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Abstract: The quantile regression technique is introduced into the Lotka–Volterra ecosystem analysis
framework. The quantile grey Lotka–Volterra model is established to reveal the dynamic trade
relationship between China and the United States. An optimisation model is constructed to solve op-
timum quantile parameters. The empirical results show that the quantile grey Lotka–Volterra model
shows higher fitting accuracy and reveals the trade relationships at different quantiles based on
quarterly data on China–US trade from 1999 to 2019. The long-term China–US trade relationship
presents a prominent predator–prey relationship because exports from China to the US inhibited
China’s imports from the United States. Moreover, we divide samples into five stages according
to four key events, China’s accession to the WTO, the 2008 global financial crisis, the weak global
economic recovery in 2015, and the 2018 China–US trade war, recognising various characteristics at
different stages.

Keywords: grey system theory; Lotka–Volterra model; quantile regression; optimisation modelling;
China–US trade

1. Introduction
1.1. Motivation

In recent years, China–US trade frictions have emerged one after another, causing
adverse effects on the two largest economies: those of the United States and China. Since
the China–US trade conflict officially broke out in April 2018, the trade relationship between
China and the US has aroused widespread concern and discussion. According to statistics
from the US Bureau of Economic Analysis (www.bea.doc.gov, accessed on 2 February
2024), the average annual growth rates of China’s total import and export volume, export
scale, import scale, and trade surplus with the United States from 1999 to 2023 were 11.37%,
11.82%, 10.42%, and 8.11%, respectively. The total import and export volume and export
and import scales of China–US trade were on the uptrend: the trade surplus generally
expanded until the China–US trade war in 2018, after which the trade surplus shrank.

Reviewing the development history of China–US trade, since China joined WTO, its
foreign trade has entered a period of significant growth, the trade relations between them
have continued to deepen, and the surplus has increased rapidly. After that, the world
underwent a financial crisis. In 2009, China’s foreign trade was affected by this financial
crisis. The total volume of imports and exports to the United States, the scale of imports,
and the trade surplus decreased by 9.72%, 12.29% and 16.55% compared with that in 2008,
respectively, while China’s export trade to the United States decreased by 5.78% compared
with previous years. Since 2015, the world economy has entered a period of weak recov-
ery. Under pressure from sluggish external demand and the slow recovery of the world
economy in 2015 and 2016, China’s trade scale with the United States decreased, while the
gap in China’s trade surplus with the US constantly increased. Until the China–US trade
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war broke out in 2018, the issue of China–US trade imbalances became increasingly promi-
nent. The trade surplus dropped from USD 378.758 billion in 2018 to USD 307.841 billion
in 2019, decreasing by 18.72%. These abnormal fluctuations increased uncertainty in the
development of trade relations.

To characterise the dynamic trade relationship between China and the US more ac-
curately and then guide the healthy development of the China–US trade partnership, it is
necessary to establish a reasonable model to analyse the evolution of the dynamic relation-
ship between China and the US, thus offering practical and instructive suggestions guiding
national decision making and global development.

1.2. Literature Review

A country’s international trade is closely related to its economic development; con-
stantly increasing production demands a constantly expanding market in international
trade. In other words, constantly increasing international trade can promote the continuous
expansion of production. Many scholars have analysed trade relations among countries;
for example, Jiang et al. [1] explored dynamic synergies between the oil market and stock
markets, testing the causality of the existence of these by using wavelet multi-scale de-
composition. Mahmood et al. [2] assessed the environmental effects of revenue, imports
and exports, and energy consumption in five North African countries, showing exports’
adverse effects on CO2 based on spatial panel data. However, that research was based on
analysing the relationship between market-influencing factors and cannot explain dispersal
behaviour or mechanisms in a mutual market. In foreign trade, frictions are inevitable
among countries: how to analyse the evolution of China–US trade relations and predict fu-
ture dynamic trends is an important research topic. China’s trade relations affect economic
growth and social stability among countries, and at present, the academic community has
not investigated dynamic trade relationships and the evolution of imports and exports.

The Lotka–Volterra model, abbreviated as the LV model, is a differential dynamic
equation proposed by Lotka and Volterra [3,4]; it was initially applied to the dynamic
competition among populations in the ecosystem. There are many models applied in de-
scribing the spread of species, for example, the Gompertz model [5], the logistic model [6,7],
and the Bass model [8] were used to describe the spread of a species; these above models
only describe the dynamic changes in a single species in a single population, ignoring
information exchange between species. The LV model has been extended to many cases in
recent years, such as market competition [9,10], global dynamics of a class of n-dimensional
Lotka Volterra systems [11], the bank system [12], and energy and environment [13], for
the model focussing on the interactions generated in an environment.

The LV model performs well in predicting the evolution of two or even multiple
populations [14,15]. By comparing the advantages and disadvantages of the logistic growth
model and the LV model, Modis [16] pointed out that the LV model used cross items and a
couple of constant terms to promote the logistic-style growth of two or even more species.
The model described the competition among individuals of the same species and how
another species affects the rate at which it grows. Chiang [17] analysed dynamic competitive
relationships of different types of silicon chip counterparts by constructing a novel LV
model, believing that the model offers advantages in predicting the role of competitive
products. Hung et al. [18] constructed a modified LV model to better predict the retail
industry in Taiwan affected by seasonal and cyclical factors. Agrrawal et al. [19] determined
the migration of exchange-traded fund (ETF) liquidity and its factor constituents in the US.
Ditzen [20] estimated the convergence of 93 countries from 1960 to 2007 using the general
Lotka–Volterra model.

Furthermore, many scholars improved the LV model from different perspectives.
Marasco et al. [21] believed that the traditional LV model is flawed in assuming con-
stant interaction coefficients and proposed a nonautonomous LV model to predict mar-
ket evolution. Using statistical methods to estimate the parameters of the LV model
requires large sample sizes to obtain more effective estimation results; in most cases,
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the available data are sparse. To solve this problem, Li et al. [22] first proposed the
grey Lotka–Volterra model, abbreviated as the GLV model, based on the grey system the-
ory [23]. In addition, Wu et al. and Gatabazi et al. [24,25] proved that a GLV model
can recognise the dynamic relationship among variables compared with the traditional
model. Hung et al. [26] established a combined time series method and LV model consider-
ing seasonal factors, revealing predator–prey relationships of convenience-oriented and
budget-oriented forms. Zhang et al. [27] verified the random nonautonomous LV model’s
random persistence and extinction problems with impulse perturbation via numerical
simulation. Amore and Francisco [28] applied the Lindstedt–Poincaré method to the Lotka–
Volterra model. Shi and Yan [29] studied a Lotka–Volterra competition model consisting of
two equations and established an iterative algorithm and error estimation to solve the
model. Zhao et al. [30] proposed a heterogeneous grey model for carbon emission predic-
tion in 30 provinces in China.

