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Abstract: Iterative learning control is widely applied to address the tracking problem of dynamic
systems. Although this strategy can be applied to fractional order systems, most existing studies
neglected the impact of the system initialization on operation repeatability, which is a critical issue
since memory effect is inherent for fractional operators. In response to the above deficiencies, this
paper derives robust convergence conditions for iterative learning control under non-repetitive
initialization functions, where the bound of the final tracking error depends on the shift degree of
the initialization function. Model nonlinearity, initial error, and channel noises are also discussed in
the derivation. On this basis, a novel initialization learning strategy is proposed to obtain perfect
tracking performance and desired initialization trajectory simultaneously, providing a new approach
for fractional order system design. Finally, two numerical examples are presented to illustrate the
theoretical results and their potential applications.

Keywords: fractional calculus; iterative learning control; convergence analysis; initialization learning

1. Introduction

The concept of fractional order iterative learning control (FOILC) [1] has two meanings,
where the fractional order can be derived from both the plant control system and the
iterative learning law. This topic has significant research value, because fractional order
systems have been verified in some important disciplines, such as secondary batteries [2]
and materials science [3]; and for iterative learning control (ILC), the fractional order
operator has also been proven to help improve the convergence characteristics of the
system [4,5].

The initial state issue is a hot spot in ILC research [6], and its criticality can be explained
from two aspects. On the one hand, the initial error significantly affects the final tracking
performance; on the other hand, the possible non-repetition of the initial value also breaks
the strict repeatability requirements of ILC for the plant system [7]. To the best of our
knowledge, there are two main mathematical methods for dealing with the unavoidable
initial errors. The first is to derive robust convergence conditions by adjusting the control
structure or system assumptions [8–10]; and the second is to design adaptive correction
algorithms to eliminate the impact of initial shift, such as initial state learning [11] and
rectifying actions [12,13].

In the field of FOILC, the initial state issue has been investigated under different
complex system dynamics and assumptions, such as time-delay [14], multi-agent sys-
tems [15,16], nonuniform pass lengths [17], and internal models [18]. Although most of
the above learning- [19] or rectification-based [20] methods can be extended to fractional
order systems, a hidden but significant issue has been neglected. Due to the historical
correlation of the fractional operator, the initial values of fractional order systems are
theoretically infinite dimensional [21], and a history function defined on the initialization
domain is required to fully initialize the fractional order system [22]. However, in most
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cases, only finite dimensional initial states are considered in ILC design. If such ILC strate-
gies are directly applied to fractional order systems, it may inevitably lead to the loss of
initialization information.

The significance of considering complete initialization for fractional order systems
has been revealed in both mathematics and engineering applications. For example, the
initialization approach has been proven to be related to the response [23] and solution
properties [24] of the system, while in material mechanics [25] and fractional order cir-
cuits [26], the significance of preprocessing has also been recognized. However, in the field
of ILC, there have been no notable achievements for initialized fractional order systems.
Since the initialization function is more complex than finite dimensional initial state, the
analysis of ILC convergence is challenging, especially when the initialization process is
perturbed or not repeated. The degree to which the initialization shift breaks the tracking
performance has not been theoretically clarified. In this regard, refs. [27,28] proposed
a system preconditioning strategy based on the short memory principle to improve the
system performance and then derived the ILC convergence condition. However, this ILC
scheme cannot achieve perfect tracking performance, and the preconditioning operation
requires additional time cost.

Inspired by the existing deficiencies, this paper investigates the ILC problem of initial-
ized fractional order systems, fully explores the impact of initialization factors on tracking
performance of the iterative system, and designs control strategies to improve the conver-
gence properties. To achieve these targets, the following methodologies are adopted. First,
under the framework of initialized fractional order nonlinear system, the ILC problem is
specified and the causality between system initialization and initial states is established, the
operating interval is extended to the entire initialization stage. Subsequently, the conver-
gence properties of the tracking errors are derived based on norm and contraction mapping
methods. Under a close-loop Dα-type ILC updating law, the boundedness conditions
of the tracking errors are obtained, and the algorithmic factors affecting the error level
are theoretically analyzed. Finally, under the condition that the initialization trajectory
can be addressed, a novel initialization learning algorithm is proposed to eliminate the
initialization shift and thus achieve perfect tracking performance.

The paper includes the following innovative contributions.

(a) This study reveals how and to what extent system initialization weakens the ideal
convergence of ILC, and a novel ILC robust convergence condition for initialized
fractional order systems is strictly derived.

(b) Combining the ILC tracking problem with the optimization of system initialization, a
novel initialization learning strategy is proposed and applied to ensure the perfect
tracking of ILC.

(c) The results have broad applicability and better physical interpretability compared
with existing literature, as complex system dynamics such as nonlinearity and channel
noises are involved, and the connection between initialization and initial states is
theoretically clarified.

The rest of this paper is organized as follows. Necessary preliminaries are presented
in Section 2. The ILC problem for initialized fractional order system is stated and discussed
in Section 3. Mathematical results are derived in Section 4. Numerical examples and
conclusions are elaborated in Sections 5 and 6.

2. Preliminaries

In this section, some necessary definitions and lemmas are presented. The Caputo-type
fractional operator is adopted in this paper because it has integer order initial values, and
is physically interpretable in real-world models [29].
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Definition 1 (Fractional integral, [30]). The fractional integral of an integrable function f (t):
[t0,+∞) → Rn with order α ∈ (0, 1) is defined as

t0
D−α

t f (t) =
∫ t

t0

(t − s)α−1

Γ(α)
f (s)ds (1)

if (1) converges pointwisely on (t0,+∞), where Γ(·) denotes the Gamma function.

Definition 2 (Fractional derivative). The Caputo-type fractional derivative of a piecewise smooth
function f (t): [t0,+∞) → Rn with order α ∈ (0, 1) is defined as

C
t0

Dα
t f (t) = t0

D−(1−α)
t [

d
dt

f (t)] =
∫ t

t0

(t − s)−α

Γ(1 − α)

d
ds

f (s)ds (2)

if (2) converges pointwisely on (t0,+∞).

It can be seen from Definitions 1 and 2 that the fractional operators has nonlocal
property, i.e., the derivative value of f at time t is related to the function history over the
entire interval [t0, t]. In most FOILC studies, the fractional derivative is defined on the
operating interval of the iterative system, usually a fixed [0, T]. However, this approach
will lead to the loss of physical information if significant history states, such as system
preheating and reposition, are contained before t = 0. For a state trajectory f (t) defined
on [0, T], suppose that the history states are described by the history function ϕ(t), where
t ∈ [t0, 0). Then, according to (2), the Caputo derivative of f containing all history informa-
tion can be written as

C
0 Dα

t f (t) = C
t0

Dα
t f (t) =

∫ 0

t0

(t − s)−α

Γ(1 − α)

d
ds

ϕ(s)ds +
∫ t

0

(t − s)−α

Γ(1 − α)

d
ds

f (s)ds, (3)

where C
0 Dα

t denotes the Caputo-type initialized fractional operator, α ∈ (0, 1), t ∈ [0, T].
The second term on the right side of (3) is actually C

0 Dα
t f (t), and the first term is called the

initialization function [31]:

Ψ(ϕ, α, t0, 0, t) =
∫ 0

t0

(t − s)−α

Γ(1 − α)

d
ds

ϕ(s)ds. (4)

Thus, (3) can be rewritten as follows:

C
0 Dα

t f (t) = Ψ(ϕ, α, t0, 0, t) + C
0 Dα

t f (t), (5)

It can be seen that the initialization function Ψ actually extends the domain of the
fractional operator from [0, T] to [t0, T], and formally maintains the consistency between
the operator’s definition interval and the operating interval. Dynamic systems defined by
the initialized fractional operator are called initialized fractional order systems.

