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Abstract: We propose an adaptive fractional multi-scale optimization optical flow algorithm, which
for the first time improves the over-smoothing of optical flow estimation under the total variation
model from the perspective of global feature and local texture balance, and solves the problem that
the convergence of fractional optical flow algorithms depends on the order parameter. Specifically, a
fractional-order discrete L1-regularization Total Variational Optical Flow model is constructed. On
this basis, the Ant Lion algorithm is innovatively used to realize the iterative calculation of the optical
flow equation, and the fractional order is dynamically adjusted to obtain an adaptive optimization
algorithm with strong search accuracy and high efficiency. In this paper, the flexibility of optical
flow estimation in weak gradient texture scenes is increased, and the optical flow extraction rate of
target features at multiple scales is greatly improved. We show excellent recognition performance
and stability under the MPI_Sintel and Middlebury benchmarks.

Keywords: optical flow estimation; swarm intelligence optimization; fractional-order differential;
adaptive

1. Introduction

The TV-L1 optical flow estimation algorithm is a method for estimating the optical
flow field that combines the noise reduction advantage of L1 regularization and the global-
scale smoothing performance of the total variation model [1]. The variation-based optical
flow estimation unifies the calculation of optical flow quantities in a standard equation
framework and reduces it to minimizing a global energy function, which consists of data
terms and smoothness terms. Due to its standardized construction for computing models,
it has quickly become the mainstream optical flow algorithm over the past two decades.
Ant Lion optimization is a swarm intelligence optimization algorithm. In recent years,
research on image processing optimization has focused on leveraging the advantages of
Ant Lion swarm intelligence optimization in global optimization range, high convergence
accuracy, and minimal parameter requirements [2,3]. Researchers have utilized Ant Lion
optimization to improve search accuracy and robustness in various visual tasks. However,
its application in optical flow estimation remains unexplored.

While studies [4,5] demonstrate that using the TV-L1 optical flow algorithm yields
higher accuracy in weak texture regions compared to other methods, it can also lead to
excessive smoothing and blurring of targets as well as contour edges. This cumulative error
significantly impacts subsequent recognition results. Reference [6] employed multi-channel
sampling interpolation to restore texture in motion-blurred images while reference [7]
proposed a pixel-weight-based smoothing operation aimed at reducing edge blur caused
by variational light path equations. Based on the work of Demetz O et al., reference [8]
proposed the anisotropic smoothness constraint. However, this work presented a significant
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challenge for researchers. The graph-based method suggested for improving edge blurring
can result in excessive segmentation of the foreground and background, leading to a
loss in optical flow estimation. Consequently, penalty functions based on flow fields
have been proposed to emphasize smooth edges and enhance them in order to mitigate
excessive smoothing [9]. In addition, reference [10] employs super-resolution techniques to
enhance contour edges and thereby increase the detection of displacement feature points
at the edge. Generally speaking, projects aimed at improving Variational Optical Flow
data seek to make their algorithms more robust against disturbances such as noise and
illumination changes or enhance their ability to handle large motion displacements. The
purpose behind enhancing the smoothing parameter is finding an optimal weight that is
balanced between the data term and smoothing term. A reasonable choice of this parameter
ensures stable results by appropriately considering each constituent term’s contribution.
Nevertheless, previous works completely overlook local-scale optical flow estimation while
few researchers address the issue of multi-scale feature imbalance that hampers motion
features’ detection. Therefore, this work holds significance in terms of improvement within
this field. The contributions made by this work are as follows:

• The TV-L1 optical flow objective function is discretized by the fractional-order differ-
ential operator, which makes the model pay extra attention to the local texture-scale
optical flow features, increases the participation of effective optical flow, and improves
the robustness of the model in multi-scale computation.

• The fractional order is regarded as one of the objects of the optimization problem, and
the Ant Lion algorithm is used to realize the local sampling search, and the global
smoothness advantage of the TV-L1 optical flow model is retained. The multi-scale
objective function is optimized by multi-parameter optimization of the smoothness
term weight and fractional order.

• The significant performance of our proposed model is verified on the MPI_Sintel and
Middleburry datasets.

2. Materials and Methods

In this work, we propose an optical flow estimation algorithm based on the fractional
order and the Ant Lion optimizer. As shown in Figure 1, the proposed optical flow model
consists of the following main modules: a fractional-order TV-L1 optical flow estimation
part to realize basic learning tasks, and an Ant Lion optimizer part responsible for adaptive
parameters.
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Figure 1. AFMSO-TVL1 optical flow algorithm’s overall framework.

In Section 2.1, we first review the construction process of the TV-L1 optical flow model,
and we carry out reasonable fractional discretization of it in Section 2.2. Next, we describe
the iterative process of the Ant Lion optimization in detail in Section 2.3. Finally, we
carry out the experimental analysis in Section 3, and give the discussion and conclusion in
Sections 4 and 5.
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2.1. Construction Process of TV-L1 Optical Flow Model

The conventional TV-L1 optical flow model is established and solved under the bright-
ness constant constraint, which is as follows (1):

I(x, y, t) = I(x + u, y + v, t + 1) (1)

where I(x, y, t) is the brightness function of the input image pixel, u and v are the compo-
nents of the optical flow vector κ(u, v) in the x and y directions, respectively, and t and
t + 1 represent the change in the number of frames. Based on the assumption of uniform
velocity, the L1 regularization Total Variational Optical Flow equation can be obtained as
Equation (2):

E(κ) =
x

((Ixu + Iyv + It)
2 + λ(|∇u|2 + |∇v|2))dxdy (2)

where λ represents the weight of the smoothing term and is determined by the charac-
teristics of the input data. Specifically, the smoothing term weight should be inversely
proportional to the image quality. In Total Variational Optical Flow estimation tasks, the
problem of solving the optical flow equation can be reformulated as an energy functional
minimization problem, as represented by Equation (3). By solving the first derivative of
the energy function using the Euler–Lagrange equation [11], Equations (3) and (4) can be
obtained.

