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Abstract: In this article, we analyzed the time fractional higher-dimensional nonlinear modified
model of wave propagation, namely the (3 + 1)-dimensional Benjamin–Bona–Mahony-type equation.
The fractional sense was defined by the classical Riemann–Liouville fractional derivative. We derived
firstly the existence of symmetry of the time fractional higher-dimensional equation. Next, we
constructed the one-dimensional optimal system to the time fractional higher-dimensional nonlinear
modified model of wave propagation. Subsequently, it was reduced into the lower-dimensional
fractional differential equation. Meanwhile, on the basis of the reduced equation, we obtained its
similarity solution. Through a series of analyses of the time fractional high-dimensional model and
the results of the above obtained, we can gain a further understanding of its essence.

Keywords: time fractional higher-dimensional nonlinear modified model; symmetry; optimal system;
similarity reduction; similarity solution

1. Introduction

It is known that differential equations originated from the real natural life, such as the
RLC circuit model [1], population model [2], realistic ecological model [3], KdV model [4],
diffusion type model [5], etc. By analyzing these models, we can better understand,
comprehend, and utilize them. Meanwhile, since the higher-dimensional nonlinear models
contain more spatial dimensions x, y and z, they contain more information for the natural
world. As a result, the nonlinear higher-dimensional models is one of the important topics
in the field of mathematical physics. On the basis of the above idea, A.M. Wazwaz [6]
derived five categories of Benjamin–Bona–Mahony-type equations of wave propagation
and fluids, and obtained their exact solutions, such as the soliton, kink, and periodic
solutions. At the same time, there is another type of fractional derivative that appears at the
same time as integer order. We known that the fractional derivative is used to describe the
complex nonlinear mechanism. There exist many different fractional derivative definitions,
such as the Riemann–Liouville fractional derivative [7,8], Caputo fractional derivative [7,8],
general fractional derivative [9], He’s fractional derivative [10], etc. They have been widely
used in diffusion processes in solids, biological media, and fractal media [11]. Here, we
considered one of the five categories of the following form:

Dα
t u + ux + u2uy − uxzt = 0, 0 < α ≤ 1, (1)

where:

Dα
t u(x, y, z, t) =


1

Γ(n−α)
∂n

∂tn

∫ t
0

u(x,y,z,τ)
(t−τ)α+1−n dτ, n− 1 < α < n, n ∈ N,

∂nu(x,y,z,t)
∂tn , α = n ∈ N,
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is the Riemann–Liouville fractional derivative. A.R. Seadawy et al. [12] obtained the
periodic wave and kink wave of Equation (1). Liu et al. [13] studied the dynamical behavior
of the traveling systems and deep neural network. S. Muhammad et al. [14] derived the
diversity of soliton solutions of Equation (1). B. Muhammad et al. [15,16] found many
solitary waves solutions by using the analytical method.

Due to the more detailed characterization of real life by fractional derivatives and the
fact that high-dimensional nonlinear models contain more information, the main motiva-
tion of this paper is to explore the mechanism of water wave propagation by studying the
high-dimensional model. The research results will fill the gap in the water wave theory in
this regard. The aims of this article are to apply the symmetry scheme to investigate the
time fractional higher-dimensional nonlinear modified equation of wave propagation (1).
As a direct result, a series of new results were obtained. The fractional symmetry analysis
scheme is an effective tool to deal with fractional differential equations, specifically the
higher-dimensional nonlinear models [17–24]. For example, Adeyemo et al. [17] studied
the time fractional (3 + 1)-dimensional generalized Zakharov-Kuznetsov equation type I,
Liu et al. [18–21] researched the higher-dimensional KdV-type equation, dissipation Burg-
ers equation, and diffusion equation, Sahoo et al. [22] discussed the (3 + 1)-dimensional
time-fractional mKdV-ZK equation, and Zhuo et al. [23] analyzed the generalized (4 + 1)-
dimensional time-fractional Fokas equation, Zhu et al. [24] considered the time-fractional
(2 + 1)-dimensional Hirota-Satsuma-Ito equations. Therefore, we hope to find more novel
results through this effective tool, laying the foundation for our deeper understanding of
this model.

The compositions of this article as follows: the symmetries of Equation (1) through
the symmetry scheme are derived in Section 2. In Sections 3 and 4, we discuss, respec-
tively, the one-dimensional optimal system and one-parameter Lie transformation group
of Equation (1). With the help of the Erdélyi–Kober fractional operators, Equation (1) is
reduced into the lower fractional differential equation in Section 5. Then, the similarity
solution of the reduced equation is found. The conclusions and discussions of the entire
text and future prospects are presented in Section 6.