The introduction of Ψ brings new complex system dynamics and challenges to control
design, which will be discussed in detail in Section 3. Here, a few critical preliminaries are
given. First, to evaluate the system performance over a certain interval, the definition of
λ-norm is introduced as follows.

Definition 3. For a function f : [0, T] → Rn , the λ-norm is defined as:

∥ f ∥λ = sup
t∈[0,T]

{
e−λt∥ f (t) ∥∞

}
, (6)

where λ > 0 is a constant, ∥ · ∥∞ denotes the infinite norm.
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In addition, Lemma 1 provides the relationship between functions and their fractional
integrals in the sense of ∞-norm and λ-norm.

Lemma 1. Suppose that Y(t) is an arbitrary fractional integrable function defined on [0, T], given
a constant λ > 0, then

∥ 0D−α
t Y(t) ∥∞ ≤ eλt

λα
·∥ Y ∥λ, (7)

where α ∈ (0, 1). Furthermore, for the λ-norm of Υ, the following inequality holds:

∥ 0D−α
t Y(t) ∥λ ≤ 1

λα
·∥ Y ∥λ. (8)

Proof. It follows from (1) that

∥ 0D−α
t Y(t) ∥∞ ≤

∫ t

0

(t − s)α−1

Γ(α)
∥ Y(s) ∥∞ds ≤

∫ t

0

eλs(t − s)α−1

Γ(α)
ds·∥ Y ∥λ, (9)

applying Inequality (10) (see proof of Theorem 3.3, [32]) to (9), it is easy to see that (7) holds:

∫ t

0
(t − s)α−1eλsds ≤ Γ(α)eλt

λα
. (10)

Then, applying the λ-norm and (7) to 0D−α
t Y(t) yields

∥ 0D−α
t Y(t) ∥λ= sup

t∈[0,T]
{e−λt·∥ 0D−α

t Y(t) ∥∞}

≤ sup
t∈[0,T]

{e−λt· e
λt

λα
∥ Y ∥λ} =

1
λα

·∥ Y ∥λ,
(11)

which means that (8) holds as well. □

Finally, the following Lemmas 2 and 3 are cited to evaluate the state of iterative
systems, which are also necessary in the ILC convergence analysis.

Lemma 2 (Generalized Grönwall–Bellman inequality, [33]). Suppose that α > 0, w(t) is
nonnegative and locally integrable on [0, T) (0 < T < ∞), and g(t) is nonnegative, nondecreasing,
continuous and no greater than a constant M on [0, T). If u(t) is nonnegative, locally integrable
and satisfies

u(t) ≤ w(t) + g(t)·
∫ t

0
(t − s)α−1u(s)ds (12)

on [0, T), then

u(t) ≤ w(t) +
∫ t

0

∞

∑
n=1

(g(t)Γ(α))n

Γ(nα)
(t − s)nα−1w(s)ds. (13)

In addition, if w(t) is further nondecreasing on [0, T), then

u(t) ≤ w(t)·Eα(g(t)Γ(α)tα), (14)

where Eα(β) = ∑∞
k=0

βk

Γ(kα+1) denotes the single-parameter Mittag–Leffler function.

Lemma 3 (see Lemma 1 and Lemma 2, [7]). For the following iterative system,

θl+1 = Θlθl + σl , (15)
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where l ∈ N, θ ∈ Rn is the state, σ ∈ Rr is the external input. Assume that the initial state θ0 is
bounded, the mapping matrix Θ satisfies ∥ Θl ∥ ≤ χ < 1, where χ is a constant. If the input σ is
bounded such that ∥ σl ∥ ≤ βσ for some βσ > 0, then

a. θl is bounded such that supl∈N ∥ θl ∥ ≤ βθ for some bounded βθ > 0.
b. liml→∞ θl = 0 if liml→∞ σl = 0.

3. Problem Statement

Many traditional ILC and FOILC problems have the following form: for a system
operating repeatedly on a fixed [0, T], designing an iterative learning law, so that the input–
output pair (uk, yk) (k ∈ N) converges to the reference pair (ud, yd) through the iterations.
To achieve this target, the existence and uniqueness assumption of the reference system,
i.e., (ud, yd), is typically required. In this case, the convergence of uk and yk is equivalent.
However, the situation is more complex for initialized fractional order systems. For a
general input–output dynamic system,

C
0 Dα

t y(t) = f (yk, uk, t)

orC
0 Dα

t y(t) = −Ψ(ϕk, α, t0, 0, t) + f (yk, uk, t),
(16)

the history function ϕk changes the system dynamics and breaks the input–output unifor-
mity. This is an assignable factor for ILC issues. On the one hand, the iterative algorithm
may be invalid if ϕk varies for different k, an inappropriate initialization path may also
leads to an initial error and thus damages the ILC performance. On the other hand, ϕk
needs to be optimized in some practical cases. For example, in battery tests (see Example 1,
Section 5), resting is a notable initialization method; while in viscoelasticity, it is required to
to design periodic excitation with specific amplitude and frequency [25,34]. The tracking of
ϕd is usually necessary in the above scenarios.

In this paper, the following initialized fractional-order nonlinear system is considered:
{

0Dα
t xk(t) = f (xk(t), t) + Buk(t),

yk(t) = Cxk(t) + D
∫ t

0 g(s, uk(s))ds,
(17)

where α ∈ (0, 1), x ∈ Rn is the state, u ∈ Rr is the input, y ∈ Rm is the output,
g : [0, T]×Rn → Rp , f, B and C have appropriate dimensions. f and g is Lipschitz continu-
ous on [0, T] with respect to t, i.e., ∥ f (x1(t), t)− f (x2(t), t) ∥∞ ≤ L1∥ x1(t)− x2(t) ∥∞ for
t ∈ [0, T], ∥ g(t, u1(t))− g(t, u2(t)) ∥∞ ≤ L2∥ u1(t)− u2(t) ∥∞. The system is initialized
by a history function ϕk(t) : [t0, 0) → Rn and the initialization function Ψ(ϕk, α, t0, 0, t) is
abbreviated as Ψk(t). The limit value of ϕk(t) at t = 0− is assumed to be the initial state
xk(0); this is because physically the initial value should be considered as the result of the
initialization operation.

Suppose that (ϕd, ud, yd) is the solution of the reference system
{

0Dα
t xd(t) = f (xd(t), t) + Bud(t),

yd(t) = Cxd(t) + D
∫ t

0 g(s, ud(s))ds
(18)

and meets the condition of existence and uniqueness. Then, the ILC tracking problem is to
design an iterative algorithm to find a (ϕk, uk, yk) sequence, such that (uk, yk) converges to
(ud, yd) as k increases. It can be seen from the above discussion that the history function is
a generalization of the initial states. Therefore, similar to the well-known initial value issue,
the initialization problems are proposed as follows and analyzed in Section 4.

a. If ϕk is iteration-varying and thus leads to a non-repetitive initial shift, can ILC
convergence be guaranteed? What conditions are required?

b. Without considering the disturbances, if the initial history function ϕ0 ̸= ϕd, how to
ensure that (uk, yk) simultaneously converges to the ideal (ud, yd)?
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4. Main Results
4.1. Bounded Tracking Error for Bounded Iteration-Varying Initialization

This section aims to derive the convergence conditions of bounded tracking errors
from bounded initialization shift. More generally, the additive disturbances of the state
equation and output channel are also considered. The system expression is presented
as follows: 




0Dα
t xk(t) = −Ψk(t) + f (xk(t), t) + Buk(t) + ωk(t),

yk(t) = Cxk(t) + D
∫ t

0 g(s, uk(s))ds + νk(t),
ek(t) = yd(t)− yk(t),

(19)

where ωk ∈ Rn and νk ∈ Rm denote the iteration-varying shift of the state and output
equations. Under an arbitrary bounded initial u0(t) (t ∈ [0, T]), the following close-loop
Dα-type updating law is adopted for iterations:

uk+1(t) = uk(t) + Λ·0Dα
t ek+1(t). (20)

Here, the close-loop error ek+1(t) is introduced to enhance the robustness of the
system, while the Dα-operator is adopted to achieve better convergence performance [35].
In addition, the following assumptions are required.