Some scholars used non-linear least squares methods to estimate the discrete LV mod-
els [31], but these depend on initial value conditions, which readily lead to significant
errors. Generally, the minimum mean absolute percentage error (MAPE) was used to
compare the performance of comparative prediction models [32]. However, the minimi-
sation principle of the MAPE had an absolute value, which caused the objective func-
tion to be non-differentiable [33]. Under the minimum MAPE principle, the non-linear
grey Bernoulli model parameters were estimated in the particle swarm optimised (PSO) al-
gorithm. Automation algorithms were deployed by Agrrawal [34] to derive capital market
information. Wang and Hsu [35] estimated the parameters of the GM(1,1) model used with
genetic algorithms. Wu and Wang [36] estimated the parameters in the linear regression
method of the LV Model based on minimum MAPE, which performed forecast modelling
for several typical macroeconomic indicators in China.

Whether using non-linear least squares or linear programming methods based on
minimum MAPE, the problem of outlier-induced interference in estimation and robustness
cannot be overcome effectively. Wang and Jv [37] found that the use of quantile regression
based on grey system theory had a prominent optimised effect on data series with outliers.
For this reason, the quantile regression technique is adopted to estimate the parameters
of the non-linear GLV model in our study, and the quantile grey Lotka–Volterra model,
abbreviated as the QGLV model, is proposed to reveal the dynamic relationship and
evolution process among populations.

1.3. Contribution and Organization

The main contributions of this research can be summarised as follows:

(1) This work proposes using the quantile grey Lotka–Volterra (QGLV) model to identify
the dynamic competitive relationship between the two populations. An optimization
model is established based on the new model to solve the optimal quantile parameters.

(2) Empirical results show that the QGLV model has higher fitting accuracy than the
traditional model and reveals the trade relationships at different quantiles based on
quarterly data on China–US trade from 1999 to 2019.

(3) The long-term China–US trade relationship exhibits a prominent predator–prey rela-
tionship. Moreover, we divide samples into five stages according to four key events,
China’s accession to the WTO, the 2008 global financial crisis, the weak global eco-
nomic recovery in 2015, and the 2018 China–US trade war, recognizing variation
characteristics at different stages.

The remainder of the research is arranged as follows: Section 2 presents the existing
LV and the proposed QGLV models’ methods. Section 3 presents modelling results and
identifies the dynamic trade relationship between China and the US. The conclusion is
summarised in Section 4.
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2. Methodology

The China–US trade balance is not a problem between China and the US but a global
problem. China–US trade competition and cooperation relationship are dynamic and
changing. Many factors can change the trade landscape between China and the United
States, such as China’s accession to the WTO, the China–US trade war, and changes in the
global economy. The relationship between China and the United States is no longer “black
and white” but co-exists between cooperation and competition, and both sides are still
exploring how to get along. In order to better describe and predict this process, we propose
a new GLV model (the quantile grey Lotka–Volterra model, the QGLV model) to assess
the China–US trade relations with its traditional counterpart and verify the validity of the
QGLV model.

2.1. The Existing GLV Model

The Lotka–Volterra model was first used to describe the competition or symbiotic
relationship among ecological populations, which is one of the differential dynamic models
based on the logistic curve. As the LV model considers the influence of different populations,
it has more advantages than the logistic model in describing the changes in a single variable.
Taking two populations, for example, the traditional LV model [38] can be expressed
as follows:

dA
dt

= A(a1 − b1 A − c1B) = a1 A − b1 A2 − c1 AB (1)

dB
dt

= B(a2 − b2B − c2 A) = a2B − b2B2 − c2BA (2)

where A and B represent the volume of China’s import trade to the US and China’s export
trade to the US, respectively. Taking Equation (1) as an example, a1 is an exponential growth
parameter, indicating the impact of China’s ability to import from the United States on its
further development; b1 is a self-limiting parameter, demonstrating the fact that China’s
import capacity to the United States is limited; c1 is coupling strength of the interaction
between import and export of China–US trade, showing that there is a cross-impact between
the value of China’s imports and exports to the US. Equation (2) is of a similar form; c1 and
c2 are two kernel parameters in Equations (1) and (2), theoretically. The larger the absolute
values of c1 and c2, the more frequent the interaction among populations and the smoother
the exchange of information between populations.

Most data are discrete, and when using discrete data, it is necessary to transform
Equations (1) and (2) to discretise the LV model [39].

α(κ + 1) =
λ1α(κ)

1 + θ1α(κ) + γ1β(κ)
, κ = 1, 2, . . . , n (3)

β(κ + 1) =
λ2β(κ)

1 + θ2β(κ) + γ2α(κ)
, κ = 1, 2, . . . , n (4)

During discretisation transforming Equations (1) and (2) to Equations (3) and (4), the
corresponding relationship of each parameter is as follows:

a1 = ln λ1, a2 = ln λ2; b1 =
θ1 ln λ1

λ1 − 1
, b2 =

θ2 ln λ2

λ2 − 1
; c1 =

γ1 ln λ1

λ1 − 1
, c2 =

γ2 ln λ2

λ2 − 1
.

Since the data sample size is small in practical problems, the parameter could not be
estimated by the classical regression estimation method effectively. Using the grey system
theory to estimate the parameters in the LV model has been proven to be effective. Firstly,
two non-negative original sequences are assumed to be

A(0) =
{

α(0)(1), α(0)(2), . . . , α(0)(n)
}

(5)
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B(0) =
{

β(0)(1), β(0)(2), . . . , β(0)(n)
}

(6)

Using the first order accumulated generating sequence (1-AGO) of A(0) and B(0), the
following can be obtained:

A(1) =
{

α(1)(1), α(1)(2), . . . , α(1)(n)
}

(7)

B(1) =
{

β(1)(1), β(1)(2), . . . , β(1)(n)
}

(8)

where each accumulative value is α(1)(κ) =
κ

∑
i=1

α(0)(i), β(1)(κ) =
κ

∑
i=1

β(0)(i), κ = 1, 2 . . . , n.

