensitivity of the shelving gain (G)
outlined in Equation (28) to variations in the filter, a Monte Carlo analysis was conducted
by adjusting only the resistance values of R1, R2, and R3 with a 10% tolerance. Figure 18
displays the results of the analysis, presenting the gain and phase graphs. Comparing the
standard deviation values (0.29 dB and 0.028◦) with the nominal values in Table 4 (2.98 dB
and −16.51◦), it is evident that the designed filter circuit exhibits reasonable sensitivity.
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Second, the BJT parameter values were reinstated for the positive-gain fractional-order
LP filter (α = 0.9) output. Subsequently, to observe the sensitivity of the shelving gain (G)
outlined in Equation (28) to variations in the filter, a Monte Carlo analysis was conducted
by adjusting only the resistance values of R1, R2, and R3 with a 10% tolerance. Figure 18
displays the results of the analysis, presenting the gain and phase graphs. Comparing the
standard deviation values (0.29 dB and 0.028◦) with the nominal values in Table 4 (2.98 dB
and −16.51◦), it is evident that the designed filter circuit exhibits reasonable sensitivity.

Figure 17. The Monte Carlo analysis results of the (a) gain and (b) phase of the positive-gain fractional-
order LP shelving filter (α = 0.9) with different parameter tolerances (20% tolerance) at the cut-off
frequency f0 = 1 kHz.
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Figure 18. The Monte Carlo analysis results for (α = 0.9) the (a) gain and (b) phase of the positive-gain
fractional-order LP shelving filter (G), designed to assess the sensitivity of the gain (G) to specific
resistor values with a 10% tolerance, at the cut-off frequency f0 = 1 kHz in the designed circuit.

5. Discussion

In this study, a CM analog filter designed with the MO-CCCII active element presented
an innovative approach to active filter design by applying a fractional-order calculation.
By using current mirrors to duplicate the ±Z-terminals of the CCCII active element, a multi-
output MO-CCCII (seven outputs) element was obtained. The outputs of the filter circuit
with the MO-CCCII element can be duplicated without using any additional circuit accord-
ing to the designer’s needs. This reduces the count of active elements in the filter structure
and diminishes the necessity for passive elements in the circuit design.

Filtering designed as fractional-order introduces a significant change to filters. This
change is a key characteristic of fractional-order filters. Fractional-order filters provide
an extra degree of freedom to the filter with the α value, allowing for sharper control
of the transition slope from the passband to the stopband, thus providing flexibility to
the design process. The filter circuit given in Figure 3 was simulated using the PSpice
program. While the filter circuit provides both positive and negative gain, one-fractional
order LP, HP, and AP filter outputs, as well as LP and HP fractional-order shelving filter

Figure 18. The Monte Carlo analysis results for (α = 0.9) the (a) gain and (b) phase of the positive-gain
fractional-order LP shelving filter (G), designed to assess the sensitivity of the gain (G) to specific
resistor values with a 10% tolerance, at the cut-off frequency f0 = 1 kHz in the designed circuit.
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5. Discussion

In this study, a CM analog filter designed with the MO-CCCII active element presented
an innovative approach to active filter design by applying a fractional-order calculation.
By using current mirrors to duplicate the ±Z-terminals of the CCCII active element, a
multi-output MO-CCCII (seven outputs) element was obtained. The outputs of the filter
circuit with the MO-CCCII element can be duplicated without using any additional circuit
according to the designer’s needs. This reduces the count of active elements in the filter
structure and diminishes the necessity for passive elements in the circuit design.

Filtering designed as fractional-order introduces a significant change to filters. This
change is a key characteristic of fractional-order filters. Fractional-order filters provide an
extra degree of freedom to the filter with the α value, allowing for sharper control of the
transition slope from the passband to the stopband, thus providing flexibility to the design
process. The filter circuit given in Figure 3 was simulated using the PSpice program. While
the filter circuit provides both positive and negative gain, one-fractional order LP, HP, and
AP filter outputs, as well as LP and HP fractional-order shelving filter outputs (ten outputs),
were verified, highlighting the advantages of the filter. Although the designed filter circuit
can provide multiple filter outputs simultaneously, it possesses superior features such as
simplicity and suitability for integrated design, as introduced by the CM study. The gain
and phase of the filter were found to be modifiable based on the values of the passive
elements included, as observed in the simulation results. This advantageous situation
demonstrated the versatility of the filter in electronic applications.

The sensitivity of the filter to parameter mismatch and the sensitivity to changes in
the values of passive elements in the circuit were measured using the Monte-Carlo analysis
tool. The analysis result shows that despite the presence of BJTs and many passive elements
in the internal structure of the filter, it exhibited reasonable sensitivity and confirmed the
reliability of the filter under practical conditions.

Upon evaluating the overall performance of the filter, it was found to be low-power,
low-noise, low-THD (%), and with a wide dynamic range. These features make it a suitable
candidate for acoustic and control applications in practical scenarios. The evaluation
of the filter’s general performance showed promising results for fractional-order active
filter designs with the MO-CCCII active element. The filter’s CM, as well as its ability to
provide multiple filter outputs simultaneously, its simple circuit structure, and its tunability
contribute to this promising path. These features offer opportunities for further exploration
and development in electronic systems.

In conclusion, the fractional-order filter circuit designed with the MO-CCCII active
element presents a promising path for fractional-order active filter designs. The filter’s CM,
as well as its ability to provide multiple filter outputs simultaneously, its simple circuit
structure, and its tunability make it a suitable candidate for practical applications in the
field of electronic systems. The combination of these features opens up opportunities for
more discoveries and advancements in electronic systems.

6. Conclusions

This study introduces a fractional-order filter circuit (see Figure 3) capable of gener-
ating one-fractional order LP, HP, and AP filters with both positive and negative gains.
Additionally, it extends its functionality to provide both positive and negative gains for
LP and HP fractional-order shelving filters. This versatile design represents a significant
advancement in fractional-order filters, holding promise for various practical applications
in signal processing. Depicted in the diagram, this innovative filter circuit is the first of its
kind, and is capable of concurrently generating a total of ten filter outputs simultaneously.
The transfer function of the filter was validated through simulations using the PSpice
program, and the cut-off frequency was measured at 1 kHz. As the filter circuit operates
in CM mode, it incorporates a minimal number of active elements (MO-CCCII) and only
grounded passive elements, resulting in a simple design that occupies little space. The
desired filter output is obtained by duplicating the ±Z-terminals of the MO-CCCII active



Fractal Fract. 2024, 8, 181 23 of 24

element to eliminate the need for an additional circuit. The filter circuit was adapted to
a fractional-order one by specifically employing fractional-order capacitors. For practical
applicability, the values of passive elements corresponding to each fractional order were
rounded in accordance with the E96 series in IEC 60063. The observed benefits of the
filter circuit include enhanced control over the transition slope from the passband to the
stopband, which is facilitated by the fractional-order α, a crucial characteristic in fractional-
order filter topology. Additionally, the filter allows for tunable gain and phase, providing
flexibility based on the values of its passive elements. Based on simulations, the filter circuit
proves efficient with low power consumption, minimal noise, low THD (%), and a broad
dynamic range, rendering it suitable for low-voltage/power applications. Considering the
cut-off frequency and overall performance, the circuit finds utility in control and sensor ap-
plications for one-fractional order filter outputs. Meanwhile, fractional-order shelving filter
outputs present versatile applications in acoustics, encompassing peak filters, equalizers,
and the control systems—an active and trending area of research [32,33].
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