(A) For all k ∈ N, ∥ ϕd(t)− ϕk(t) ∥∞ is bounded on [t0, 0); this assumption also indicates
∥ δxk(0) ∥∞ = ∥ xd(0)− xk(0) ∥∞ is bounded since limt→0− ϕ(t) = x(0).

(B) The tracking error of ϕk(t) has a bounded growth speed, i.e., ∥
.

ϕd(t)−
.

ϕk(t) ∥∞ ≤ M,
where M is a constant, t ∈ [t0, 0).

(C) ωk(t), νk(t), and
.

νk(t) are bounded on [0, T].

The boundedness condition for tracking error of (uk, yk) is derived in four steps
below. First, the iterative relationship of the tracking errors is established based on the ILC
updating law. Then, the norm-based method is adopted to evaluate the error size, and the
generalized Grönwall inequality is applied to address the variable coupling. Finally, the
convergence conditions for the iterative system can be found.

Step 1. First, consider the convergence performance of uk. The tracking error between uk
and ud is denoted as δuk, then it follows from (20) that

δuk+1(t) =ud(t)− uk+1(t)

=δuk(t)− Λ·0Dα
t ek+1(t)

=δuk(t)− Λ·0Dα
t [yd(t)− yk+1(t)],

(21)

replacing yd and yk+1 with the output equations of (18) and (19) yields

δuk+1(t) = δuk(t)− Λ·0Dα
t {Cδxk+1(t) + D

∫ t

0
[g(s, ud)− g(s, uk+1)]ds − νk+1(t)}, (22)

where δxk+1(t) = xd(t)− xk+1(t). 0Dα
t δxk+1(t) can be further replaced by the state equa-

tions in (18) and (19), which yields

δuk+1(t) =δuk(t)− ΛC[−δΨk+1(t) + f (xd, t)− f (xk+1, t) + Bδuk+1(t)− ωk+1(t)]

−ΛD·0Dα
t

∫ t

0
[g(s, ud)− g(s, uk+1)]ds + Λ·0Dα

t νk+1(t),
(23)

where δΨk+1(t) = Ψd(t)− Ψk+1(t). Notice that

0Dα
t

∫ t

0
[g(s, ud)− g(s, uk+1)]ds

=0Dα−1
t

d
dt

∫ t

0
[g(s, ud)− g(s, uk+1)]ds

=0Dα−1
t [g(t, ud)− g(t, uk+1)]

(24)
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according to (2), then applying (24) to reorganize (23) with respect to δuk+1(t) as

δuk+1(t) =(I + ΛCB)−1δuk(t) + (I + ΛCB)−1Λ·0Dα
t νk+1(t)

−(I + ΛCB)−1ΛC[−δΨk+1(t) + f (xd, t)− f (xk+1, t)− ωk+1(t)]

−(I + ΛCB)−1ΛD·0Dα−1
t [g(t, ud)− g(t, uk+1)].

(25)

Taking the λ-norm to both sides of (25) yields

∥ δuk+1 ∥λ = sup
t∈[0,T]

{
e−λt∥ δuk+1(t) ∥∞

}

≤ sup
t∈[0,T]

{∥ (I + ΛCB)−1 ∥∞·e−λt∥ δuk ∥∞ + ∥ (I + ΛCB)−1Λ ∥∞·e−λt∥ 0Dα
t νk+1 ∥∞

+∥ (I + ΛCB)−1ΛC ∥∞·e−λt[∥ δΨk+1 ∥∞ + ∥ f (xd, t)− f (xk+1, t) ∥∞ + ∥ ωk+1 ∥∞]

+∥ (I + ΛCB)−1ΛD ∥∞·e−λt∥ 0Dα−1
t [g(t, ud)− g(t, uk+1)] ∥∞}

≤µ∥ δuk ∥λ + q[∥ δΨk+1 ∥λ + ∥ f (xd, ·)− f (xk+1, ·) ∥λ + ∥ ωk+1 ∥λ]

+r∥ 0Dα−1
t [g(·, ud)− g(·, uk+1)] ∥λ + p∥ 0Dα

t νk+1 ∥λ,

(26)

where
∥ (I + ΛCB)−1 ∥∞ = µ,

∥ (I + ΛCB)−1Λ ∥∞ = p,

∥ (I + ΛCB)−1ΛC ∥∞ = q,

∥ (I + ΛCB)−1ΛD ∥∞ = r.

For ∥ f (xd, ·)− f (xk+1, ·) ∥λ and ∥ g(·, ud)− g(·, uk+1) ∥λ, since f and g are Lipschitz
continuous, then

∥ f (xd, ·)− f (xk+1, ·) ∥λ ≤ sup
0≤t≤T

{e−λtL1·∥ δxk+1(t) ∥∞} = L1∥ δxk+1 ∥λ, (27)

∥ g(·, ud)− g(·, uk+1) ∥λ ≤ sup
0≤t≤T

{e−λtL2·∥ δuk+1(t) ∥∞} = L2∥ δuk+1 ∥λ, (28)

applying Lemma 1, (27) and (28) to (26) to eliminate f, g and the fractional operators, which
yields

(1 − rL2

λ1−α
)∥ δuk+1 ∥λ ≤µ∥ δuk ∥λ + qL1∥ δxk+1 ∥λ

+q[∥ δΨk+1 ∥λ + ∥ ωk+1 ∥λ] +
p

λ1−α
∥ .

νk+1 ∥λ,
(29)

where

∥ 0Dα−1
t [g(·, ud)− g(·, uk+1)] ∥λ ≤ 1

λ1−α
∥ g(·, ud)− g(·, uk+1) ∥λ ≤ L2

λ1−α
∥ δuk+1 ∥λ. (30)

Step 2. In (29), the term ∥ δxk+1 ∥λ needs to be substituted. For the Caputo-type fractional
derivative with order α ∈ (0, 1), the following relationship holds:

t0
D−α

t [t0
Dα

t f (t)] = [t0
D−α

t t0
Dα−1

t ]
d
dt

f (t) = t0
D−1

t
d
dt

f (t) = f (t)− f (t0). (31)

Thus, the state shift δxk(t) = xd(t)− xk(t) can be expressed as

δxk(t) = δxk(0) + 0D−α
t 0Dα

t δxk(t), (32)
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similarly to (23), 0Dα
t δxk(t) in (32) can be replaced by the state equation:

δxk(t) = δxk(0) + 0D−α
t [−δΨk(t) + f (xd, t)− f (xk, t) + Bδuk(t)− ωk(t)]. (33)

Then, taking the ∞-norm to (33) and applying Lemma 1 to eliminate the fractional
integral yields

∥ δxk(t) ∥∞ ≤∥ δxk(0) ∥∞ + ∥ 0D−α
t [Bδuk(t)− δΨk(t)− ωk(t)] ∥∞

+∥
∫ t

0

(t − s)α−1

Γ(α)
[ f (xd, s)− f (xk, s)]ds ∥

∞

≤∥ δxk(0) ∥∞ +
eλt

λα
[b∥ δuk ∥λ + ∥ δΨk ∥λ + ∥ ωk ∥λ]