Taking α(0) as an example, the grey differential equation is supposed to be dα(1)

dt +

aα(1) = b; then, the discrete grey differential equation can be expressed as

dα(1)

dt
=

α(1)(κ + ∆t)− α(1)(κ)

∆t
≈ α(1)(κ + 1)− α(1)(κ) = α(0)(κ) (9)

where ∆t = 1. Close neighbour average values of cumulative sequences of α(1) and β(1) are

φ
(1)
α (κ) =

α(1)(κ) + α(1)(κ + 1)
2

, κ = 1, 2, . . . , n − 1 (10)

φ
(1)
β (κ) =

β(1)(κ) + β(1)(κ + 1)
2

, κ = 1, 2, . . . , n − 1 (11)

The GLV model can be expressed as

α(0)(κ + 1) = a1 φ
(1)
α (κ)− b1

(
φ
(1)
α (κ)

)2
− c1 φ

(1)
α (κ)φ

(1)
β (κ) (12)

β(0)(κ + 1) = a2 φ
(1)
β (κ)− b2

(
φ
(1)
β (κ)

)2
− c2 φ

(1)
β (κ)φ

(1)
α (κ) (13)

The residual error of the GLV model can be expressed as

εα(κ) = α(0)(κ + 1)−
[

a1 φ
(1)
α (κ)− b1

(
φ
(1)
α (κ)

)2
− c1 φ

(1)
α (κ)φ

(1)
β (κ)

]
(14)

εβ(κ) = β(0)(κ + 1)−
[

a2 φ
(1)
β (κ)− b2

(
φ
(1)
β (κ)

)2
− c2 φ

(1)
β (κ)φ

(1)
α (κ)

]
(15)

Generally, grey parameter estimation in the LV model adopts ordinary least
squares regression: â1

b̂1
ĉ1

 =
(

XTX
)−1

XTY (16)

where

Y =


α(0)(2)
α(0)(3)

...
α(0)(n)

, X =



φ
(1)
α (2) −

[
φ
(1)
α (2)

]2
−φ

(1)
α (2)φ

(1)
β (2)

φ
(1)
α (3) −

[
φ
(1)
α (3)

]2
−φ

(1)
α (3)φ

(1)
β (3)

...
...

...

φ
(1)
α (n) −

[
φ
(1)
α (n)

]2
−φ

(1)
α (n)φ

(1)
β (n)


The GLV model (after transformation) can be expressed as

α̂(1)(κ + 1) =
λ̂1α(1)(κ)

1 + θ̂1α(1)(κ) + γ̂1β(1)(κ)
, κ = 1, 2, . . . , n − 1. (17)
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The transformation between parameter estimation

â1
b̂1
ĉ1

 in Equation (14) and the

parameter in Equation (15) is as follows:

λ̂1 = eâ1 , θ̂1 =

(
eâ1 − 1

â1

)
b̂1, γ̂1 =

(
eâ1 − 1

â1

)
ĉ1.

Finally, we can obtain prediction sequences as follows:

α̂(0)(κ + 1) = α̂(1)(κ + 1)− α̂(1)(κ) (18)

β̂(0)(κ + 1) = β̂(1)(κ + 1)− β̂(1)(κ) (19)

2.2. The QGLV Model

Different from the relationship between conditional exceptions of the independent
variable and the dependent variable in traditional regression analysis, quantile regression
is used to assess the relationship between the conditional quantiles of the independent vari-
able and the dependent variable, which can more comprehensively describe the distribution
characteristics of the dependent variable [40]. Each parameter of the τ quantile model in
quantile regression can be estimated by an asymmetric loss function that minimises the
absolute value of the residuals. The QGLV model is expressed as

α(0)(κ + 1) =
[

a1(τ)φ
(1)
α (κ)− b1(τ)

(
φ
(1)
α (κ)

)2
− c1(τ)φ

(1)
α (κ)φ

(1)
β (κ)

]
+ εα(κ) (20)

β(0)(κ + 1) =
[

a2(τ)φ
(1)
β (κ)− b2(τ)

(
φ
(1)
β (κ)

)2
− c2(τ)φ

(1)
β (κ)φ

(1)
α (κ)

]
+ εβ(κ) (21)

where k = 1, 2, . . . , n, which needs to meet the minimum weighted error absolute value
square sum criterion under the τ quantile:

M(τ) = min
τ

 ∑
α(0)(κ)≥α̂

(0)
τ (κ)

τ
∣∣∣α(0)(κ)− α̂

(0)
τ (κ)

∣∣∣+ ∑
α(0)(κ)<α̂

(0)
τ (κ)

(1 − τ)
∣∣∣α(0)(κ)− α̂

(0)
τ (κ)

∣∣∣
 (22)

The objective function is non-differentiable, so the traditional objective function deriva-
tion method is no longer applicable. Herein, the simplex method proposed by Barrodale
and Roberts [41] is used to estimate the parameters at each quantile.

We finally obtained the time response function of the QGLV model in discrete form:

α̂(κ + 1) =
λ̂1(τ)α(κ)

1 + β̂1(τ)α(κ) + γ̂1(τ)β(κ)
, κ = 1, 2, . . . , n (23)

β̂(κ + 1) =
λ̂2(τ)β(κ)

1 + β̂2(τ)β(κ) + γ̂2(τ)α(κ)
, κ = 1, 2, . . . , n (24)

The conversion between the parameters of
(

â1(τ), b̂1(τ), ĉ1(τ)

)T
and Equation (23) is

as follows:

λ̂1(τ) = eâ1(τ) , β̂1(τ) =

(
eâ1(τ) − 1

â1(τ)

)
b̂1(τ), γ̂1(τ) =

(
eâ1(τ) − 1

â1(τ)

)
ĉ1(τ).
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Similarly, the conversion relationship between parameter
(

â2(τ), b̂2(τ), ĉ2(τ)

)T
and

Equation (24) can be obtained. Among them, â1 is the growth coefficient of China’s imports
from the United States, which is within the range of 0 to 1. It can be further seen that the
symbols of γ̂1 and ĉ1 are consistent, as are those of γ̂2 and ĉ2.

Population interactions based on the signs of c1 and c2 are listed in Table 1.