2. Symmetry Scheme of Equation (1)

In the first place, the symmetries of the time fractional higher-dimensional nonlinear
modified equation of wave propagation (1) were obtained. As a direct conclusion, we have
Theorem 1.

Theorem 1. The time fractional higher-dimensional nonlinear modified equation of wave propaga-
tion (1) has the infinitesimal generators of the forms:

X1 = 2x∂x +
2
α

y∂y− 2
α

z∂z +
2− α

α
u∂u +

2
α

t∂t,

X2 = ∂x, X3 = ∂y, X4 = ∂z.

Proof. It is assumed that Equation (1) is invariant under a one-parameter Lie transforma-
tion group as follows:

x∗ → x + εξx(x, y, z, t, u) + O(ε2),

y∗ → y + εξy(x, y, z, t, u) + O(ε2),

z∗ → z + εξz(x, y, z, t, u) + O(ε2),

t∗ → t + εξt(x, y, z, t, u) + O(ε2),

u∗ → u + εηu(x, y, z, t, u) + O(ε2),

Dα
t u∗ → Dα

t u + εηα
u(x, y, z, t, u) + O(ε2),

∂u∗

∂x∗
→ ∂u

∂x
+ εηx

u(x, y, z, t, u) + O(ε2),

. . .

(2)
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where ε� 1 is an infinitesimal parameter.
In detail:

ηx
u = Dx(ηu − ξxux − ξyuy − ξzuz − ξtut) + ξxuxx + ξyuxy + ξzuxz + ξtuxt,

η
y
u = Dy(ηu − ξxux − ξyuy − ξzuz − ξtut) + ξxuxy + ξyuyy + ξzuzy + ξtuyt,

ηz
u = Dz(ηu − ξxux − ξyuy − ξzuz − ξtut) + ξxuxz + ξyuyz + ξzuzz + ξtuzt,

ηt
u = Dt(ηu − ξxux − ξyuy − ξzuz − ξtut) + ξxuxt + ξyuyt + ξzuzt + ξtutt,

where Dx, Dy, Dz, and Dt are total derivatives [25,26].
At the same time, it is supposed that Equation (1) has the following general infinitesi-

mal generator:
X = ξx∂x + ξy∂y + ξz∂z + ξt∂t + ηu∂u. (3)

Utilizing the infinitesimal invariance criterion [11–20], one has:

Pr(α,t)X(Ξ)|Ξ=0 = 0, (4)

where Pr(α,t)X is the prolongation of X and:

Ξ = Dα
t u + ux + u2uy − uxzt.

For Equation (1), it can be written as:

pr(α,t)X = X + ∂Dα
t u + ηx

u∂ux + η
y
u∂uy + ηxzt

u ∂uxzt. (5)

Applying the invariance condition (4) to Equation (1), we can obtain the symmetry
determining equation as follows:

η
(α,t)
u + ηx

u + 2ηuuy + u2η
y
u − ηxzt

u = 0, (6)

where the α-extended infinitesimal [17–24] is:

η
(α,t)
u =

∂αηu

∂tα
+ (ηu,u − αDt(ξt))

∂αu
∂tα
− u

∂αηu,u

∂tα
+

∞

∑
m=1

[

(
α
m

)
∂αηu,u

∂tα

−
(

α
m + 1

)
Dm+1

t (ξt)]Dα−m
t (u)−

∞

∑
m=1

(
α
m

)
Dm

t (ξx)Dα−m
t (ux)

−
∞

∑
m=1

(
α
m

)
Dm

t (ξy)Dα−m
t (uy)−

∞

∑
m=1

(
α
m

)
Dm

t (ξz)Dα−m
t (uz) + ∆,

(7)

with:

∆ =
∞

∑
m=2

m

∑
n=2

n

∑
j=2

j−1

∑
r=0

(
α
m

)(
m
n

)(
j
r

)
1
j!

tm−α

Γ(m + 1− α)
(−u)r ∂n

∂tn (u
j−r)

∂m−n+jηu

∂tm−n∂uj .