I2
xu + Ix Iyv = −λ2∇u − Ix It (3)

I2
y v + Ix Iyu = −λ2∇v − Iy It (4)

where ∇u = u − u, ∇v = v − v, u, and v respectively represent the mean velocity in the x
and y directions in the neighborhood; then, the components of the optical flow vector in
the x and y directions can be obtained as Equations (5) and (6).

u = u −
Ix[Ixu + Iyv + It]

λ2 + I2
x + I2

y
(5)

v = v −
Iy[Ixu + Iyv + It]

λ2 + I2
x + I2

y
(6)

After simplifying the components of the optical flow field, the optical flow field can
finally be obtained as Equation (7):

κ(u −
Ix[Ixu + Iyv + It]

λ2 + I2
x + I2

y
, v −

Iy[Ixu + Iyv + It]

λ2 + I2
x + I2

y
) (7)

The iterative process of the optical flow field corresponds to the optimization process
of the optical flow energy function. In this work, we employ the Ant Lion optimization
algorithm to enhance the fractional-order Variational Optical Flow estimation model. This
enhancement manifests in the iterative evolution of the optical flow field, representing the
optimization of the energy functional associated with optical flow.

2.2. Subsection

The fractional order is derived on the basis of the integer order. Assuming that the
function f (x) is differentiable, the nth derivative of f (x) with respect to x is as follows (8):

f (n)(x) = lim
h→0

n
∑

i=0
(−1)i

(
n
i

)
f (x − ih)

hn (8)
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where
(

n
i

)
= n(n−1)(n−2)···(n−i+1)

i! . According to the above derivation, the discretization

expression of the objective function is shown in Equation (9).

GL
a Dn

x f (x) = lim
h→0+

h−n
n

∑
i=0

(−1)i
(

n
i

)
f (x − ih) =

1
Γ(−n)

∫ x

a

f (τ)

(x − n)n+1 dτ (9)

As outlined in the introduction, the utilization of fractional-order optimization has
been prevalent in various fields such as control systems, image enhancement, and restora-
tion tasks within the realm of image processing. This preference is attributed to the histori-
cal correlation advantages and overall smoothing capabilities offered by fractional-order
methods. Notably, research has extensively explored the application of fractional-order
optimization in image processing tasks [12]. For instance, in the context of image data
processing, the discrete brightness function I(cx, cy, t) derived from the image pixel (cx, cy)
serves as a prominent example, with N denoting the total number of image pixels. From the
definition of the G-L fractional-order differential derived in the previous subsection [13], it
can be seen that its meaning is as follows: n pixels are sampled equidistantly in (a, t) at inter-
vals of h, the object function f (x) is a continuous function, and the domain of independent
variable x is (a, b), n → ∞ , h = (x − a)/n → 0 . Thus, the α-order differential discretization
of the brightness function I(cx, cy, t) can be obtained as Equations (10)–(12) [14].

Dα
x I(cx, cy, t) =

N
∑

k=0
(−1)k

(
α
k

)
I(cx − k, cy, t) = I(cx, cy, t) + (−α)I(cx − 1, cy, t)

+ (−α)(−α+1)
2 I(cx − 2, cy, t) + · · · Γ(−α+1)

N!Γ(−α+N+1) I(cx − N, cy, t)
(10)

Dα
y I(cx, cy, t) =

N
∑

k=0
(−1)k

(
α
k

)
I(cx, cy − k, t) = I(cx, cy, t) + (−α)I(cx, cy − 1, t)

+ (−α)(−α+1)
2 I(cx, cy − 2, t) + · · · Γ(−α+1)

N!Γ(−α+N+1) I(cx, cy − N, t)
(11)

Dα
t I(cx, cy, t) =

N
∑

k=0
(−1)k

(
α
k

)
I(cx, cy, t − k) = I(cx, cy, t) + (−α)I(cx, cy, t − 1)

+ (−α)(−α+1)
2 I(cx, cy, t − 2) + · · · Γ(−α+1)

N!Γ(−α+N+1) I(cx, cy, t − N)
(12)

In this section, drawing inspiration from the enhancements brought about by fractional-
order methods in variational image denoising models [15], as illustrated in Equation (13),
we incorporate fractional-order discretization to establish the L1 smoothness constraint
based on fractional-order principles. This approach culminates in the derivation of the
fractional TV-L1 optical flow. Equation (14) is finally obtained [16].

EFoSmooth(κ) =
x

Ω

(|Dαu|2 + |Dαv|2)dxdy (13)

EFoTVL1(κ) =
x

Ω

((Ixu + Iyv + It)
2 + λ(|Dαu|2 + |Dαv|2))dxdy (14)

The TV-L1 optical flow equation can be derived from the Euler–Lagrange equation as
Equation (15):

J(u, v) =
∫

Ω
((Ixu + Iyv + It)

2 + λ(|Dα
xu|2 +

∣∣∣Dα
y u

∣∣∣2 + |Dα
xv|2 +

∣∣∣Dα
y v

∣∣∣2))dΩ (15)

where |Dαu| =
√
|Dα

xu|2 +
∣∣∣Dα

y u
∣∣∣2, |Dαv| =

√
|Dα

xv|2 +
∣∣∣Dα

y v
∣∣∣2, the optical flow compo-

nents u(x, y) and v(x, y) have deviations η(x, y) and ξ(x, y), respectively, and the deviation
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parameter is ϖ; then, the current optical flow component is shown in Equations (16)
and (17).

u∗(x, y) = u(x, y) + ϖη(x, y) (16)

v∗(x, y) = v(x, y) + ϖξ(x, y) (17)

Therefore, the energy function can be reformulated as Equation (18):