Table 1. Types of population interaction.

c1 c2
Type

of Competition Implication

+ + Pure competitive The two groups are in a competitive relationship.

+ − Predator–prey Population 2 preys on population 1, which is not conducive to the survival of
population 1 but beneficial to the survival of population 2.

− − Symbiotic The two groups promote and support each other.

− 0 Commensalism One-way promotion effect; population 2 has a good effect on the development
of population 1.

+ 0 Amenity One-way inhibition; population 2 exerts a negative effect on the development
of population 1.

0 0 Neutrality The two groups develop independently.

Finally, based on the first order accumulated generating sequence (1-AGO), the pre-
dicted sequence at each quantile can be obtained.

α̂
(0)
τ1 (κ + 1) = α̂

(1)
τ1 (κ + 1)− α̂

(1)
τ1 (κ) (25)

β̂
(0)
τ2 (κ + 1) = β̂

(1)
τ2 (κ + 1)− β̂

(1)
τ2 (κ) (26)

To improve the accuracy of the model further, the optimal parameters of the QGLV
model are obtained by mathematical programming based on selecting the optimal quantile
τ1, τ2 ∈ (0, 1). Under constrained conditions, we optimise the quantile τ1, τ2 ∈ (0, 1) with
the goal of minimising the average of MAPEα and MAPEβ. The objective function is

min
τ1,τ2

1
n−1

n
∑

κ=2

|εα(κ)|
α(0)(κ)

+ 1
n−1

n
∑

κ=2

|εβ(κ)|
β(0)(κ)

2
(27)

Equation (27) describes a non-linear optimisation problem. To reduce the complexity
of the model solution, we transform Equation (25) into a linear programming problem:

min
τ

n

∑
κ=2

(
εα

+(κ) + εα
−(κ) + εβ

+(κ) + εβ
−(κ)

)
(28)

s.t.



α(0)(κ + 1) =
[

a1(τ)φ
(1)
α (κ)− b1(τ)

(
φ
(1)
α (κ)

)2
− c1(τ)φ

(1)
α (κ)φ

(1)
β (κ)

]
+ [ε+α (κ) + ε−α (κ)]α

(1)(κ + 1)

β(0)(κ + 1) =
[

a2(τ)φ
(1)
β (κ)− b2(τ)

(
φ
(1)
β (κ)

)2
− c2(τ)φ

(1)
β (κ)φ

(1)
α (κ)

]
+
[
ε+β (κ) + ε−β (κ)

]
β(1)(κ + 1)

ε+α (κ), ε−α (κ) ≥ 0
ε+β (κ), ε−β (κ) ≥ 0
κ = 1, 2, . . . , n − 1

where εα
+(κ) = |εα(κ)|+εα(κ)

2α(1)(κ+1)
, εα

−(κ) = |εα(κ)|−εα(κ)

2α(1)(κ+1)
, εβ

+(κ) =
|εβ(κ)|+εβ(κ)

2β(1)(κ+1)
, and

εβ
−(κ) =

|εβ(κ)|−εβ(κ)

2β(1)(κ+1)
.
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After obtaining these parameters, we can identify the competitive relationship between
the two populations according to Table 1.

2.3. Equilibrium Points and Stability

When the equations are equal to 0 (dA/dt = 0 and dB/dt = 0), it means that the
quantity of two populations remains equal over time [42]. The four possible equilibrium
points are as follows:

(1) O(0, 0), which indicates that the two populations A and B disappear.

(2) E
(

0, a2
b2

)
, which indicates that B survives, but A is gone.

(3) N
(

a1
b1

, 0
)

, which indicates that only A survives, while B is gone.

(4) M
(

a1b2−a2c1
b1b2−c1c2

, a2b1−a1c2
b1b2−c2c1

)
, which indicates that during the process of competition, the

two coexist in balance.

Not all possible equilibrium points are stable under the disturbed environment. The
stability can be further analysed based on the Jacobian matrix:

Q =

(
fα fβ

gα gβ

)
(29)

where fα = a1 − 2b1α − c1β, fβ = −c2β, gα = a2 − 2b2β − c2α, and gβ = −c1α. When the
matrix is negative definite, the possible equilibrium point is stable; otherwise, it is unstable.

The algorithm flow chart via the QGLV model is illustrated in Figure 1.
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3. Modelling Results

QGLV model is proposed to focus on China–US trade relations, using the 1999–2019
quarterly trade scale index of China’s imports and exports to the United States (unit: USD
million dollars), from the National Bureau of Economic Analysis. In addition, since China’s
import trade volume to the United States is the US export volume to China, here we refer
to China’s import volume to the US as “imports” for brevity.

3.1. History of China–US Trade

To demonstrate the dynamic trade relationship between China and the US, we express
the quarterly trade volume of China’s imports and exports to the United States as α(0)(κ)
and β(0)(κ), respectively, and the cumulative series of imports and exports as α(1)(κ) and
β(1)(κ), which can be obtained by an accumulation based on the first quarter of 1999. From
1999 to 2019, China’s trade exports to the United States were far greater than imports,
and the trade surplus showed an expanding trend. Since China joined the World Trade
Organization (WTO) in 2001, China’s export trade volume has shown a substantial growth
trend. In 2008, the US financial crisis swept the world, which had significant effects on
China–US trade. This was reflected in the significant reduction in the scale of China’s
export trade to the US and the slight decrease in import trade volume in the third quarter
of 2008. Thereafter, the import and export volume showed an upward trend. In 2014, the
world experienced a period of economic recovery, and overall world demand declined.
China’s export volume to the United States dropped again, and then imports and exports
showed an uptrend. Until the outbreak of the China–US trade war in 2018, China’s export
trade volume to the US decreased significantly; in contrast, the import volume decreased
slightly. In summary, three evident processes drove the decline in the scale of China–US
trade, mainly affected by the financial crisis [43] and sluggish world market demand. In the
past 20 years, what has the dynamic relationship been between China and the US and what
kind of evolutionary processes are the key research questions posed here? Since quarterly
data are susceptible to seasonal factors, we first use the X12-seasonal adjustment method to
adjust the original data seasonally. As shown in Figure 2, the influences of seasonal factors
are minor, and there is little difference between the adjusted quarterly and actual series.
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3.2. Simulation Using the QGLV Model

In the parameter estimation of the QGLV model, the improved simplex method in
quantile regression is used to estimate each parameter. The parameters of the QGLV
model at each quantile are shown in Figure 3, the red line shows the upper and lower
limits of the 95% confidence interval of each quantile, and the blue line part represents
coefficient estimates of the quantile regression model. Under different quantile values,
the results of each parameter are different, while the traditional OLS regression only
reflects the average, which embodies the advantages of quantile regression estimation to a
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certain extent. Especially when quantile τ1, τ2 ∈ (0, 1) is close to the two extremes of the

range are the parameters quite different. With the exception of variables
(

φ
(1)
α (κ)

)2
and

φ
(1)
α (κ)φ

(1)
β (κ) failing the significance test when estimating the parameter bτ2 and cτ2 at

0.05 quantile, the optimal QGLV model did not consider the 0.05 quantile, and all other
quantile variables passed statistical test criteria (p < 0.05).