+
∫ t

0

L1(t − s)α−1

Γ(α)
∥ δxk(s) ∥∞ds,

(34)

where ∥ B ∥∞ = b. Furthermore, since ∥ δxk(t) ∥∞ is nonnegative, and the first two terms
on the right side of (34)

∥ δxk(0) ∥∞ +
eλt

λα
[b∥ δuk ∥λ + ∥ δΨk ∥λ + ∥ ωk ∥λ]

are nonnegative and nondecreasing with respect to t when t ≥ 0, Lemma 2 can be applied
to separate ∥ δxk(s) ∥∞ from the integral term, which yields:

∥ δxk(t) ∥∞ ≤ Eα(L1tα){∥ δxk(0) ∥∞ +
eλt

λα
[b∥ δuk ∥λ + ∥ δΨk ∥λ + ∥ ωk ∥λ]}. (35)

To obtain the λ-norm of δxk(t), multiplying e−λt to both sides of (35) yields

e−λt∥ δxk(t) ∥∞ ≤ Eα(L1tα){e−λt∥ δxk(0) ∥∞ +
1

λα
[b∥ δuk ∥λ + ∥ δΨk ∥λ + ∥ ωk ∥λ]}, (36)

since Eα(L1tα) is nondecreasing on [0, T], it is easy to see from (36) that

∥ δxk ∥λ= sup
t∈[0,T]

{
e−λt∥ δxk(t) ∥∞

}

≤ Eα(L1Tα)∥ δxk(0) ∥∞ +
Eα(L1Tα)

λα
[b∥ δuk ∥λ + ∥ δΨk ∥λ + ∥ ωk ∥λ].

(37)

Step 3. Based on the results of Steps 1 and 2, the convergence property of δuk can ultimately
be derived. Applying (37) to substitute ∥ δxk+1 ∥λ in (29) yields

(1 − rL2

λ1−α
− qbL1Eα(L1Tα)

λα
)∥ δuk+1 ∥λ

≤µ∥ δuk ∥λ + qL1Eα(L1Tα)∥ δxk+1(0) ∥∞

+(q +
qL1Eα(L1Tα)

λα
)∥ δΨk+1 ∥λ

+(q +
qL1Eα(L1Tα)

λα
)∥ ωk+1 ∥λ +

p
λ1−α

∥ .
νk+1 ∥λ,

(38)

Note O(λ−α) = qL1Eα(L1Tα)
λα , O(λα−1) = 1

λ1−α , then (38) can be rewritten as

∥ δuk+1 ∥λ ≤ µ

1 − bO(λ−α)− rL2O(λα−1)
∥ δuk ∥λ + εin,k+1 + εex,k+1, (39)
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where εin and εex are disturbance terms caused by internal initialization non-repetition and
external channel noises:

εin,k+1 =
qL1Eα(L1Tα)

1 − bO(λ−α)− rL2O(λα−1)
∥ δxk+1(0) ∥∞

+
q + O(λ−α)

1 − bO(λ−α)− rL2O(λα−1)
∥ δΨk+1 ∥λ,

(40)

εex,k+1 =
q + O(λ−α)

1 − bO(λ−α)− rL2O(λα−1)
∥ ωk+1 ∥λ

+
pO(λα−1)

1 − bO(λ−α)− rL2O(λα−1)
∥ .

νk+1 ∥λ.
(41)

Here, ∥ δxk+1(0) ∥∞, ∥ ωk+1 ∥λ and ∥ .
νk+1 ∥λ are bounded according to Assumptions

(A) and (C). In addition, it follows from Assumption (B) and (4) that

∥ δΨk+1 ∥λ = sup
t∈[0,T]

{e−λt∥ δΨk+1(t) ∥∞}

≤ sup
t∈[0,T]

∫ 0

t0

e−λt(t − s)−α

Γ(1 − α)
∥ d

ds
[ϕd(s)− ϕk+1(s)] ∥

∞
ds

≤M· sup
t∈[0,T]

∫ 0

t0

(t − s)−α

Γ(1 − α)
ds

=
M

Γ(2 − α)
sup

t∈[0,T]
[(t − t0)

1−α − t1−α]

≤ M
Γ(2 − α)

(T − t0)
1−α,

(42)

which means that ∥ δΨk+1 ∥λ is bounded as well. Since O(λ−α) and O(λα−1) can be
arbitrarily small when λ is large enough, if µ is strictly less than 1, an appropriate λ > 0
can always be found so that

µ

1 − bO(λ−α)− rL2O(λα−1)
≤ µ′ < 1, (43)

where µ′ is a constant. Therefore, δuk is bounded according to Lemma 3 such that
supk∈N ∥ δuk ∥λ ≤ ϵu for some ϵu > 0. Additionally, if the following assumption holds,

(D) limk→∞ xk(0) = xd(0); limk→∞ ϕk(t) = ϕd(t), where t ∈ [t0, 0); limk→∞ ωk(t) =
limk→∞ νk(t) = 0, where t ∈ [0, T].

then limk→∞ ∥ δuk ∥λ = 0 as limk→∞ (εin,k + εex,k) = 0.

Step 4. The convergence results δxk and ek are derived from the boundedness of ∥ δuk ∥λ.
First, it is obvious that the following inequality holds according to Definition 3:

∥ δuk ∥λ ≤ sup
t∈[0,T]

∥ δuk(t) ∥∞ ≤ eλT∥ δuk ∥λ, (44)

which indicates that the boundedness and convergence properties of supt∈[0,T] ∥ δuk(t) ∥∞
are exactly the same as ∥ δuk ∥λ. Furthermore, it follows from (37) that δxk is bounded, i.e.,
supk∈N,t∈[0,T] ∥ δxk(t) ∥∞ ≤ ϵx for some ϵx > 0, since ∥ δxk(0) ∥∞, ∥ δuk ∥∞, ∥ δΨk ∥∞, and
∥ ωk ∥∞ are all bounded according to Assumptions (A-C). In addition, if Assumption (D)
holds, then limk→∞ supt∈[0,T] ∥ δxk(t) ∥∞ = 0.
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Finally, for the output error ek, it follows from the output equation of (19) that

ek(t) = Cδxk(t) + D
∫ t

0
[g(s, ud)− g(s, uk)]ds − νk(t), (45)

taking the ∞-norm to both sides of (45) yields

∥ ek(t) ∥∞ ≤c∥ δxk(t) ∥∞ + d
∫ t

0
∥ g(s, ud)− g(s, uk) ∥∞ds + ∥ νk(t) ∥∞

≤c∥ δxk(t) ∥∞ + d
∫ t

0
L2∥ δuk(t) ∥∞ds + ∥ νk(t) ∥∞

≤c∥ δxk(t) ∥∞ + dTL2 sup
t∈[0,T]

∥ δuk(t) ∥∞ + ∥ νk(t) ∥∞,

(46)

where ∥ C ∥∞ = c, ∥ D ∥∞ = d. Since ∥ νk(t) ∥∞ is bounded according to Assumption (C),
the boundedness and convergence conditions of ek is the same as that of δuk and δxk.

Theorem 1 and Remarks 1 and 2 can be summarized from the derivation.

Theorem 1. For the iterative system (19), given an arbitrary bounded initial input u0(t), (t ∈
[0, T]). The close-loop Dα-type updating law (20) is adopted to track the reference system (18). If

∥ (I + ΛCB)−1 ∥∞ < 1, (47)

then the following conclusions hold:

(i) If the assumptions (A-C) hold, then there are some positive constant ϵu, ϵx and ϵe, such that
supk∈N,t∈[0,T] ∥ δuk(t) ∥∞ ≤ ϵu, supk∈N,t∈[0,T] ∥ δxk(t) ∥∞ ≤ ϵx, supk∈N,t∈[0,T] ∥ ek(t) ∥∞
≤ ϵe;

(ii) If the assumption (D) additionally holds, then limk→∞ supt∈[0,T] ∥ δuk(t) ∥∞ = limk→∞

supt∈[0,T] ∥ δxk(t) ∥∞ = limk→∞ supt∈[0,T] ∥ ek(t) ∥∞ = 0.