J(ϖ) =
∫

Ω ((Ixu∗ + Iyv∗ + It + ϖIxη + ϖIyξ)2 + λ(|Dα
xu∗ + ϖDα

xη|2

+
∣∣∣Dα

y u∗ + ϖDα
y η

∣∣∣2 + |Dα
xv∗ + ϖDα

xξ|2 +
∣∣∣Dα

y v∗ + ϖDα
y ξ

∣∣∣2))dΩ
(18)

If ϖ = 0, and at the same time the first derivative of the independent variable ϖ in the
above equation is taken, then

J′(0) =
∫

Ω
(η(KIx + λ(Dα∗

x Dα
xu∗ + Dα∗

y Dα
y u∗)) + ξ(KIy + λ(Dα∗

x Dα
xv∗ + Dα∗

y Dα
y v∗)))dΩ (19)

where K = Ixu∗ + Iyv∗ + It; thus, the simplified equation can be obtained as Equation (20):

(Ixu∗ + Iyv∗ + It)Ix + λ(Dα∗
x Dα

xu + Dα∗
y Dα

y u) = 0 (20)

(Ixu + Iyv + It)Iy + λ(Dα∗
x Dα

xv + Dα∗
y Dα

y v) = 0 (21)

After obtaining the simplified optical flow equation, the next step involves continuing
the fractional-order differential solution based on the aforementioned approach. This
further demonstrates that the functions acquired through the calculations mentioned above
are discrete in nature. Assuming the number of pixels p × q, then cx = 0, 1, · · · , p − 1,
cy = 0, 1, · · · , q − 1, and u(x, y) = I(cx∆h, cy∆h) in the processing of the optical flow
vector; according to the Grünwald–Letnikov definition, the fractional-order differential
discretization Equation (22) of optical flow κ can be derived as follows (22):

Dα
xκ(cx, cy) =

∞

∑
k=0

w(α)
k κ(cx − k, cy) (22)

where w(α)
0 = 1; w(α)

k = (1 − α+1
k )w(α)

k−1 can be obtained from the discrete fractional-order
differential properties as follows (23):

Dα∗
x Dα

xu(cx, cy) =
0

∑
k=−N

w(α)
|k| ∇u(cx − k, cy) +

N

∑
k=1

w(α)
k ∇u(cx − k, cy) (23)

Dα∗
y Dα

y u(cx, cy) =
0

∑
k=−N

w(α)
|k| ∇u(cx, cy − k) +

N

∑
k=1

w(α)
k ∇u(cx, cy − k) (24)

Thus, the following is true:

Dα∗
x Dα

xu(cx, cy) + Dα∗
y Dα

y u(cx, cy) ≈
0

∑
(cx ,cy)∈S(cx ,cy)

w(α)
kij

(u(cx, cy)− u(cx, cy)) (25)

where S(cx, cy) is the neighborhood of the current pixel point (cx, cy) participating in the
computation, kcxcy = max(|cx − cx|,

∣∣cy − cy
∣∣). Then, the v component can be obtained as

follows:

Dα∗
x Dα

xv(cx, cy) + Dα∗
y Dα

y v(cx, cy) ≈
0

∑
(cx ,cy)∈S(cx ,cy)

w(α)
kcxcy

(v(cx, cy)− v(cx, cy)) (26)

Finally, the iterative calculation formula of the fractional TV-L1 optical flow equation
can be obtained as Equations (27) and (28):
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Ixx(cx, cy)u(cx, cy) + Ixy(cx, cy)v(cx, cy) + Ixt(cx, cy) + λ
0

∑
(cx ,cy)∈S(cx ,cy)

w(α)
kcxcy

(u(cx, cy)− u(cx, cy)) = 0 (27)

Ixy(cx, cy)u(cx, cy) + Iyy(cx, cy)v(cx, cy) + Iyt(cx, cy) + λ
0

∑
(cx ,cy)∈S(cx ,cy)

w(α)
kcxcy

(v(cx, cy)− v(cx, cy)) = 0 (28)

From the iterative formula, it is evident that when the order is an integer (1 in this
case), the proposed fractional-order TV-L1 optical flow model simplifies into the original
L1 regularization optical flow. Therefore, the iterative formula exhibits certain versatility in
the choice of a termination criterion.

2.3. Iterative Calculation of Fractional TV-L1 Optical Flow Based on Ant Lion Optimization

The Ant Lion algorithm is applied to facilitate the numerical iteration for calculating
fractional optical flow. While the Ant Lion algorithm is designed for discrete optimization
problems, optical flow estimation involves continuous problem solving. However, since
the fractional-order TV-L1 optical flow itself relies on pixel-level discretization, employing
the Ant Lion algorithm for minimizing the function for the fractional-order TV-L1 optical
flow model is theoretically viable.

In Ant Lion optimization [17], the following entities are defined: the Ant Lion, repre-
senting the candidate’s better solution, and the Ant, which conducts a random walk around
the candidate’s better solution to explore the neighborhood for potential improvements.
The Ant algorithm operates by updating the current optimal solution based on the fitness
value of the solution. This can be seen as the Ant randomly occupying points within the
neighborhood of the pixel. By obtaining fitness information from these points, the Ant Lion
leverages the information returned by the Ants. The selection probability is determined us-
ing the roulette wheel method and weights. As the number of iterations increases, the Ants’
territory narrows down, leading to more accurate searches in the Ant Lion neighborhood.

In this chapter, the Ant Lion algorithm is employed to replace the iterative method used
in traditional optical flow algorithms for computing TV-L1 optical flow based on fractional-
order theory discretization. Prior to this, it is essential to address two key points as the
foundation of the entire problem [18]: defining the objective that must be accomplished
during the numerical iteration process of fractional-order optical flow calculation and
determining the desired outcome.