Fractal Fract. 2024, 8, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 3. Parameter estimation of each quantile under 95% confidence intervals. 

Based on parameter estimation at each quantile, the MAPE results of the QGLV 
model constructed herein are listed in Table 2. The MAPEs of the QGLV model of China’s 
imports to the United States are all less than 6.3%, and the fitting error is minimised at the 
0.05 quantile at 5.045%; the MAPE of the QGLV model of China’s exports to the United 
States at each quantile is all less than 4.1%. In addition, after passing the test, the error of 
the QGLV model at the 0.2 quantiles is minimised, with an average error of 4.458%. The 
model has an excellent fitting effect and strong robustness, making it suitable for analys-
ing the dynamic trade relationship between China and the US. 

Table 2. MAPE of the QGLV model. 

Quantile 
China’s Im-

ports from the 
US (%) 

China’s Ex-
ports to the US 

(%) 
Quantile 

China’s Im-
ports from the 

US (%) 

China’s Exports 
to the US (%) 

0.05 5.045 3.689 0.55 5.273 3.706 
0.10 5.262 3.660 0.60 5.294 3.709 
0.15 5.254 3.664 0.65 5.333 3.718 
0.20 5.236 3.680 0.70 5.364 3.725 
0.25 5.253 3.699 0.75 5.385 3.724 

Figure 3. Parameter estimation of each quantile under 95% confidence intervals.

Based on parameter estimation at each quantile, the MAPE results of the QGLV
model constructed herein are listed in Table 2. The MAPEs of the QGLV model of China’s
imports to the United States are all less than 6.3%, and the fitting error is minimised at the
0.05 quantile at 5.045%; the MAPE of the QGLV model of China’s exports to the United
States at each quantile is all less than 4.1%. In addition, after passing the test, the error of
the QGLV model at the 0.2 quantiles is minimised, with an average error of 4.458%. The
model has an excellent fitting effect and strong robustness, making it suitable for analysing
the dynamic trade relationship between China and the US.

On the premise that the minimum MAPE fitted by the two equations is the goal and
the test is passed, we obtain the model parameter estimation results based on the optimal
quantile (Table 3).

If the t-test is passed at the 5% confidence interval then the estimated values of â are
all valid.

Natural growth coefficients â1 (>0) and â2 (>0) show that the natural growth rates
of import and export scale indicators are positive when they are unaffected by external
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interference. This parameter can realise the further expansion of the import and export
scale without relying on other policy support or conflict; however, from the perspective of
the degree of promotion, the growth momentum of China’s imports to the US is less than
that driving the development of China’s exports to the US.

Table 2. MAPE of the QGLV model.

Quantile
China’s

Imports from
the US (%)

China’s
Exports to
the US (%)

Quantile
China’s

Imports from
the US (%)

China’s
Exports to
the US (%)

0.05 5.045 3.689 0.55 5.273 3.706
0.10 5.262 3.660 0.60 5.294 3.709
0.15 5.254 3.664 0.65 5.333 3.718
0.20 5.236 3.680 0.70 5.364 3.725
0.25 5.253 3.699 0.75 5.385 3.724
0.30 5.251 3.700 0.80 5.453 3.755
0.35 5.254 3.696 0.85 5.503 3.770
0.40 5.247 3.698 0.90 5.524 3.813
0.45 5.271 3.697 0.95 6.226 4.080
0.50 5.268 3.705

Table 3. Continuous estimation of the QGLV model at the optimal quantile.

China’s Import Trade Volume to the US China’s Exports to the US

Parameter Value t p Parameter Value t p

â1 7.93 × 10−2 23.72 0.00 â2 9.06 × 10−2 47.86 0.00
b̂1 −7.59× 10−8 −4.65 0.00 b̂2 5.79 × 10−8 14.07 0.00
ĉ1 3.16 × 10−8 5.93 0.00 ĉ2 −1.56× 10−7 −11.83 0.00

The restrictive parameters b̂1 (<0) and b̂2 (>0) denote that there is a marginal increasing
effect in the growth process of imports and a marginal decreasing effect in the growth
process of exports, and the range of the increasing effect of imports is greater than the one
of the decreasing effects of exports. This shows that the development potential of China’s
imports to the US is greater than that of China’s exports to the US.

From an interaction point of view, ĉ1 (>0) and ĉ2 (<0) imply that there is a predator–
prey relationship, which is not conducive to China’s imports to the US but is conducive
to China’s export to the United States. There are two possible mechanisms driving
this relationship:

(1) Comparison of export competitiveness. China’s imports of products and services
from the United States meet the needs of the domestic population and partly replace
the demand for domestic products and services, resulting in transporting domestic
products and services abroad and promoting the development of China’s foreign trade.
For the greater demand in the United States, China provides products at lower prices
and complete services. Compared with the products exported by the United States
to China, China’s exports to the US are more competitive, which has a considerable
effect on the domestic market of the United States. For instance, after China acceded
to the WTO, the significant reduction in export tariffs made its products and services
competitive, and its global market share increased. The increased competitiveness
of Chinese exports has affected the imports and exports of domestic companies in
the United States. In addition, Athukorala and Yamashita [44] also believed that the
China–US trade imbalance was a structural phenomenon caused by China’s critical
role in the global production network as a final product assembly centre. Therefore,
China’s imports to the US have become a driving mechanism to promote China’s
exports to the US, and China’s export competitiveness to the US is more vital than
that of the US to China.
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(2) Financial environment in the US. After financial liberalisation, the US financial super-
vision was relaxed, bank reserve ratios decreased, and loans increased. At the same
time, the real estate and stock markets boomed, and the wealth effect stimulated house-
hold consumption and reduced the incentive to save. The US trade surplus equals
the difference between US consumption and savings. To a certain extent, this change
promotes imports from the US to China and restrains the trend of US trade exports to
China, which changes the global economy. After the financial crisis, the international
market as a whole was depressed. There was an inevitable interdependence between the
two sides during the economic recovery. The China–US trade relationship evolved from
a competitive relationship to a symbiotic and predator–prey relationship.