Conclusion (i) in Theorem 1 indicates that under Assumptions (A-C), the tracking
errors remain bounded during the iteration process. Furthermore, the size of the final
tracking errors and its algorithm factors can be theoretically analyzed.

Remark 1. It can be seen from the derivation process that, without considering the external
disturbances, the tracking error level depends on the degree of shift of ϕk compared to ϕd. Taking
δuk as an example, the inequality (39) becomes

∥ δuk+1 ∥λ ≤ Θλ∥ δuk ∥λ + εin,k+1 (48)

if εex,k+1 = 0, where Θλ = µ

1−bO(λ−α)−rL2O(λα−1)
. If Θλ < 1, ∥ δu ∥λ will decrease until

Θλ∥ δuk ∥λ + εin,k+1 ≥ ∥ δuk ∥λ, i.e., ∥ δuk ∥λ ≤ εin,k+1
1−Θλ

for some iteration index k, then ∥ δu ∥λ

may stop converging and remain at the level of εin,k+1
1−Θλ

, which is proportional to εin,k+1. This result
is adequate for most tracking problems. In addition, since εin,k is proportional to ∥ δxk(0) ∥∞ and
∥ δΨk ∥λ, and ultimately determined by δϕk according to (40), the tracking performance can be
improved by reducing the initialization shift. In this regard, the preconditioning based initialization
strategy [28] is noteworthy, as it can eliminate initial shift and reduce ∥ δΨk ∥λ.

It can be seen from Remark 1 that the tracking performance of the iterative system
can always be improved by controlling the disturbance terms, especially δϕk. The perfect
tracking is achieved when the disturbance terms strictly converge to zero according to
conclusion (ii). The corresponding strategies will be discussed in detail in Section 4.2.
Finally, the following Remark 2 provides some explanations on the system assumptions
and the selection of ILC updating law.
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Remark 2. In Assumptions (B) and (C), the specifications about δ
.

ϕk(t) and
.

νk(t) are related to
the definition of the Caputo-type fractional derivative. The boundedness of the first-order derivative
is necessary to ensure the boundedness of other signals in the system, as the derivative is performed
before the (1 − α)th-order integral. Specifically, for the output channel noise νk(t), the boundedness
of

.
νk(t) is crucial for obtaining a bounded output signal uk, since it is required to calculate the

fractional derivative of the tracking error ek in the updating law (20). If νk(t) does not meet this
assumption, it is necessary to avoid using derivative operators in the ILC updating law to prevent
amplifying noise.

4.2. Perfect Tracking with Initialization Learning Algorithm

As discussed in Section 3, the initialization path directly affects the dynamic charac-
teristics of fractional-order systems. In applied disciplines such as secondary battery [36]
and viscoelasticity [37], this historical hereditary effect can usually not be neglected. Identi-
fication and fitting of history function is crucial for improving system performance [21].
In this section, the ILC tracking problem is considered in conjunction with the optimiza-
tion of ϕk, and a novel initialization learning algorithm is proposed to achieve perfect
tracking performance.

The idea of initialization learning is inspired by the well-known initial state learning
strategy [38]; the latter uses the initial output error for iteration and thereby gradually
converging xk(0) to the optimal xd(0). Since the history function ϕ can be viewed as an
extension of the state variable x on interval [t0, 0), the learning algorithm for x(0) can be
applied throughout the initialization stage. To achieve this target, the definitions of history
function and initial state are unified into the following form:

ϕ̃(t) =
{

ϕ(t), t ∈ [t0, 0),
x(0), t = 0,

(49)

where ϕ̃(t) : [t0, 0] → Rn is called the complete history function. In addition, the system
output on interval [t0, 0] is noted as ỹ.

In order to obtain the perfect convergence condition, the non-repetitive channel distur-
bances ω and ν are no longer considered here. Supposing that there is no external input u
on [t0, 0], or the input–output channel matrix D = 0. In both situations, the output error
can be expressed as

ẽk(t) = ỹd(t)− ỹk(t) = C[ϕ̃d(t)− ϕ̃k(t)] = Cδϕ̃k(t), (50)

where t ∈ [t0, 0], δϕ̃k(t) = ϕ̃d(t)− ϕ̃k(t) denotes the tracking error of ϕ̃k(t). Then, for an
ideal reference (ϕd, ud, yd), if the system output is measurable, Lemma 4 is proposed to
eliminate the initialization shift and thereby improve the ILC performance.

Lemma 4. For the iterative system (17) and reference system (18), suppose that D = 0. Given a
bounded and piecewise smooth ϕ̃d(t) and an arbitrary bounded and piecewise smooth initial ϕ̃0(t),
for k ∈ N, the initialization learning strategy

ϕ̃k+1(t) = ϕ̃k(t) + Yẽk(t) (51)

is adopted for iteration, where Υ is the learning operator. If ∥ I − YC ∥∞ < 1, then

lim
k→∞

∥ δxk(0) ∥∞ = lim
k→∞

∥ δΨk ∥λ = 0.
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Proof. It follows from (51) that

δϕ̃k+1(t) =δϕ̃k(t)− [ϕ̃k+1(t)− ϕ̃k(t)]

=δϕ̃k(t)− Yẽk(t)

=(I − YC)δϕ̃k(t),

(52)

where t ∈ [t0, 0]. When t = 0, δϕ̃k(0) = δxk(0) since limt→0− ϕk(t) = xk(0), then taking the
∞-norm to both sides of (52) yields

∥ δxk+1(0) ∥∞ ≤ ∥ I − YC ∥∞∥ δxk(0) ∥∞, (53)

thus limk→∞ ∥ δxk(0) ∥∞ = 0 according to the condition ∥ I − YC ∥∞ < 1.
Similarly, for t ∈ [t0, 0), taking the derivative with respect to t to both sides of (52),

which yields
δ

.
ϕk+1(t) = (I − YC)δ

.
ϕk(t), (54)

then applying the ∞-norm yields

∥ δ
.
ϕk+1(t) ∥∞ ≤ ∥ I − YC ∥∞∥ δ

.
ϕk(t) ∥∞, (55)

thus limk→∞ ∥ δ
.
ϕk(t) ∥∞ = 0 if ∥ I − YC ∥∞ < 1. Finally, it follows from (42) that

∥ δΨk ∥λ ≤ sup
t∈[0,T]

∫ 0

t0

e−λt(t − s)−α

Γ(1 − α)
∥ δ

.
ϕk(s) ∥∞ds

≤ sup
t∈[0,T]

∫ 0

t0

(t − s)−α

Γ(1 − α)
ds· sup

t∈[t0,0)
∥ δ

.
ϕk(t) ∥∞

≤ (T − t0)
1−α

Γ(2 − α)
· sup

t∈[t0,0)
∥ δ

.
ϕk(t) ∥∞,

(56)

which means that limk→∞ ∥ δΨk ∥λ = 0 as well. □

Returning to the inequality (39), since εex,k+1 no longer exists and limk→∞ εin,k+1 = 0
according to Lemma 4, then it follows from Lemma 3 that ∥ δuk(t) ∥, ∥ δxk(t) ∥ and
∥ ek(t) ∥ all converge to 0 as k grows. This indicates that, without considering external
disturbances, the initialization learning strategy proposed in Lemma 4 can gradually
eliminate the distortion of system dynamics caused by initialization and initial state shift,
thereby achieving ideal tracking performance for the ILC scheme proposed in Section 4.1.
Finally, the following Theorem 2 can be concluded.