The numerical iterative process of the optical flow field is aimed at computing the
motion of pixels between two images over a specific time interval. By modeling the intensity
changes in each pixel in the input image sequence, the fractional TV-L1 algorithm can
calculate the displacement vector of each pixel, representing its movement between the two
images. During the iteration, the fractional TV-L1 algorithm computes the optical flow field
by minimizing the overall error, which comprises three components: the luminance error,
the fractional smoothness term that penalizes regions with large fractional gradients [19],
and the L1-norm term, which effectively eliminates noise. Through iterative optimization of
these three errors, the fractional TV-L1 algorithm accurately calculates the optical flow field.
Ultimately, the TV-L1 algorithm with fractional iteration generates the optical flow vector
for each individual pixel [20], signifying the displacement of that specific pixel between
the two given images. These vectors can be utilized to calculate the motion of the entire
image or to implement other computer vision applications such as object tracking, scene
reconstruction, and virtual reality.

The parameters utilized in ALO optimization primarily involve the solution vector
within the fractional TV-L1 algorithm, along with other parameters that affect the per-
formance of the algorithm, such as the penalty parameter and the number of iterations.
ALO adjusts the solution vector by updating the positions of the Ant colony and the Ant
Lion, and applies the updated solution vector to the numerical iterative computation in
the fractional TV-L1 algorithm. The movement process of the Ant colony and the Ant Lion



Fractal Fract. 2024, 8, 179 7 of 17

is affected by the fractional TV-L1 energy function value and the current solution vector,
aiming to search for a solution vector with a lower energy function value. By simulating
the behavior of an ant colony searching for food and ant lion predation, ALO optimizes the
solution vector by combining the requirements of the fractional TV-L1 energy function. The
movement of the Ant colony is affected by the pheromone concentration and the attraction
of the solution vector, and the Ant colony will randomly choose the next position. The
pheromone concentration in the Ant colony is updated according to the distance between
the current optimal solution vector and the current position. The Ant Lion, on the other
hand, chooses the predation position according to the energy function value of the current
solution vector, and adjusts the solution vector by modeling the behavior of the Ant Lion
in expectation of finding a better solution.

Overall, the objective of ALO is to optimize the solution vector within the fractional
TV-L1 algorithm by leveraging the movement of the Ant colony and Ant Lion, aiming to
enhance the convergence rate and achieve superior optimization outcomes. In summary,
in this chapter, the pixel point and optical flow vector are used as the initial position and
initial velocity of the Ant and the Ant Lion. Following the Ant Lion’s flow involves these
steps:

1. The initial values of pixels and optical flow vectors are initialized in the two popula-
tions, and the pheromone matrix of the Ants is established to record the pheromone
concentration between each pixel. The search space of the Ants is defined as fol-
lows (29):

Qt
z =

(Qt
z − az)× (bz − ct

z)

dt
z − az

+ cz (29)

where Qt
z represents the position of the Ant individual in the z-th dimension in the solution

space in the tth iteration, “z-th dimension” in this chapter refers to the coordinate axis
space z ∈ {x, y} of the image, az and bz respectively represent the maximum value range of
the random walk of the Ant individual in the z-th dimension, and dt

z = ALOt
r + dt and dt

z
respectively represent the minimum and maximum values of the random walk of the Ant
individual in the z-th dimension in the t-th iteration.

2 The second step is to randomly initialize the positions of Ants and Ant Lions on the
solution space, calculate the fitness value EFoTVL1 of each pixel, and take the pixel
corresponding to the lowest value minEFoTVL1 as the LB Ant Lion.

During the individual random walk process, the initial configuration of the trap and
the selection of the Ant Lion significantly influence the outcome as follows:

ct
z = ALOt

r + ct (30)

dt
z = ALOt

r + dt (31)

where r represents the Ant Lion, ALOt
r represents the position of the t-th Ant Lion in the

r-th iteration, ct represents the vector of all c’s in the t-th iteration, and dt represents the
vector of all d’s in the t-th iteration. The motion space of the Ant was centered around
the position of the Ant Lion, gradually shrinking as the number of iterations increased,
ultimately converging towards the optimal solution and yielding the final computation
result. The minimization process is detailed in Equations (32) and (33):

ct =
ct

10R t
T

(32)

dt =
dt

10R t
T

(33)
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where T is the parameter of iteration termination times set by initialization, and R is the
relevant parameter, whose value is determined by t; when t > 0.1T, R = 2; when t > 0.5T,
R = 3; when t > 0.9T, R = 5; and when t > 0.95T, R = 6.

3 For each Ant, a roulette wheel is used to select an Ant Lion as the target. Concurrently,
the Ant will randomly move around the chosen Ant Lion as the best solution, and
update its position and speed, calculate the position and speed of the next moment
and the pheromone increment of the current position, and update the pheromone,
that is, the path that the Ant has passed and the local optimal pixel solution.

4 When the fitness value of an Ant exceeds the optimal value from the previous iteration,
the position is then updated to match the position of that particular Ant. In the
selection and update of the Ant Lion, assuming that the random walk of LB goes to
Randt

B and the random walk of LE goes to Randt
E, the movement of the individual

Ant around the Ant Lion trap domain is as follows (34):

Antt
z = αRandt

B + βRandt
E (34)

where α and β are weight parameters with sums equal to 1, and empirically default to
0.5 each. The update of the Ant Lion involves assigning the position information of the Ant
with the best fitness value in the current iteration to the Ant Lion. Subsequently, for the
new iteration, the position of the Ant is randomly generated within the solution space to
prevent falling into local optima. This process helps to explore a wider search space and
avoid getting trapped in suboptimal solutions.

5 The fifth step is to determine whether the convergence condition is satisfied, output the
fractional order α, penalty parameter λ, and solution vector κ = (u, v) corresponding
to the current optimal solution, and stop the iteration, or otherwise return to step 3.