Inserting the Equations (7) and (2) into Equation (6) and collecting the coefficients of
different powers of u to zero, we have:

ξx = 2c2αx + c3,

ξy = 2c2y + c5,

ξz = −2c2z + c4,

ξt = 2c2t + c1,

ηu = −c2αu + 2c2u,

(8)

where ci(i = 1, 2, 3, 4, 5) are arbitrary parameters.
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In addition, the constraint condition ξt(x, y, z, t, u)|t=0 = 0 to hold the Riemann–
Liouville fractional derivative structure. We get c1 = 0.

Hence, the infinitesimal generator X of Equation (1) has:

X = (2c2αx + c3)∂x + (2c2y + c5)∂y + (−2c2z + c4)∂z + 2c2t∂t + (−c2αu + 2c2u)∂u. (9)

It can be spanned by the following four vector fields:

X1 = 2x∂x +
2
α

y∂y− 2
α

z∂z +
2− α

α
u∂u +

2
α

t∂t,

X2 = ∂x, X3 = ∂y, X4 = ∂z.
(10)

This concludes the proof.

The above four vector fields (10) can construct a closed Lie algebra. Their commutation
relationships can be found in Table 1.

Table 1. The commutation table of Lie algebra.

[Xi, Xj] X1 X2 X3 X4

X1 0 −2αX2 −2X3 2X4

X2 2αX2 0 0 0

X3 2X3 0 0 0

X4 −2X4 0 0 0

3. Optimal System of Equation (1)

In order to reduce the original equation as much as possible and construct the exact
solutions, we need to find the one-dimensional optimal system of Equation (1). With the
help of the Lie series [25,26], the action of the adjoint operator can given by:

Ad(exp(εXi)) · Xj = Xj − ε[Xi, Xj] +
ε2

2
[Xi, [Xi, Xj]]− . . . , (11)

where [Xi, Xj] is Lie bracket and ε is a constant.
Specifically:

Ad(exp(ε · X1)) · X2 = X2 − ε · [X1, X2] +
ε2

2
[X1, [X1, X2]]− . . .

= e2αεX2,

Ad(exp(ε · X1)) · X3 = X3 − ε · [X1, X3] +
ε2

2
[X1, [X1, X3]]− . . .

= 2X3,

Ad(exp(ε · X2)) · X1 = X1 − ε · [X2, X1] +
ε2

2
[X2, [X2, X1]]− . . .

= X1 − e2αεX2,

Ad(exp(ε · X2)) · X1 = X1 − ε · [X2, X1] +
ε2

2
[X2, [X2, X1]]− . . .

= X1 − 2εX3.

The adjoint actions of the infinitesimal generators (10) are seen as Table 2.
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Table 2. The adjoint representation of infinitesimal generators (10).

Ad(exp(εXi)) · Xj X1 X2 X3 X4

X1 X1 e2αεX2 e2εX3 e−2εX4

X2 X1 − e2αεX2 X2 X3 X4

X3 X1 − 2εX3 X2 X3 X4

X4 X1 + 2εX4 X2 X3 X4

Hence, we have the following result of the one-dimensional optimal system of Equation (1).

Theorem 2. An optimal system of one-dimensional Lie subalgebras operators (10) to Equation (1)
can be spanned by:

V1 = X1, V2 = k2X2 + k3X3 + k4X4, (12)

where ki(i = 2, 3, 4) are not all zero.

The simple proof process of this Theorem 2 can be found in references [25,26]. Here,
we omit it.

Remark 1. If making linear operator L = a1X1 + a2X2 + a3X3 + a4X4, aj 6= 0(j = 1, 2, 3, 4),
then the Killing form is 4α2a2

1 + 8a2
1. It can be seen that the value α = 1 is conform to Equation (1)

of integer order for the Killing form 12a2
1. That is to say, fractional differential equations have a

wider research domain.

4. One-Parameter Lie Transformation Group of Equation (1)

In this subsection, we derived the one-parameter Lie transformation group [25,26] of
Equation (1). It keep the solution set unchanged or transform the solution into a solution to
differential equations. Hence, we may obtain new solutions from the known ones of this
considered model.