Theorem 2. For the iterative system (17) and reference system (18), suppose that D = 0. Given an
arbitrary bounded initial input u0(t) (t ∈ [0, T]) and an arbitrary bounded and piecewise smooth
initial ϕ̃0(t) (t ∈ [t0, 0]); for k ∈ N, the following close-loop Dα-type ILC scheme with initialization
learning is adopted: {

uk+1(t) = uk(t) + Λ·0Dα
t ek+1(t),

ϕ̃k+1(t) = ϕ̃k(t) + Yẽk(t).
(57)

If
∥ (I + ΛCB)−1 ∥∞ < 1, ∥ I − YC ∥∞ < 1, (58)

then the following conclusion holds:

lim
k→∞

sup
t∈[0,T]

∥ δuk(t) ∥∞ = lim
k→∞

sup
t∈[0,T]

∥ δxk(t) ∥∞ = lim
k→∞

sup
t∈[0,T]

∥ ek(t) ∥∞ = 0.
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5. Numerical Examples
5.1. Example 1

A fractional capacitor is a key element in fractional order models of electrochem-
istry [39,40] and batteries [41]. Different from integer order capacitors, the voltage and
current of a fractional capacitor exhibit a relationship of fractional derivative, and its
constitutive equation is

C
0 Dα

t u(t) = Ci(t), (59)

where α ∈ (0, 1) denotes the fractional order, u(t) is the voltage, i(t) is the current, C is a
constant. A fractional capacitor is also called a constant phase element (CPE), as the phase
of the impedance of fractional capacitor only depends on the the fractional exponent α from
the view of frequency domain [29]. The initialized fractional operator D is applied here
because the CPE is memorial and its performance is affected by the history voltage curve.
In charging and discharging experiments related to CPE, it is usually necessary to resting
the equipment to eliminate the polarization effect [42], or apply appropriate initialization
stimulus to obtain the required system performance.

In this example, the voltage tracking problem of the CPE is considered, where the
reference ud(t) = 12t2(1 − t) (t ∈ [0, 1]), the order α is set to be 0.5, C = 1, and the current i
is chosen as the control input. To achieve this target, the close-loop Dα-type updating law
(20) is applied and the operator Λ is selected as 0.5, which conforms to the convergence
condition (47). The initial input current is set as i0(t) = 0, t ∈ [0, 1]. The simulations
are carried out in the environment of MATLAB/SIMULINK, where a number of mature
open-source toolboxes [43] on fractional calculus are available. The fractional operator
is implemented in the frequency domain and packaged as filter modules by adopting
integer-order fitting algorithms. The objective fractional order iterative system can be easily
established with the help of some other commonly used modules.

Suppose that the CPE is initialized on [−2, 0), the history voltage trajectory is symbol-
led as ϕk during the iterations. The following two initialization scenarios are concerned:

(1) For a constant reference history function ϕd(0) = 0 (t ∈ [−2, 0)), the initialization
trajectory ϕk(t) is disturbed by a iteration-varying δϕk(t), such that ϕk(t) = ϕd(t) +
δϕk(t) = δϕk(t), and the initial shift δuk(0) = limt→0− δϕk(t). Then, are the tracking
errors of uk and ik bounded? What factors are related to the size of the errors?

(2) If the reference history function is set as a sinusoidal excitation signal ϕd(t) =

0.2 sin ( 3πt
2 + π), while the initial initialization path ϕ0(t) = 0.2 sin ( 5πt

4 + π
2 ) de-

viates from ϕd(t) and further causes a significant initial shift δu0(0) = 0.2. Then,
can the initialization learning strategy (51) be applied to achieve the perfect tracking
performance of ϕk, uk and ik?

For Problem (1), the disturbed ϕk(t) is illustrated as follows. First, since ϕk needs
to be piecewise differentiable according to the Caputo definition, dϕk(t)

dt is assumed to be
uniformly distributed on [−L, L], which can be generated by the Simulink block "Uniform
Random Number". The sample time is set as 0.01s. Then, ϕk(t) is obtained by filtering
dϕk(t)

dt through an integrator. Obviously, ϕk(t) and δuk(0) are both bounded. Figure 1 shows
the generation process of disturbed history function ϕk(t).

Set L = 0, 1, and 2, respectively, and perform 30 iterations (L = 0 means that δϕk(t) =
δuk(0) = 0, ϕk(t) = ϕd(t)); the results are shown in Figure 2. Therein, the reference input id
is the current trajectory corresponding to ud under ideal initialization condition ϕd(t) = 0
(t ∈ [−2, 0)). From Figure 2a,c, it can be observed that the tracking error of u and i remain
bounded, and the convergence process are presented in Figure 2b,d. It should be noted that
ik fluctuates significantly near t = 0 due to the iteration-varying ϕk and uk(0) [28]. Thus,
the root-mean-square (RMS) value of δik(t) is adopted to measure the input performance
on the entire [0, 1], and the maximum absolute value of δuk(t) is applied to evaluate the
output performance.
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Figure 1. Generation of the disturbance signals: (a) The first-order derivative signal of ϕk(t) on
[−2, 0), where L = 1, ts = 0.01s. (b) ϕk(t) is generated by integrating the derivative signal, where
ϕk(−2) = 0, ϕk(0−) = xk(0).
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Figure 2. System performance for different history function fluctuations (L): (a) The output perfor-
mance after 30 iterations. (b) Convergence of the maximum tracking error maxt∈[0,1]|ek(t)|. (c) The
input performance after 30 iterations. (d) Convergence of RMS value of the input error δik(t) on [0, 1].
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Figure 2. System performance for different history function fluctuations (L): (a) The output perfor-
mance after 30 iterations. (b) Convergence of the maximum tracking error maxt∈[0,1]|ek(t)|. (c) The
input performance after 30 iterations. (d) Convergence of RMS value of the input error δik(t) on [0, 1].
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It is seen from Figure 2b,d that after about 15 iterations, the tracking error stops
converging and fluctuates due to random initialization path. To clarify the impact of L on
system performance, the values of maxt∈[0,1]|ek(t)| and RMSt∈[0,1](δik(t)) for the 16th–30th
iterations are recorded, and then their RMS values are calculated, respectively. The results
are stated in Table 1. The error level is positively correlated with the size of L. Since the
size of L reflects the fluctuation degree of δϕk(t) and uk(0), it can be concluded that the
ILC performance depends on the shift degree of the initialization path, which has been
theoretically illustrated in Remark 1.

Table 1. The RMS value of the tracking errors for the 16th–30th iterations.

Size of L 2 1 0

RMS16≤k≤30(maxt∈[0,1]|ek(t)|) 0.1463 0.0972 0.0010
RMS16≤k≤30(RMSt∈[0,1](δik(t))) 0.1191 0.1044 0.0301

Furthermore, the initialization problem (2) is considered. Obviously, if the initial ϕ0 is
not processed, the shift of initialization and initial value will break the convergence of the
system. To obtain the perfect tracking performance, the close-loop Dα-type ILC scheme
with initialization learning (57) is applied, where Λ = 0.5, the learning Y is set as 0.2, which
conforms to the convergence condition (58). The initialization learning is applied on [−2, 0],
while the ILC algorithm is performed on [0, 2].

Without considering other disturbances, we performed 100 iterations, and the results
are shown in Figure 3. Therein, Figure 3a–c demonstrate the trajectory of uk, ik and ϕk
through the iterations, and Figure 3d gives the changes in the tracking errors. It can be
concluded that after 100 iterations, u100, i100 and ϕ100 can accurately track the reference
trajectories. The convergence speed of ik is slower, which is caused by the initial shift and
evolution of the initialization path.