3. Experiments and Analysis

The algorithm in this chapter is based on the L1 regularization Total Variational Op-
tical Flow model, which is improved by fractional discretization and numerical iteration.
Therefore, the convergence performance of the new algorithm and the influence of the
fractional-order parameter of the smoothing term on the optical flow tracker, that is, the
index performance of the optical flow task, are two important criteria for investigating the
algorithm. The following experiments are established on the conventional optical flow
datasets known as the MPI_Sintel and MiddleBury sequences, and the optical flow perfor-
mance indicators AEPE, AAE, PSNR, SSIM, and the visual coding map are selected. The
proposed adaptive fractional multi-scale tracker was validated qualitatively and quantita-
tively in a Pytorch environment on a laptop with Intel(R) i7-12700F CPU, 16 GB RAM, and
an NVIDIA GeForce RTX 3060Ti. This was used to evaluate the feasibility and reliability of
the algorithm in this chapter.

3.1. Ablation Experiment

In order to verify the improved performance of the TV-L1 optical flow energy function
by introducing fractional discretization, the empirical interval was used to sample the
order at 0.1 intervals, and the two optical flow error indexes AEPE and AAE, PSNR, and
SSIM were calculated. Table 1 shows the setting of the necessary default parameters of
AFMSO-TVL1 in the following experiments. The results of the ablation experiments are
shown in Tables 2 and 3. PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity
Index) were selected to measure the stability and accuracy of pixel calculation in the process
of optical flow calculation.
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Table 1. The setting of fixed parameter values involved in the experimental analysis.

Parameter Description Default Value

τ Time step 0.25
ε Threshold 0.01
η Zoom factor 0.5

Nscales Number of scales 5
Nwarps Number of warps 5

Table 2. Under the MPI_Sintel random sequence, λ = 79.4, AEPE and AAE indexes are obtained by
the FO-TVL1 optical flow algorithm traversing fractional order alpha in the interval [0.5, 1].

Parameter Selection
MPI_Sintel Sequence (λ = 79.4)

Ambush2 Ambush6 Shamen2 Bandage1 Market2 Temple3 Sleeping2 Cave4

AEPE

α = 0.4 44.30 40.70 1.45 6.35 5.22 25.79 4.86 13.05
α = 0.5 44.26 39.78 1.40 6.30 4.86 16.99 7.15 13.10
α = 0.6 44.17 39.65 1.35 6.29 4.63 12.73 11.76 13.37
α = 0.7 44.29 39.64 1.40 6.27 4.21 11.89 4.75 13.04
α = 0.8 44.78 40.72 1.66 6.45 4.10 14.38 5.22 13.05
α = 0.9 45.90 44.48 2.11 6.66 4.75 19.17 6.12 13.09
α = 1.0 50.91 49.45 2.53 7.00 5.21 32.52 7.86 13.67

AAE

α = 0.4 1.54 1.51 1.48 1.29 1.70 1.49 1.66 1.53
α = 0.5 1.61 1.42 1.69 1.42 1.79 1.70 1.68 1.51
α = 0.6 1.66 1.83 1.81 1.40 1.89 1.69 1.69 1.50
α = 0.7 1.57 1.8 1.50 1.33 2.29 1.44 1.77 1.62
α = 0.8 1.54 1.42 1.40 1.29 1.88 1.45 1.88 1.63
α = 0.9 1.61 1.74 1.43 1.41 1.66 1.44 1.84 1.63
α = 1.0 1.60 1.92 1.53 1.30 1.85 1.45 1.67 1.63

Table 3. Under the MiddleBury random sequence, λ = 79.6, AEPE and AAE indexes are obtained by
the FO-TVL1 optical flow algorithm traversing fractional order alpha in the interval [0.5, 3].

Parameter Selection
MiddleBury Sequence (λ = 79.6)

Teddy Urban Woden Mequn Army Scheflera Grove Yosemite

AEPE

α = 0.4 0.68 0.69 0.15 0.21 0.13 0.26 0.50 0.10
α = 0.5 0.65 0.63 0.13 0.19 0.11 0.25 0.54 0.10
α = 0.6 0.65 0.56 0.15 0.18 0.12 0.25 0.57 0.13
α = 0.7 0.56 0.43 0.11 0.17 0.09 0.29 0.54 0.15
α = 0.8 0.63 0.66 0.15 0.20 0.09 0.27 0.51 0.09
α = 0.9 0.73 0.69 0.14 0.21 0.11 0.37 0.53 0.13
α = 1.0 0.79 0.90 0.20 0.24 0.14 0.42 0.58 0.18

AAE

α = 0.4 2.46 2.20 3.00 3.03 3.35 4.72 2.61 2.71
α = 0.5 2.45 2.19 2.99 3.03 3.03 4.69 2.63 2.63
α = 0.6 2.43 2.17 3.01 2.97 2.99 4.65 2.63 2.60
α = 0.7 2.43 2.16 2.94 3.01 2.98 4.65 2.60 2.62
α = 0.8 2.45 2.17 3.01 3.00 3.04 4.62 2.58 2.64
α = 0.9 2.47 2.18 3.03 3.00 3.04 4.61 2.61 2.68
α = 1.0 2.66 2.30 3.33 3.44 3.07 5.11 3.05 3.01

In order to verify and analyze the contribution of the introduction of the fractional
differential theory of the Grünwald–Letnikov method discretization to the TVL1 algorithm
using the gradient descent method for numerical iteration, two ablation experiments were
carried out, as shown in Tables 1–3.