According to the correspondence between parameters of continuity and the discrete
model, the parameter conversion results are listed in Table 4. In addition, continuous and
discrete parameter estimation results of each quantile are shown in Appendix A.

Table 4. QGLV model discrete estimation of optimal dissociation points.

Parameter Estimated Value Parameter Estimated Value

λ̂1 1.08 × 100 λ̂2 6.06 × 10−8

θ̂1 1.09 × 100 θ̂2 3.29 × 10−8

γ̂1 −7.90 × 10−8 γ̂2 −1.63 × 10−7

The prediction results of the optimal QGLV model are as shown in Equations (30) and (31):

α̂(0.2)(κ + 1) =
1.08α(κ)

1 + 1.09α(κ)− 7.90 × 10−8β(κ)
, κ = 1, 2, . . . , n (30)

β̂(0.2)(κ + 1) =
6.06 × 10−8β(κ)

1 + 3.29 × 10−8β(κ)− 1.63 × 10−7α(κ)
, κ = 1, 2, . . . , n (31)

According to Equations (11) and (12), the predicted values of import and export can be
obtained by calculation. As shown in Figure 4, the predicted values of import and export
are close to actual values, and the fitting effect is good.
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3.3. Comparison of the GLV and QGLV Models

For the quarterly data on the scale of China’s import and export trade to the United
States, we construct the GLV and the QGLV models, from which actual and predicted
values are shown in Figure 5. We estimate the QGLV model under 19 equally spaced
quantiles, respectively. The average MAPE is less than 5.2%, and the prediction is accurate.
The error of the QGLV model’s optimal quantile is lower than that of the GLV model, which
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means that the QGLV model achieved the purpose of reducing the error. The QGLV model
can significantly improve the LV model’s accuracy, which plays an optimisation role for
data with outliers. The results of the QGLV model are more robust.
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3.4. Equilibrium Analysis

Not all equilibrium points are meant for discussion in China–US bilateral trade re-
lations. For example, point B has a negative number, which we do not include in the
discussion. At the same time, in a fluctuating environment, not all equilibrium points
are stable. The equilibrium points and stable points of the relationship between China’s
imports and exports to the United States are analysed by consideration of the eigenvalue
method of the Jacobian matrix. When the matrix is negative definite, the equilibrium point
is stable; otherwise, it is unstable. The calculated results are displayed in Table 5; the
eigenvalue and the equilibrium values are both scalars.

(1) Explanation of ecosystem analysis. In ecosystem analysis, there are four possible
outcomes of the rivalry. As shown in Table 5, trade in both countries has been
suppressed at the first equilibrium point O(0, 0). Trade in one country wins, while
trade in another country is suppressed at the second point E

(
0, 1.56 × 106) and the

third point N
(
−1.05 × 106, 0

)
. The import–export relationship will stabilise at the

fourth equilibrium point M
(
3.24 × 106, 1.03 × 107), indicating that the cumulative

volume of China’s imports to the United States will stabilise at million dollars, and
the cumulative volume of China’s exports to the United States will stabilise at USD
1.03 × 107 million dollars.

(2) Explanation of economic model. Comparative advantage theory: China has a com-
parative advantage in labour-intensive products and can produce goods in large
quantities at low cost. In contrast, the United States has a comparative advantage
in technology-intensive and capital-intensive products. Via the trade cooperation
between the two countries, the optimal allocation of resources and the improvement
in efficiency can be achieved to achieve mutual benefit and win–win results. Abso-
lute advantage theory: In China–US trade, China has the advantages of abundant
labour and relatively low cost, while the United States has absolute advantages in
high-tech fields and innovative industries. Because of their respective advantages,
China has become the world’s factory, and the United States has become a leader
in technology and innovation. However, when trade imbalance and bias gradually
emerge, adjusting trade policies and balancing interests between the two sides will
lead to trade friction.
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Table 5. Equilibrium point and stability analysis of the QGLV model based on the optimal quantile (0.2).

Equilibrium Eigenvalue Equilibrium Value Stability

O(0, 0) (0.0793, 0.0906) O(0, 0) Unstable
E
(

0, a2
b2

)
(−0.0906, 0.0299) E

(
0, 1.56 × 106) Unstable

N
(

a1
b1

, 0
)

(−0.0793,−0.0725) N
(
−1.05 × 106, 0

)
Unstable

M
(

a1b2−a2c12
b1b2−c12c21

, a2b1−a1c21
b1b2−c21c12

)
(−0.0619,−0.2880) M

(
3.24 × 106, 1.03 × 107) Stable

3.5. Phased China–US Trade Relations Based on the QGLV Model

China–US trade relations exhibited a predator–prey relationship across all 19 quantiles
during the sample period. Then, we perform a phased analysis of China–US trade relations
based on the characteristics of the quarterly data on China–US trade. The quarterly data on
China–US trade from 1999 to 2019 are divided into five stages: Phase 1 is from 1999 to 2001,
Phase 2 is from 2002 to 2007, Phase 3 is from 2008 to 2014, Phase 4 is from 2015 to 2017,
and Phase 5 is from 2018 to 2019. The segmentation events of these phases were China’s
entry into the WTO (2001), the outbreak of the financial crisis (2008), the period of global
economic recovery (2015), and the outbreak of the China–US trade war (2018). We establish
the QGLV model for these five stages. The MAPE results are illustrated in Figure 6, which
are the fitting errors of China’s imports and exports volume to the United States and the
average fitting error of imports and exports volume, respectively. With the exception of the
MPAE in the first phase under parameter estimation at the two quantiles of 0.95 and 0.9
exceeding 20%, the MAPEs at the remaining quantiles are all less than 20%, ranging from
12.00% to 17.26%; the MAPEs of the other four periods are all less than 10%, which shows
that the model fitting effect is good, and shows strong robustness, suitable for further
dynamic relationship analysis. Based on the estimation of each parameter, the quality and
accuracy of the fit in each period are shown in Figure 7, which has high consistency and
coincidence with the original data.