As a comparative experiment, another 100 iterations are carried out without using the
initialization learning strategy (51), and the results are displayed together with the u100 and
i100 of Figure 3, as shown in Figure 4. Obviously, the output voltage fluctuates at the initial
moment without initialization learning, which is not desirable in practice. The situation
with the input current is even worse, and a significant tracking error can be observed. On
the contrary, when applying the ILC scheme (57), the system maintains good tracking
performance, which proves the superiority of the proposed initialization learning strategy.

For ILC problems with initialization learning, it is significant to identify and optimize
the initialization path ϕ. This issue is theoretically challenging, since ϕ is infinite dimen-
sional, and the analytical relationship between ϕ and its response signal Ψ is relatively
complex. In this regard, some discretization based data-driven strategies are notable [44–46],
as it is difficult to apply the analytical methods. In addition, for more complex initialized
fractional order systems, it may be difficult to calculate ϕd and ud. Nevertheless, the
proposed initialization learning algorithm still has potential value, since the design of
ϕd depends on various factors such as physical accessibility, operating costs, and system
performance. For example, when ϕ0 causes an initial shift and leads to an excessive tracking
error, ϕd can be designed as an achievable initialization path which satisfies ϕd(0−) = yd(0).
The initial shift can be eliminated by applying the initialization learning.

5.2. Example 2

In this section, a more complex system structure, which contains nonlinearity, output
equation and channel disturbances, is considered:





C
0 D0.85

t x1(t) = x2(t) + 0.5u(t) + ω1(t),
C
0 D0.85

t x2(t) = |x1(t)|+ 0.8x0.6
2 (t) + u(t) + ω2(t),

y(t) = x1(t) + 0.2
∫ t

0 esu(s)ds + ν(t),
(60)



Fractal Fract. 2024, 8, 168 16 of 21

where x1 and x2 are state variables, u is the control input, y is the output, ω and ν
are disturbance signals. The proposed ILC strategy is applied to track the reference
yd(t) = 12t2(1 − t), where t ∈ [0, 1]. Under the initial input u0(t) = 0, (t ∈ [0, 1]), the
close-loop Dα-type ILC updating law (20) is adopted, where the learning gain Λ is set to
be 0.5 to satisfy the convergence conditions. Suppose that C

0 D0.85
t x1(t) is initialized by a

history function ϕ(t) on [−2, 0); similarly to Example 1, the following two initialization
scenarios are considered: (1) ϕk(t) is iteration-varying within a bounded range; and (2) the
initial ϕ0(t) deviates from ϕd and needs to be addressed.
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with initialization learning (57) is applied, where Λ = 0.5, the learning Υ is set as 0.2, which
conforms to the convergence condition (58). The initialization learning is applied on [−2, 0],
while the ILC algorithm is performed on [0, 2].

Without considering other disturbances, we performed 100 iterations, and the results
are shown in Figure 3. Therein, Figure 3a–c demonstrate the trajectory of uk, ik and ϕk
through the iterations, and Figure 3d gives the changes in the tracking errors. It can be
concluded that after 100 iterations, u100, i100 and ϕ100 can accurately track the reference
trajectories. The convergence speed of ik is slower, which is caused by the initial shift and
evolution of the initialization path.

As a comparative experiment, another 100 iterations are carried out without using the
initialization learning strategy (51), and the results are displayed together with the u100 and
i100 of Figure 3, as shown in Figure 4. Obviously, the output voltage fluctuates at the initial
moment without initialization learning, which is not desirable in practice. The situation
with the input current is even worse, and a significant tracking error can be observed.
On the contrary, when applying the ILC scheme (57), the system maintains good tracking
performance, which proves the superiority of the proposed initialization learning strategy.
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Figure 3. System performance when applying the initialization learning strategy: (a) The track-
ing performance of uk. (b) The tracking performance of ik. (c) The tracking performance of ϕk.
(d) Convergence of the tracking errors δu, δi, and δϕ during the iterations.

Figure 3. System performance when applying the initialization learning strategy: (a) The track-
ing performance of uk. (b) The tracking performance of ik. (c) The tracking performance of ϕk.
(d) Convergence of the tracking errors δu, δi, and δϕ during the iterations.

First, for scenario (1), suppose that ϕd(t) = 0 (t ∈ [−2, 0)), ϕk(t) is disturbed by
a iteration-varying δϕk(t). In order to eliminate interference from other non-repetitive
factors, δx1,k(0) is set to be 0, and ω1(t) = ω2(t) = ν(t) = 0 on [0, 1]. The gener-
ation of δϕk(t) is the same as that shown in Figure 1, and the sample time is set as
0.001s here. To clarify the impact of δϕk(t) on system performance, 50 iterations are
performed, respectively, for L = 20, 10, 0, and the simulation results are shown in Fig-
ure 5. It can be seen that the tracking error keeps bounded. Similarly, recording the maxi-
mum absolute error maxt∈[0,1]|ek(t)| for the 16th–50th iterations and then calculating their
RMS values, the results are RMSL=20(e16≤k≤50) = 0.0657, RMSL=10(e16≤k≤50) = 0.0363,
RMSL=0(e16≤k≤50) = 0.0011. Thus, it is concluded that the the average tracking error level
is positively correlated with the shift degree of the initialization path.
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Figure 4. System performance with/without initialization learning (k = 100): (a) The tracking
performance of u100 and the fluctuation at the initial moment. (b) The tracking performance of i100

and the fluctuation phenomenon.

Table 1. The RMS value of the tracking errors for the 16th–30th iterations

Size of L 2 1 0

RMS16≤k≤30(maxt∈[0,1]|ek(t)|) 0.1463 0.0972 0.0010
RMS16≤k≤30(RMSt∈[0,1](δik(t))) 0.1191 0.1044 0.0301

For ILC problems with initialization learning, it is significant to identify and optimize
the initialization path ϕ. This issue is theoretically challenging, since ϕ is infinite dimen-
sional, and the analytical relationship between ϕ and its response signal Ψ is relatively
complex. In this regard, some discretization based data-driven strategies are notable [44–46],
as it is difficult to apply the analytical methods. In addition, for more complex initialized
fractional order systems, it may be difficult to calculate ϕd and ud. Nevertheless, the pro-
posed initialization learning algorithm still has potential value, since the design of ϕd
depends on various factors such as physical accessibility, operating costs, and system per-
formance. For example, when ϕ0 causes an initial shift and leads to an excessive tracking
error, ϕd can be designed as an achievable initialization path which satisfies ϕd(0−) = yd(0).
The initial shift can be eliminated by applying the initialization learning.

5.2. Example 2

In this section, a more complex system structure, which contains nonlinearity, output
equation and channel disturbances, is considered:





C
0 D0.85

t x1(t) = x2(t) + 0.5u(t) + ω1(t),
C
0 D0.85

t x2(t) = |x1(t)|+ 0.8x0.6
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y(t) = x1(t) + 0.2
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0 esu(s)ds + ν(t),
(60)

where x1 and x2 are state variables, u is the control input, y is the output, ω and ν
are disturbance signals. The proposed ILC strategy is applied to track the reference
yd(t) = 12t2(1 − t), where t ∈ [0, 1]. Under the initial input u0(t) = 0, (t ∈ [0, 1]),
the close-loop Dα-type ILC updating law (20) is adopted, where the learning gain Λ is set
to be 0.5 to satisfy the convergence conditions. Suppose that C

0 D0.85
t x1(t) is initialized by
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Figure 4. System performance with/without initialization learning (k = 100): (a) The tracking
performance of u100 and the fluctuation at the initial moment. (b) The tracking performance of i100

and the fluctuation phenomenon.
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scenarios are considered: (1) ϕk(t) is iteration-varying within a bounded range; and (2) the
initial ϕ0(t) deviates from ϕd and needs to be addressed.