(1) A fixed smoothing term parameter is set and the fractional order acting on the
objective function is changed. The fractional order is in the interval [0.5, 3] with a step of
0.1. Tables 2 and 3 intercept the results within the interval [0.5, 1] for presentation.
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When the smoothing parameter is 79.4, the evaluation results of the FO-TVL1 optical
flow algorithm under the MPI_Sintel sequence significantly reflect that the fractional-order
TV-L1 algorithm reduces the values of two error evaluation indexes compared with the
integer-order TV-L1 algorithm. In terms of the AEPE index, the optical flow errors of eight
test sequences in the optimal fractional order are reduced compared with the integer order:
6.7409, 9.8112, 1.1759, 0.7221, 1.1107, 20.6276, 3.1123, and 0.6305. In the AAE index, the
optical flow angle error is decreased compared with the integer order: 0.061, 0.509, 0.1335,
0.0116, 0.1843, 0.0113, 0.0017, and 0.1259. For sequences with different attribute challenges,
the fractional-order parameters to obtain the best results are different, which is due to the
feature of fractional-order discretization based on image gradient calculation.

According to the principle of AEPE and AAE evaluation of optical flow algorithms [18],
when the two error values reach the minimum value in balance, the optical flow algorithm
can obtain ideal parameters. In the results shown in Table 2, taking the Shaman2 se-
quence as an example, even if AEPE and AAE achieve ideal results when alpha = 0.6 and
alpha = 0.8, respectively, the optimization parameters cannot be simply determined on this
basis. The two evaluation indexes must be considered at the same time; otherwise, it is
difficult to avoid the algorithm falling into local optimality during the convergence process.
Therefore, it is necessary to further use the ALO method for parameter optimization to
obtain the ideal optical flow estimation results.

It can be seen from Table 3 that when the fractional-order value is from 0.7 to 1, the
optical flow error increases with a high growth rate, and when the fractional-order value is
from 0.4 to 0.7, the optical flow error shows a steady downward trend. The optical flow
calculation under fractional-order differentiation is better than that under integer-order
differentiation as a whole. And in the interval α = [0.3, 1] , the best value is α = [0.5, 0.8];
in this time flow error index, AEPE and AAE are overall low, indicating that the model in
this interval performs well and has high accuracy under the influence of fractional-order
differentials.

From the analysis of the challenging attributes of the test data, in the Army and
Grove sequences with rich texture and clear edges, α = 0.8 has the best comprehensive
performance and the smallest error in time flow estimation. The Ambush2 sequence has
rich contours, and the optimal order is α = 0.8. The Market1 sequence has rich and complex
scenes and targets with dramatic changes in motion state, and the optimal fractional order
of data items is α = 0.9. For the Mequn and Wall sequences with relatively simple motion
and texture, the optimal orders are α = 0.6 and α = 0.5, respectively, and the comprehensive
error result is the lowest. The Cave4 sequence is not rich in texture details, and the optimal
order is α = 0.6. The Wooden, Ambush2, and Market4 sequence have simple rules and
sufficient illumination in the texture, and the optimal fractional order is α = 0.7.

In summary, the following hypotheses can be obtained from the above experimental
results: The optimal performance interval of the fractional order has a strong correlation
with the data themselves, and the higher the complexity of the motion scene, texture, and
lighting conditions, the higher the value of the optimal fractional order, and there is a
concentrated law. After performing the above experiments on two optical flow datasets
with completely different scene elements and target states, it can be obtained that the value
of the optimal fractional order is closely related to the complexity of the scene and the
target texture conditions of the input image.

(2) To validate the efficacy of the ALO module in optimizing parameters for TV-L1
energy function minimization during numerical iteration, this chapter involves conducting
ablation experiments using the gradient descent method (GD, gradient descent), conjugate
gradient method (CG, conjugate gradient), and ALO method as ablation components
under different methods and compares the optical flow evaluation results. Additionally,
convergence experiments are carried out with AFMSO-TVL1’s smooth term parameters
and fractional-order parameters.

From the analysis of the results in Table 3, when the smoothing parameter is fixed
to 23.6, for the integer-order TVL1 algorithm, the AEPE of TVL1(ALO) using the ALO
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method for numerical iteration is reduced by 2.4614 and 0.4978, respectively, compared with
TVL(GD) and TVL1(CG) using the gradient descent method and the conjugate gradient
method. PSNR increased by 0.19% and 0.85%, while the SSIM index increased by 0.1017%
and slightly decreased by 0.186%. Similarly, with the introduction of the ALO algorithm,
the AEPE index of the FO-TVL1 algorithm is reduced by 3.0026 and 1.3616, the SSIM index
is increased by about 0.9077% and 0.4059%, and the PSNR value is increased by about
0.0185 and 0.1446.

At the same time, it can be concluded from the statistical analysis results in Table 4
that the introduction of fractional differentiation or ALO alone can only lead to a maximum
of two improvements in the evaluation results, which also confirms the necessity of the
simultaneous contribution of fractional differentiation and ALO components based on the
discretization of the Grünwald–Letnikov method.

Table 4. Based on integer-order TVL1 and fractional-order TVL1 algorithms, different iterative
methods were used for ablation experiments.

Evaluation
Index

Test Sequence—Cave2

TVL1 (GD)
λ = 23.6 α = 0.5

TV-L1 (CG)
λ = 23.6 α = 0.5

FO-TVL1
(GD − α = 0.5)

FO-TVL1
(CG − α = 0.5)

TVL1
(ALO)

FO-TVL1
(ALO)

AEPE 18.40 15.44 17.58 15.33 15.94 14.58
PSNR 12.94 12.93 12.97 12.85 12.94 12.99
SSIM 0.0295 0.0266 0.0249 0.0299 0.0276 0.0340

(3) The next step involves conducting an ablation experiment on the FO-TVL1 optical
flow estimation algorithm to analyze the impact of the smoothing term parameter λ.
Initially, various disturbance factors such as the number of iterations, population size, and
initial parameters were determined (values provided in Table 1). The ablation component
refers to the weight λ assigned to the smoothing term. The experimental optimization object
is the objective function of optical flow estimation, and the fitness function is set as the
error calculation function. The iteration process stops after reaching a predefined number
(NIterations = 100). Throughout the experiment, convergence values for three evaluation
indexes were recorded. In Table 5, fractional order alpha is set at a fixed value (α = 0.5),
and statistical analysis was performed on three evaluation results obtained from FO-TVL1
under different smoothing parameters.