According to the positive and negative signs of c1 and c2, we ascertain whether the
dynamic trade relationship between China and the US is a predator–prey relationship,
a competitive relationship, or a symbiotic relationship, and its evolution. As shown in
Figure 8, because the fitting errors of quantiles 0.90 and 0.95 are large, the estimations at
these two quantiles are not considered.

We took 19 quantiles at intervals of 0.05 and estimated the parameters c1 and c2 at
each quantile. Due to the selection of different quantiles, the error weights in the objective
function are different, resulting in differences in estimated parameters. According to
Figure 8(1), in all quantiles, which indicates that the China–US bilateral trade relationship
is a predator–prey relationship. In these quantiles, China’s imports from the US are the
predator, and China’s exports to the US are the prey. This relationship is conducive to
China’s imports from the US but not conducive to China’s exports to the United States.
This may be due to China’s high export tariffs before joining the WTO, which led to the
lack of core competitiveness of Chinese products and services, thus inhibiting China’s
export trade. According to Figure 8(2), c1 > 0 in most quantiles, China and the United
States compete most of the time. In a few quantiles, c1 > 0 and c2 < 0, China’s imports
from the US are the predator, and China’ exports to the US are the prey. This indicates
that the relationship at this stage is not stable enough, remaining mainly competitive, and
may also present a predator–prey relationship. After China entered the WTO, its global
market share increased, which has a certain influence on international trade, including
the United States. According to Figure 8(3), c1 are both unstable, and in most, c2 < 0,
which indicates that since the third stage, the China–US trade relationship may evolve
from a competition-oriented model in the second stage to a predator–predator relationship
and even a symbiosis and predator–predator relationship. This period of time changed
from China’s exports to the US being a predator to China’s imports from the US being a
predator. After the financial crisis, with the overall international market depression, the



Fractal Fract. 2024, 8, 171 15 of 21

two sides had a certain mutual interdependence. According to Figure 8(4), in most quantiles
c2 < 0, the China–US trade relationship once again presents a significant predator–prey
relationship. China’s imports from the US are the predators, and China’s exports to the
US are the prey. According to Figure 8(5), most quantiles (16/19) c1 > 0 indicate that
China–US trade relations are gradually showing a more competitive relationship. This
shows that China–US trade war frictions are frequent, leading to obvious competition in
the bilateral market between China and the US, and bilateral trade is inhibited under this
relationship. In conclusion, in the past 20 years, from 1999 to 2019, the China–US trade
relationship has evolved from a significant predator–prey relationship to an unobvious
competitive relationship, returned to a predator–prey relationship, and finally evolved into
a more significant competitive relationship.Fractal Fract. 2024, 8, x FOR PEER REVIEW 17 of 25 
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4. Conclusions and Policy Implications

In the present work, quantile regression technology is introduced into the
Lotka–Volterra ecosystem analysis framework and a QGLV model is constructed to identify
the dynamic trade relationship between China and the United States. The study found that
the fitting of the QGLV model can achieve high accuracy; the MAPE of the optimal QGLV
model reaches 5.236% and 3.680%, and the model shows strong robustness. From 1999 to
2019, the long-term trade relationship between China and the US presented a significant
predator–prey relationship because China’s exports to the United States inhibited China’s
imports from the United States. This is similar to the view of Athens and Yamashita [44]
that the trade imbalance between China and the United States is a structural phenomenon
caused by China’s critical role in the global production network. Further, to identify the de-
tails of this relationship, we divide the import and export trade volumes into five stages and
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reveal the phased dynamic relationship underpinning China–US trade. The relationship
undergoes an inevitable evolution wherein it changes from a significant predator–prey rela-
tionship to an unobvious competitive relationship, back to the predator–prey relationship,
and finally, a more significant competitive relationship.

In the case of limited data and information, the proposed model can be an essential
reference tool for future research on international trade relations. This research will help na-
tional decision makers make correct judgments in the rapidly changing international market
and make appropriate decisions to maintain the advantage of sustainable development.

With the development of a new scientific and technological revolution, China–US
trade relations have entered a new era. The China–US trade relationship has its nature and
particularity in different products and services in the network era. Therefore, our future
work will focus on applying the QGLV model to identify China–US trade competition in
different fields in the digital economy.

According to the conclusion, we propose two policy implications:

(1) The leading tone of China–US trade policy should be cooperation, not competition.
Some trade frictions between China and the United States are sometimes not a col-
lision of substantive interests but a misunderstanding caused by a lack of mutual
understanding. China–US trade relations are mutually beneficial, with opportunities
outstripping challenges and cooperation outstripping competition. Trade frictions
can be effectively managed. With the development of China’s economy, the scale
of China–US trade has been expanding, bringing tangible benefits to the economic
development of the two countries and the lives of the two peoples. As major global
trading countries, China and the United States have a profound basis for complemen-
tation. Bilateral trade is mutually beneficial and win–win, with massive potential
for development and broad prospects. As a developed economy, the United States
has long been a global leader in manufacturing and rich in high-tech resources.
China has transformed from a traditional industrial structure to a modern industry as
an emerging economy. The complementation of trade between significant countries
is essential for China–US strategic trade cooperation. Amid the tortuous recovery
of the global economy and trade, the two countries actively promote and shape the
process of scientific and technological cooperation at the international level, which
can further tap the potential of complementary trade structures, expand market co-
operation space, and jointly improve the welfare of the people of the two countries
and the world.

(2) Promoting trade balance between China and the United States manifests high-quality
foreign trade development. For a country’s foreign trade, export and import are like
two sides of a coin, and any policies and measures that ignore one aspect will bring
about the consequences of economic imbalance. It is found in this paper that China’s
export to the United States inhibits China’s imports from the United States. China
should have a deep and comprehensive understanding of the United States in many
aspects such as politics, economy, society and culture. It should actively expand
imports, promote trade balance, reduce trade surplus with the United States, promote
the development of global multilateral trade, reduce trade friction, and promote
international trade balance. The United States can appropriately liberalise export
controls, reduce high tariffs, and promote trade balance. China and the United States
need to take a step back and think before taking a step forward. The sustained and
balanced development of China–US trade is necessary for the long-term economic
and trade cooperation between the two countries.
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Appendix A

Table A1. Continuous estimation of parameters in the QGLV model.