In addition to constructing the one-parameter Lie transformation group, we solved
the following initial problems [25,26]:

d(x∗(ε))
dε

= ξx(x∗(ε), y∗(ε), z∗(ε), t∗(ε), u∗(ε)), x∗(0) = x,

d(y∗(ε))
dε

= ξy(x∗(ε), y∗(ε), z∗(ε), t∗(ε), u∗(ε)), y∗(0) = y,

d(z∗(ε))
dε

= ξz(x∗(ε), y∗(ε), z∗(ε), t∗(ε), u∗(ε)), z∗(0) = z,

d(t∗(ε))
dε

= ξt(x∗(ε), y∗(ε), z∗(ε), t∗(ε), u∗(ε)), t∗(0) = t,

d(u∗(ε))
dε

= ηu(x∗(ε), y∗(ε), z∗(ε), t∗(ε), u∗(ε)), u∗(0) = u,

(13)

where ε is a small parameter.
Solving the above system (13) with vector fields (10), we can obtain the one-parameter

Lie transformation groups gi(ε), (i = 1, 2, 3, 4) of the forms:

g1(ε) : (x, y, z, t, u)→ (e2εx, e
2
α εy, e−

2
α εz, e

2
α εt, e

2−α
α εu),

g2(ε) : (x, y, z, t, u)→ (x + ε, y, z, t, u),

g3(ε) : (x, y, z, t, u)→ (x, y + ε, z, t, u),

g4(ε) : (x, y, z, t, u)→ (x, y, z + ε, t, u).

(14)

As a result, we obtained Theorem 3.
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Theorem 3. If u = f (x, y, z, t) is an exact solution of the time fractional higher-dimensional
nonlinear modified equation of wave propagation (1), then:

u1 = e
α−2

α ε f1(e−2εx, e−
2
α εy, e

2
α εz, e−

2
α εt),

u2 = f2(x− ε, y, z, t),

u3 = f3(x, y− ε, z, t),

u4 = f4(x, y, z− ε, t),

(15)

are also solutions to Equation (1).

Remark 2. It is can be seen that the Lie transformation group g2, g3, and g4 are invariant on
spaces x, y, and z. The well known scaling symmetry action is g1.

5. Similarity Reduction and Similarity Solution of Equation (1)

In this section, we reduce Equation (1) into the lower dimensional fractional differential
equation with the Erdélyi–Kober fractional operators [27]. In addition, we obtained the
similarity solution of the reduced equation.

5.1. Similarity Reduction of Equation (1)

Case 1. V1 = X1 = 2x∂x + 2
α y∂y− 2

α z∂z + 2−α
α u∂u + 2

α t∂t
From V1, Equation (1) was reduced into the following form.

Theorem 4. The similarity variables ξ1 = xt−α, ξ2 = yt−1, ξ3 = zt and group invariant solution
u = t1− 1

2 α f (ξ1, ξ2, ξ3) were used to reduce Equation (1) into the following result:

(P2− 3
2 α,α

1
α ,1,−1

f )(ξ1, ξ2, ξ3) + fξ1 + f f 2
ξ2
− (1− 3

2
α)t fξ1ξ2 = 0,

where the (P2− 3
2 α,α

1
α ,1,−1

f )(ξ1, ξ2, ξ3) represents the three parameters Erdélyi–Kober fractional differen-

tial operator [27]

(Pτ,α
χ1,χ2,χ3

F)(ξ1, ξ2, ξ3)

=
n−1

∏
j=0

(τ + j− 1
χ1

ξ1
∂

∂ξ1
− 1

χ2
ξ2

∂

∂ξ2
− 1

χ3
ξ3

∂

∂ξ3
)(Kτ+α,n−α

χ1,χ2,χ3
F)(ξ1, ξ2, ξ3), χi ∈ R,

where:

(Kτ,α
χ1,χ2,χ3

F)(ξ1, ξ2, ξ3) =

 1
Γ(α)

∞∫
1
(ϑ− 1)α−1ϑ−(τ+α)F(ξ1ϑ

1
χ1 , ξ2ϑ

1
χ2 , ξ3ϑ

1
χ3 )dϑ, α > 0,

F(ξ1, ξ2, ξ3), α = 0.

is the three parameters Erdélyi–Kober fractional integral operator [27].