Table 5. When the fixed fractional order alpha is 1.5, the optical flow error index, PSNR index, and
SSIM index are obtained when the smoothing coefficient value is traversed with the step of 0.1 in the
interval [0.5, 70].

Parameter
Selection

Evaluation
Index

MPI_Sintel Sequence

Ambush2 alley_1 Market_5 Cave2

λ = 9.8
AEPE 80.30 278.86 109.60 71.25
PSNR 11.25 13.73 10.60 22.91
SSIM 0.0130 0.0313 0.0062 0.1988

λ = 11.3
AEPE 80.01 247.92 101.71 65.80
PSNR 11.24 13.75 10.62 22.87
SSIM 0.0119 0.0280 0.0032 0.1900

λ = 16.7
AEPE 78.98 155.15 84.36 50.29
PSNR 11.24 13.76 10.65 22.88
SSIM 0.0127 0.0247 0.0113 0.2147

λ = 19.5
AEPE 78.81 138.70 80.79 44.79
PSNR 11.24 13.78 10.65 22.89
SSIM 0.0130 0.0229 0.0114 0.211
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Table 5. Cont.

Parameter
Selection

Evaluation
Index

MPI_Sintel Sequence

Ambush2 alley_1 Market_5 Cave2

λ = 33.6
AEPE 77.44 96.22 69.40 26.09
PSNR 11.24 13.72 10.59 22.69
SSIM 0.0132 0.0370 0.0010 0.2074

λ = 45.9
AEPE 77.21 71.92 64.96 18.48
PSNR 11.24 13.69 10.55 22.61
SSIM 0.0132 0.0332 0.0017 0.2174

λ = 64.2
AEPE 76.53 49.79 61.50 14.33
PSNR 11.24 13.72 10.49 22.53
SSIM 0.0150 0.0278 0.0081 0.2165

In the experimental analysis results in Table 4, under the influence of different image
scene attributes and image quality, the optical flow estimation results under different
smoothing parameter values are different, but the data show that when the beta value is
within the interval [35, 49], the three evaluation results perform well.

Figure 2 shows a convergence process curve drawn in the control variable experiment.
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3.2. Comparative Experiments

In order to verify the superiority of the algorithm in this chapter for the dataset perfor-
mance, this chapter uses AFMSO-TVL1 to compare with TVL1-Flow, HS, FO-FFlow (the
Fractional Order Farneback Flow Algorithm), FOTVL1-Flow, FOVOFM, and ADFOVOFM,
and obtains the following optical flow performance of random sequences in the MPI_Sintel
and Middlebury datasets under different algorithms.

As can be seen from the data in Table 5, the performance of the AFMSO-TVL1 algo-
rithm proposed in this chapter for complex scenes is comprehensive and as fully able as
possible to retain and estimate the moving optical flow from the texture information. In
the scenes with complex texture structure and lighting conditions, the advantages of the
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algorithm in this chapter are stronger. The comparative experimental results are shown in
Table 6.

Table 6. Optical flow error indexes obtained from parameter optimization experiments performed on
MPI_Sintel sequences.

AEPE

Comparative
Algorithms

MPI_Sintel Sequence

Ambush Wall Market Cave

TVL1-Flow 44.62 6.51 4.11 18.23
HS 43.87 8.39 3.64 19.82

FO-FFlow 38.69 6.45 3.64 18.05
FOVOFM 44.15 6.55 4.23 17.71

ADFOVOFM 42.35 6.27 3.58 16.18
Ours 41.72 6.24 3.96 15.32

In Table 7, the AFMSO-TVL1 algorithm shows better results than the five contrasted
algorithms in complex scenes, especially in scenes containing low light and high texture
features (such as the Wall and Market sequences). Compared with the fractional-order
moving optical flow estimation algorithm FOVOFM, the AEPE errors estimated by AFMSO-
TVL1 in the four sequences are reduced by 2.4237, 0.3107, 0.2746, and 0.8499, respectively.
In the Ambush sequence, the fractional-order parameter of AFMSO-TVL1 achieving the
lowest convergence value is 2.1486, and the optimal value of the smoothing parameter is
67.9466.

Table 7. Optical flow error indexes derived from Middlebury sequence parameter optimization
experiments.

AEPE

Comparative
Algorithms

MiddleBury Sequence

Mequn Yosemite Grove Teddy

TVL1-Flow 0.24 0.16 0.62 0.41
HS 0.18 0.19 0.49 0.32

FO-FFlow 0.21 0.15 0.56 0.47
FOVOFM 0.22 0.17 0.67 0.51

ADFOVOFM 0.19 0.13 0.61 0.42
Ours 0.17 0.11 0.57 0.39

When considering the average endpoint error indexes of the optical flow, PSNR, and
SSIM indexes at the same time, the proposed work can provide 6.45% and 4.76% lower
error rates than TVL1-Flow and FOVOFM in the Mequn and Yosemite sequences from
MiddleBury. The accuracy of the Grove and Teddy sequences is slightly lower than that of
FOVOFM and FO-FFlow at 55.67% and 48.89%.