Quantile a1 b1 c12 a2 b2 c21

0.05 5.81 × 10−2 −9.26 × 10−9 8.65 × 10−9 9.11 × 10−2 6.84 × 10−9 −1.90 × 10−7

0.1 7.85 × 10−2 −9.13 × 10−8 3.61 × 10−8 9.03 × 10−2 6.24 × 10−8 −1.72 × 10−7

0.15 7.96 × 10−2 −8.43 × 10−8 3.42 × 10−8 9.03 × 10−2 6.08 × 10−8 −1.66 × 10−7

0.2 7.93 × 10−2 −7.59 × 10−8 3.16 × 10−8 9.06 × 10−2 5.79 × 10−8 −1.56 × 10−7

0.25 8.19 × 10−2 −7.83 × 10−8 3.27 × 10−8 9.28 × 10−2 6.09 × 10−8 −1.65 × 10−7

0.3 8.24 × 10−2 −7.57 × 10−8 3.20 × 10−8 9.31 × 10−2 6.15 × 10−8 −1.67 × 10−7

0.35 8.26 × 10−2 −7.65 × 10−8 3.23 × 10−8 9.28 × 10−2 6.07 × 10−8 −1.65 × 10−7

0.4 8.25 × 10−2 −7.45 × 10−8 3.16 × 10−8 9.29 × 10−2 6.02 × 10−8 −1.63 × 10−7

0.45 8.50 × 10−2 −8.17 × 10−8 3.41 × 10−8 9.29 × 10−2 6.01 × 10−8 −1.63 × 10−7

0.5 8.46 × 10−2 −7.89 × 10−8 3.33 × 10−8 9.32 × 10−2 6.03 × 10−8 −1.63 × 10−7

0.55 8.55 × 10−2 −8.11 × 10−8 3.40 × 10−8 9.36 × 10−2 6.05 × 10−8 −1.64 × 10−7

0.6 8.73 × 10−2 −8.61 × 10−8 3.58 × 10−8 9.38 × 10−2 6.06 × 10−8 −1.64 × 10−7

0.65 9.04 × 10−2 −9.55 × 10−8 3.91 × 10−8 9.43 × 10−2 6.14 × 10−8 −1.66 × 10−7

0.7 9.30 × 10−2 −1.03 × 10−7 4.17 × 10−8 9.53 × 10−2 6.25 × 10−8 −1.70 × 10−7

0.75 9.45 × 10−2 −1.08 × 10−7 4.34 × 10−8 9.52 × 10−2 6.23 × 10−8 −1.69 × 10−7

0.8 9.90 × 10−2 −1.20 × 10−7 4.77 × 10−8 9.82 × 10−2 6.61 × 10−8 −1.81 × 10−7

0.85 1.02 × 10−1 −1.30 × 10−7 5.11 × 10−8 9.95 × 10−2 6.76 × 10−8 −1.85 × 10−7

0.9 1.03 × 10−1 −1.33 × 10−7 5.22 × 10−8 1.03 × 10−1 7.17 × 10−8 −1.97 × 10−7

0.95 1.37 × 10−1 −2.49 × 10−7 9.20 × 10−8 1.21 × 10−1 9.28 × 10−8 −2.58 × 10−7

Table A2. Discrete estimation of parameters in the QGLV model.

Quantile λ1 β1 γ12 λ2 β2 γ21

0.05 1.06 × 100 1.10 × 100 −9.53 × 10−9 7.16 × 10−8 8.91 × 10−9 −1.99 × 10−7

0.1 1.08 × 100 1.09 × 100 −9.50 × 10−8 6.53 × 10−8 3.76 × 10−8 −1.80 × 10−7

0.15 1.08 × 100 1.09 × 100 −8.77 × 10−8 6.36 × 10−8 3.56 × 10−8 −1.74 × 10−7

0.2 1.08 × 100 1.09 × 100 −7.90 × 10−8 6.06 × 10−8 3.29 × 10−8 −1.63 × 10−7

0.25 1.09 × 100 1.10 × 100 −8.16 × 10−8 6.38 × 10−8 3.41 × 10−8 −1.73 × 10−7

0.3 1.09 × 100 1.10 × 100 −7.89 × 10−8 6.45 × 10−8 3.34 × 10−8 −1.75 × 10−7

0.35 1.09 × 100 1.10 × 100 −7.97 × 10−8 6.36 × 10−8 3.37 × 10−8 −1.73 × 10−7

0.4 1.09 × 100 1.10 × 100 −7.77 × 10−8 6.31 × 10−8 3.29 × 10−8 −1.71 × 10−7

0.45 1.09 × 100 1.10 × 100 −8.53 × 10−8 6.30 × 10−8 3.56 × 10−8 −1.71 × 10−7

0.5 1.09 × 100 1.10 × 100 −8.23 × 10−8 6.32 × 10−8 3.47 × 10−8 −1.71 × 10−7

0.55 1.09 × 100 1.10 × 100 −8.47 × 10−8 6.34 × 10−8 3.55 × 10−8 −1.72 × 10−7

0.6 1.09 × 100 1.10 × 100 −9.00 × 10−8 6.35 × 10−8 3.74 × 10−8 −1.72 × 10−7

0.65 1.09 × 100 1.10 × 100 −9.99 × 10−8 6.44 × 10−8 4.09 × 10−8 −1.74 × 10−7

0.7 1.10 × 100 1.10 × 100 −1.08 × 10−7 6.56 × 10−8 4.37 × 10−8 −1.78 × 10−7

0.75 1.10 × 100 1.10 × 100 −1.13 × 10−7 6.54 × 10−8 4.55 × 10−8 −1.77 × 10−7

0.8 1.10 × 100 1.10 × 100 −1.26 × 10−7 6.95 × 10−8 5.01 × 10−8 −1.90 × 10−7

0.85 1.11 × 100 1.10 × 100 −1.37 × 10−7 7.11 × 10−8 5.38 × 10−8 −1.95 × 10−7

0.9 1.11 × 100 1.11 × 100 −1.40 × 10−7 7.55 × 10−8 5.50 × 10−8 −2.08 × 10−7

0.95 1.15 × 100 1.13 × 100 −2.67 × 10−7 9.87 × 10−8 9.86 × 10−8 −2.74 × 10−7
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