First, for scenario (1), suppose that ϕd(t) = 0 (t ∈ [−2, 0)), ϕk(t) is disturbed by
a iteration-varying δϕk(t). In order to eliminate interference from other non-repetitive
factors, δx1,k(0) is set to be 0, and ω1(t) = ω2(t) = ν(t) = 0 on [0, 1]. The generation
of δϕk(t) is the same as that shown in Figure 1, and the sample time is set as 0.001s
here. To clarify the impact of δϕk(t) on system performance, 50 iterations are performed,
respectively, for L = 20, 10, 0, and the simulation results are shown in Figure 5. It can be
seen that the tracking error keeps bounded. Similarly, recording the maximum absolute error
maxt∈[0,1]|ek(t)| for the 16th–50th iterations and then calculating their RMS values, the results
are RMSL=20(e16≤k≤50) = 0.0657, RMSL=10(e16≤k≤50) = 0.0363, RMSL=0(e16≤k≤50) = 0.0011.
Thus, it is concluded that the the average tracking error level is positively correlated with
the shift degree of the initialization path.
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Figure 5. System performance for different history function fluctuations (L): (a) The tracking perfor-
mance after 50 iterations. (b) Convergence of the maximum tracking error maxt∈[0,1]|ek(t)|.

Second, the effects of initial shift and channel disturbances on ILC performance is
further investigated. Based on the first step, assuming that x1,k(0) = ϕk(0−), ω1,k, ω2,k
and νk are generated similarly as ϕk. For L=4, 2 ,0, perform 50 iterations, and the results
can be seen in Figure 6. The RMS values of maxt∈[0,1]|ek(t)| for the 16th-50th iterations
are 0.2992 (L = 4), 0.1606 (L = 2) and 0.0011 (L = 0), respectively. Combined with
Figures 5b and 6b, it can be concluded that the superposition of non-repetitive factors leads
to an increase in average tracking error, but its overall level is still positively correlated
with the amplitude (x1,k(0), ωk) and fluctuation level (δϕk, νk) of the disturbances. This
conclusion is consistent with the theoretical results in Section 4.

Third, for the initialization scenario (2), suppose that ω1(t) = ω2(t) = ν(t) = 0 on
[0, 1], the initial initialization path ϕ0(t) = 0.2 sin( 5πt

4 + π
2 ), where t ∈ [−2, 0), ϕ0(0−) =

x1,0(0) = 0.2. Appropriate adjustment of ϕ0 is necessary to eliminate the initial shift.
Therefore, the reference initialization path is set to be ϕd(t) = 0.2 sin( 3πt

2 + π) (t ∈ [−2, 0)),
such that x1,d(0) = limt→0− ϕd(t) = 0. To apply the initialization learning algorithm,
the system is assumed to have no control inputs on [−2, 0]. Then, we adopt the learning law
ϕ̃k+1(t) = ϕ̃k(t) + 0.2ẽk(t) and perform 50 iterations; the results are presented in Figure 7.
It can be seen that the initial error is gradually eliminated, and the system output achieves
perfect tracking of the reference trajectory. As a comparison, Figure 7 also shows the
tracking performance after 50 iterations without using initialization learning. Obvious
tracking error and initial fluctuation can be observed, and the RMS value of ek during the

Figure 5. System performance for different history function fluctuations (L): (a) The tracking perfor-
mance after 50 iterations. (b) Convergence of the maximum tracking error maxt∈[0,1]|ek(t)|.

Second, the effects of initial shift and channel disturbances on ILC performance is
further investigated. Based on the first step, assuming that x1,k(0) = ϕk(0−), ω1,k, ω2,k and
νk are generated similarly as ϕk. For L = 4, 2, 0, perform 50 iterations, and the results can be
seen in Figure 6. The RMS values of maxt∈[0,1]|ek(t)| for the 16th–50th iterations are 0.2992
(L = 4), 0.1606 (L = 2) and 0.0011 (L = 0), respectively. Combined with Figures 5b and 6b,
it can be concluded that the superposition of non-repetitive factors leads to an increase in
average tracking error, but its overall level is still positively correlated with the amplitude
(x1,k(0), ωk) and fluctuation level (δϕk, νk) of the disturbances. This conclusion is consistent
with the theoretical results in Section 4.
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iteration process is higher than that of adopting initialization learning. This proves the
effectiveness of the proposed ILC strategy.
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Figure 6. System performance for different history function fluctuations, initial shifts, and channel
disturbances: (a) The tracking performance after 50 iterations. (b) Convergence of the maximum
tracking error maxt∈[0,1]|ek(t)|.
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Figure 7. System performance with/without the initialization learning strategy (k = 50): (a) The
tracking performance after 50 iterations. (b) Convergence of the RMS value of the tracking error
RMSt∈[0,1](ek(t)).

6. Conclusions

This paper discusses the impact of system initialization on ILC performance for initial-
ized fractional order systems, and investigates strategies to improve system convergence.
First, under the condition of iteration-varying initialization, initial shift and channel dis-
turbances, a novel robust ILC convergence condition is strictly derived by applying the
close-loop Dα-type updating law. Second, the bounds of the tracking errors are theoretically
proven to be positively correlated with the degree of initialization non-repetition. Third,
a novel initialization learning algorithm is proposed to improve the initialization condition,

Figure 6. System performance for different history function fluctuations, initial shifts, and channel
disturbances: (a) The tracking performance after 50 iterations. (b) Convergence of the maximum
tracking error maxt∈[0,1]|ek(t)|.

Third, for the initialization scenario (2), suppose that ω1(t) = ω2(t) = ν(t) = 0 on
[0, 1], the initial initialization path ϕ0(t) = 0.2 sin ( 5πt

4 + π
2 ), where t ∈ [−2, 0), ϕ0(0−) =

x1,0(0) = 0.2. Appropriate adjustment of ϕ0 is necessary to eliminate the initial shift.
Therefore, the reference initialization path is set to be ϕd(t) = 0.2 sin ( 3πt

2 + π) (t ∈ [−2, 0)),
such that x1,d(0) = limt→0− ϕd(t) = 0. To apply the initialization learning algorithm, the
system is assumed to have no control inputs on [−2, 0]. Then, we adopt the learning law
ϕ̃k+1(t) = ϕ̃k(t) + 0.2ẽk(t) and perform 50 iterations; the results are presented in Figure 7.
It can be seen that the initial error is gradually eliminated, and the system output achieves
perfect tracking of the reference trajectory. As a comparison, Figure 7 also shows the
tracking performance after 50 iterations without using initialization learning. Obvious
tracking error and initial fluctuation can be observed, and the RMS value of ek during the
iteration process is higher than that of adopting initialization learning. This proves the
effectiveness of the proposed ILC strategy.
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6. Conclusions

This paper discusses the impact of system initialization on ILC performance for initial-
ized fractional order systems, and investigates strategies to improve system convergence.
First, under the condition of iteration-varying initialization, initial shift and channel dis-
turbances, a novel robust ILC convergence condition is strictly derived by applying the
close-loop Dα-type updating law. Second, the bounds of the tracking errors are theoretically
proven to be positively correlated with the degree of initialization non-repetition. Third, a
novel initialization learning algorithm is proposed to improve the initialization condition,
and thereby maintain the perfect ILC tracking performance. The proposed ILC scheme
includes different initialization scenarios and has good physical interpretability, and its su-
periority and application potential are demonstrated through the two numerical examples.

Considering the theoretical basis and physical background of system initialization,
there are still some potential open issues. As mentioned in Section 5, the design, identifica-
tion and optimization of initialization path is still challenging. In the field of ILC, how to
combine the reset operation with system initialization is also an interesting topic.
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