Proof. For V1, it has the characteristic equation of the form:

dx
2x

=
dz
− 2

α z
=

dy
2
α y

=
dt
2
α t

=
du

2−α
α u

. (16)

Solving characteristic Equation (16), we obtained, respectively, the similarity variables
and group invariant solution:

ξ1 = xt−α, ξ2 = yt−1, ξ3 = zt, (17)
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and
u = t1− 1

2 α f (ξ1, ξ2, ξ3). (18)

Next, for the Riemann–Liouville fractional derivative definition, we have:

Dα
t u =

∂n

∂tn [
1

Γ(n− α)

t∫
0

(t− s)n−α−1s1− 1
2 α f (xs−α, ys−1, zs)ds], n− 1 < α < n, (n = 1, 2, 3, . . . ). (19)

If considering v = t
s , then expression (19) becomes:

Dα
t u =

∂n

∂tn [
tn+1− 3

2 α

Γ(n− α)

∞∫
1

(v− 1)n−α−1v−(n+2− 3
2 α) f (ξ1vα, ξ2v, ξ3v−1)dv]

=
∂n

∂tn [t
n+1− 3

2 α(K2− 1
2 α,n−α

1
α ,1,−1

f )(ξ1, ξ2, ξ3)].

(20)

Meanwhile, we note the following fact:

t
∂

∂t
φ(ξ1, ξ2, ξ3) = −αξ1φξ1 − ξ2φξ2 + ξ3φξ3 . (21)

Hence, Equation (20) can be further reduced into the following form:

∂n

∂tn [t
n+1− 3

2 α(K2− 1
2 α,n−α

1
α ,1,−1

f )(ξ1, ξ2, ξ3)]

=
∂n−1

∂tn−1 [
∂

∂t
(tn− 3

2 α(K2− 1
2 α,n−α

1
α ,1,−1

f )(ξ1, ξ2, ξ3))]

=
∂n−1

∂tn−1 [t
n− 3

2 α(n + 1− 3
2

α− αξ1
∂

∂ξ1
− ξ2

∂

∂ξ2
+ ξ3

∂

∂ξ3
) · (K2− 1

2 α,n−α
1
α ,1,−1

f )(ξ1, ξ2, ξ3)]

= . . . . . . (n− 1)− times

= t1− 3
2 α

n−1

∏
j=0

(2− 3
2

α + j− αξ1
∂

∂ξ1
− ξ2

∂

∂ξ2
+ ξ3

∂

∂ξ3
) · (K2− 1

2 α,n−α
1
α ,1,−1

f )(ξ1, ξ2, ξ3)

= t1− 3
2 α(P2− 3

2 α,α
1
α ,1,−1

f )(ξ1, ξ2, ξ3).

(22)
In summary, Equation (1) was reduced into the following form:

(P2− 3
2 α,α

1
α ,1,−1

f )(ξ1, ξ2, ξ3) + fξ1 + f f 2
ξ2
− (1− 3

2
α)t fξ1ξ2 = 0. (23)

Proving the theorem.

Case 2. V2 = X2 = ∂x
Similar to Case 1, Equation (1) easily was reduced into the following expression:

Dα
t u + u2uy = 0. (24)

For Equation (24), the infinitesimal generators can be obtained through the fractional
Lie group scheme:

X̂1 = 2t∂t + u(α− 1)∂u + 2y∂y,

X̂2 = ∂y.
(25)

Similarity, the infinitesimal generators (25) were used to reduce Equation (24) as
Theorem 4 processes. Here, we ignore it.
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Case 3. V3 = X3 = ∂y
Similar to Case 1, Equation (1) can be reduced into the following form:

Dα
t u + ux − uxzt = 0. (26)

If Theorem 1 processes are performed, then the infinitesimal generators are as follows:

X1 = ∂z, X2 = u∂u, X3 = ∂x,

X4 = αx∂x− z∂z + t∂t.
(27)

Similarly, the infinitesimal generators (27) were used to reduce Equation (26). Here,
we ignore it.

Case 4. V4 = X4 = ∂z
Similar to Case 1, Equation (1) can be reduced into the following form

Dα
t u + ux + u2uy = 0. (28)

If perform Theorem 1 processes, then we have

X1 = 2t∂t + u(1− α)∂u + 2αx∂x + 2y∂y,

X2 = ∂x, X3 = ∂y.
(29)

Similarity, the infinitesimal generators (29) were used to reduce Equation (27) as Theorem 4
processes. Here we ignore it.

Case 5. V5 = ∂x + ∂y
In a similar way, Equation (1) was reduced into the following form:

Dα
t u = 0. (30)

It is easy to find an exact solution as follows:

u =
c

Γ(α)
tα−1, (31)

where c is a free constant.
Taking the values c = ±1, α = 0.3, α = 0.6, and α = 0.9 into rational solution (31),

Figure 1 was plotted.

Figure 1. Plots of evolution of rational solution (31) with the above parameter values.