As shown in Figure 3, (a), (b), and (c) respectively represent three random sequences,
(1) represents the original input image, and (2), (3), (4), and (5) respectively represent the
visual results of optical flow estimation by the four algorithms HS, TVL1-Flow, FOVOFM,
and AFMSO-TVL1 for the four random data. It can be seen that in group (1), the estimation
of optical flow mainly focuses on the contour with distinct features, and hardly involves the
extraction of texture, and even the edge of the moving target cannot be accurately extracted.
In (2), the visualization image obtained by the TVL1 group obviously increases the pixel
participation in the estimation of complex texture regions, but the performance is not ideal,
and excessive smoothing on the global scale causes serious texture blur. According to the
statistical analysis conclusion in Section 3.1, this is caused by the difficulty in achieving
optimal convergence of parameter values. In (4b), the general outline of human facial
features can be displayed more clearly, but because the algorithm is difficult to adapt to
adjust the fractional order according to the pixel gradient, the details of the hair and the
details of the wall in the background cannot be estimated. It can be seen from (5c) and (5a)
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that the algorithm in this chapter fairly restores and preserves the complex textures of the
front and back scenes, and the details of the necklace, head shadow texture, and background
fence are richly estimated. The shell decoration in the background with very poor lighting
conditions, the details of the figure’s clothing, and the shape of the hand skeleton are all
things that the previous works did not pay attention to or show. In this chapter, we make
full use of pixel texture information and participate in optical flow calculation. The region
selected by the red box in the image can highlight the improvements of our proposed
AFMSO-TVL1 algorithm in texture detail and global feature extraction.
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4. Discussion

Multiple sets of experimental data in Section 3 show that the robustness and accuracy
of our proposed optical flow estimation model for dynamic feature capture and estimation
of texture details in complex attribute scenes are clear. Ant Lion optimization plays an
important role in the minimization of fractional-order optical flow equations, and it can
realize the global optical flow estimation while preserving texture details in contrast to
the estimation methods under the fractional-order differential. The proposed optimization
method for the Variational Optical Flow model avoids to a large extent the local optimal
problem, which is easy to fall into when using the bionic population optimization method
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to optimize the optical flow estimation model. This method does not affect the advantage of
fractional-order differentials in texture feature mining in the optical flow estimation model,
whereas our proposed AFMSO-TVL1 deftly improves the accuracy and robustness of the
optical flow estimation model at multiple scales through a multi-parameter optimization
strategy but inevitably sacrifices the real-time operation of the model. Compared with
the previous work, the optical flow estimation time of the AFMSO-TVL1 model is longer,
which is also something that future researchers can pay attention to and improve.

In the TVL1 optical flow algorithm, the fractional differential is used to replace the
traditional integer differential, and the ALO algorithm is used for numerical iteration of
optical flow estimation. It can be seen from the results of experiment 3 in Section 3.1 that
such a design can better capture the local correlation and global distribution of pixels in
the sequence. The optical flow estimation based on pixel features can generalize input
data and avoid optical flow estimation errors caused by sequence scene complexity and
unpredictability of target motion. This makes the proposed algorithm more widely ap-
plicable to scenarios. At the same time, the enhancement effect of the fractional order on
texture and the characteristics of historical memory make the total variable spectral flow
estimation result more robust after optimization by the ALO algorithm with global search
ability. The test optical flow graphs of the three sequences in Figure 3 can be analyzed as
follows: To a certain extent, the proposed algorithm effectively solves the over-smoothing
problem of the total variable spectral flow estimation, and the local optimal problem that
the fractional-order optical flow algorithm is easy to produce. However, since the fractional
order is calculated based on the per-pixel gradient, the calculation amount is much higher
than that of the integer order. Moreover, the computational update of pheromones and
the search for solution space in the ALO iterative search are complicated. This is despite
the fact that ALO has improved speed relative to other swarm intelligence algorithms.
However, for some carriers requiring real-time performance, the proposed algorithm has
the limitation of slow operation speed.

5. Conclusions

In the previous experiments and theoretical studies, we found that the optical flow
estimation algorithm has a relatively large estimation loss for the target texture in some
dynamic scenes. In fact, not all objects are suitable for tracking by extracting salient contours.
When it is necessary to estimate the moving target from the texture characteristics, the
existing optical flow estimation algorithms are difficult to adapt to real-world application.
In order to solve the shortcomings of the previous optical flow algorithms in the generalized
scenario, we present the work in this paper.

The fractional-order theory of the Grünwald–Letnikov method is introduced into
the TV-L1 optical flow algorithm, and a new fractional-order TV-L1 optical flow objective
function is reconstructed. The Ant Lion optimization method is used for the first time to
optimize the new objective function with multiple parameters, so that two parameters affect
the final optical flow estimation error: the fractional order for enhancing the local features
and the smoothing term for smoothing the global features are balanced and optimized. It
can be found that the introduction of fractional differentiation reduces the convergence
value of the objective function of optical flow, and the visualized optical flow results are
more fully displayed in the processing of texture region information than in previous work.

In this work, we design a novel AFMSO-TVL1 optical flow algorithm from the per-
spective of balancing global and texture features. The TV-L1 optical flow equation involves
fractional-order discretization, and the Ant Lion algorithm is innovatively introduced to
realize the optimization of adaptive multi-scale algorithm parameters. Our algorithm
performs well in scenes with complex lighting and rich textures. This improvement adds
flexibility to dynamic optical flow estimation in scene fitness, while greatly improving the
optical flow extraction rate of multi-scale features. However, the AFMSO-TVL1 optical
flow algorithm may lead to increased background interference in some dynamic tracking
tasks, such as target localization in SLAM tasks. Since the information is fully utilized in
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the calculation process, the sampling area should be carefully segmented into special tasks
to ensure operation accuracy and efficiency.

At the same time, the random walk of the Ant population around the elite Ant Lion
ensures the convergence of the optimization process, and the roulette wheel strategy helps
to improve the global search ability of the algorithm to a certain extent. However, the
phasic contraction of the Ant Lion’s predation radius with the increase in the number of
iterations will lead to a gradual decrease in population diversity, and the convergence
speed of the algorithm will be reduced under the leadership of a single elite. At the same
time, compared with other optimization methods, the computational complexity of ALO
optimization is relatively high. Therefore, future research can focus on how to improve the
population renewal strategy and reduce the computational complexity of the algorithm.
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