Case 6. V6 = ∂x + ∂z
From V6, Equation (1) was reduced into Equation (24).
Case 7. V7 = ∂y + ∂z
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In a similar way, Equation (1) was reduced into the following form:

Dα
t u + ux = 0. (32)

This is known as the one-dimensional linear Burger equation.
Case 8. V7 = ∂x + ∂y + ∂z
From V8, Equation (1) was reduced into Equation (30).

5.2. Similarity Solution of Equation (24)

In this subsection, we proved firstly the reduced Equation (24) existence the similarity
solution. Then, we presented specific expressions of similar solution.

It is supposed that Equation (24) is invariant under the following scaling transformation:

t = λt̃, y = λpỹ, u = λqũ(ỹ, t̃), (33)

where p and q are arbitrary parameters to be determined later.
Inserting transformations (33) into Equation (24), we have:

λq−α ∂αũ
∂t̃α

+ λ3q−pũ2 ∂ũ
∂ỹ

= 0, (34)

which implies that:
p− α = 2q

has similarity solution.
We can use the following to find traveling wave similarity solution for Equation (24).

(
t
t̃
) = (

y
ỹ
)

1
p , (

u
ũ
) = (

y
ỹ
)

q
p (35)

Let the similarity transformation be as follows:

u = y
q
p U(ξ), ξ =

ct
y
− 1, (36)

where p, q, and c are arbitrary parameters to be determined later.
According to the definition of the Riemann–Liouville, one has:

∂αu
∂tα

=
1

Γ(1− α)

∂

∂t

t∫
0

y
q
p ( ct

y − 1)

(t− x)α dx. (37)

Let x = ct
y − 1, then Equation (37) becomes:

∂αu
∂tα

=
1

Γ(1− α)

c
y

d
dξ

ξ∫
−1

y
q
p (x)

(ξ − x)α( y
c )

α
y
c

dx

= cαy
q−αq

p
dαU(ξ)

dξ
.

(38)

Furthermore:
uy = y

q−p
p [

q
p

U(ξ)− (ξ + 1)U
′
(ξ)]. (39)

Substituting (39) and (38) into Equation (24), we have:

cαy
q−αq

p
dαU(ξ)

dξ
+ y

3q−p
p U2(ξ)T(ξ) = 0, (40)
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which yields:
q
p
=

1− α

2
, (41)

where:
T(ξ) =

q
p

U(ξ)− (ξ + 1)U
′
(ξ).

Thereby, Equation (40) becomes the following ordinary differential equation of frac-
tional order:

cα dαU(ξ)

dξ
+ U2(ξ)T(ξ) = 0. (42)

Now, we consider that Equation (42) has the special solutions of the following form:

U(ξ) =

{
kξρ, ξ ≥ 0,
0, ξ < 0.

(43)

Plugging (43) into Equation (42), one has:

cαkΓ(1 + ρ)

Γ(1 + ρ− α)
ξρ−α + k3ξ3ρ−1[

q
p

ξ − (ξ + 1)ρ] = 0, (44)

which derives:
ρ =

1− α

2
. (45)

Inserting the comparison expressions (45) and (41) into Equation (44), we have:

k = [
cαΓ( 1

2 −
1
2 α)

Γ( 3
2 −

3
2 α)

]
1
2 . (46)

Conversely:

c = [
k2Γ( 3

2 −
3
2 α)

Γ( 1
2 −

1
2 α)

]
1
α . (47)

Therefore, we obtained the traveling wave similarity solution of Equation (24) of
the form:

u(y, t) = y
q
p kξρ

= k{[
k2Γ( 3

2 −
3
2 α)

Γ( 1
2 −

1
2 α)

]
1
α t− y}

1−α
2 .

(48)

6. Conclusions and Discussion

In this paper, we studied the time fractional higher-dimensional nonlinear modi-
fied equation of wave propagation. As a result of obtaining novelty, the symmetries,
one-dimensional optimal system, and one-parameter Lie transformation group of this
considered model were derived. Next, the original Equation (1) carried out the similarity
reduction of the lower differential equation. On the basis of the reduced equation, we
constructed a similarity solution. Although the similarity solutions have been obtained
for the reduced model, it is still difficult to seek other types of exact solutions, such as the
soliton solutions, rational solutions, and Kink solutions. Therefore, how to obtain the exact
solutions of the reduced equation is one of our future key tasks. Finally, these beautiful
results can help us discover more evolutionary mechanisms of this considered model.
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