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Abstract: In this paper, we propose a secure image encryption method using compressive sensing
(CS) and a two-dimensional linear canonical transform (2D LCT). First, the SHA256 of the source
image is used to generate encryption security keys. As a result, the suggested technique is able to
resist selected plaintext attacks and is highly sensitive to plain images. CS simultaneously encrypts
and compresses a plain image. Using a starting value correlated with the sum of the image pixels,
the Mersenne Twister (MT) is used to control a measurement matrix in compressive sensing. Then,
the scrambled image is permuted by Lorenz’s hyper-chaotic systems and encoded by chaotic and
random phase masks in the 2D LCT domain. In this case, chaotic systems increase the output
complexity, and the independent parameters of the 2D LCT expand the key space of the suggested
technique. Ultimately, diffusion based on addition and modulus operations yields a cipher-text image.
Simulations showed that this cryptosystem was able to withstand common attacks and had adequate
cryptographic features.

Keywords: optical encryption; compressive sensing; two-dimensional linear canonical transform;
Lorenz’s hyper-chaotic map; chaotic random phase map

1. Introduction

The rapid development of the internet has brought convenience to daily life, but
privacy leakage incidents occur frequently. The issue of security has garnered extensive
attention. Optical encryption, compressed sensing (CS), and network learning are effective
means of protecting image security [1–3]. In 1995, Refregier and Javidi introduced the
double random algorithm [4], which utilizes four optical processors and has garnered
significant attention. To enhance security and increase the range of possible keys, the DRPE
technique has been expanded into additional domains. However, it needs to be pointed
out that these double-random phase-encoding (DRPE)-based encryption systems are linear
systems [4–7], and these encryption methods are all types of symmetrical encryption
systems. Due to the inherently linear nature of mathematics and optical transformation,
the vulnerability of various encryption schemes to plaintext assaults is rather high [8].

Consequently, many nonlinear optical image encryption systems that can enhance se-
curity and resist plaintext attacks have been recently put forward [9–12]. An image encryp-
tion technique based on a chaotic system and transform was presented by Zhou et al. [9].
FRMTs of varying orders alter distinct annular areas of the original image, and this can
be used to overcome the disadvantage of using linear transforms and having large key
space. Since then, both signal processing and encryption have involved the more flexible
linear canonical transform (LCT), which has three free parameters [13,14]. On the basis of
the LCT, Wei et al. proposed the random discrete linear regular transform (RDLCT) [13].
The randomness of the RDLCT’s output phase and magnitude can strengthen an encryp-
tion system’s security. Recent designs have included further techniques based on the 2D
LCT [14,15]. The 2D LCT has the natural advantage of multiple parameters, which can
expand the key space and improve the security of an algorithm.
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Chaos-based encryption schemes have frequently been utilized to further increase
security [16–20]. This is because of their significant sensitivity to beginning circumstances,
good pseudo-randomness, and ergodicity. In 1998, Fridrich proposed the classic framework
of image encryption [16]. An image encryption technique based on spatiotemporal chaos
was created using the framework mentioned above [17]. However, both of them were
proven to be unable to resist chosen plaintext attacks [19,21]. Image encryption systems
use an increasing amount of high-dimensional chaos due to their increasingly complicated
dynamic nature, and they are more sensitive to initial values and higher security than
to low-dimensional chaos [22]. Saljoughi presented an encryption algorithm using three-
dimensional logistic maps [23]. A scale-invariant digital image encryption technique
based on chaotic 3D maps was introduced by Hamed et al. [24], and it had excellent
security capacity and high efficiency. Additionally, a number of hyper-chaotic systems
were incorporated to enhance security [25–27]. To sum up, hyper-chaotic systems provide
sequences with high pseudo-randomness that are ideal for encryption.

Meanwhile, CS is widely used because it allows data to be compressed directly at the
time of collection, rather than being transmitted or stored after collection [28–30]. This can
reduce the amount of data transferred and stored, increasing efficiency. At the same time,
the nature of random measurements makes it more difficult to reconstruct information
from raw data, which can increase the strength of encryption. Measurement matrices are
typically thought of as the key in compressive-sensing-based algorithms [31–33]. However,
the most popular approach generates an image-encrypted measurement matrix using a
chaotic system [31,32,34–36]. Zhou developed an approach that employed two measure-
ment matrices under the control of a logistic map to compress and encrypt pictures [31].
Nevertheless, the aforementioned techniques’ secret keys were unrelated to plaintext pic-
tures, making them susceptible to specific plaintext assaults. Some recent methods can
reduce these problems. The work in [37] introduced parallel compressive sensing (PCS),
which was resistant to specific plaintext assaults. Above all, we created a unique image
encryption technique based on CS and 2D LCT that could withstand typical assaults and
had a huge key space.

In this study, we introduced a unique image encryption technique based on CS and the
2D LCT to further increase security. First, CS offers trustworthy and effective encryption
and compression services, and a plaintext image controls the CS measurement matrix’s
construction parameters. Second, to prevent certain plaintext assaults, the hyper-chaotic
system’s initial values were generated by using the SHA 256 value of the original image.
Third, the 2D LCT had six free parameters, which greatly enhanced the key space. The
suggested scheme’s security against various assaults was demonstrated by the findings in
security analysis and testing.

The following is the format for the remainder of this paper: Section 2 presents a few
foundational theories. Section 3 provides a detailed explanation of the recommended image
encryption method. A number of presentations and simulations are presented in Section 4.
In Section 5, a succinct summary of the findings is provided.

2. Preliminaries

We first give a few related definitions before going into detail about the suggested
algorithm.

2.1. Linear Canonical Transform

The linear canonical transform (LCT) is a class of linear integral transformations with
three parameters, which is the general case of FrFT and Fresnel transformations (FSTs) [38].
The LCT is also useful in optical signal processing and encryption in a number of ways due
to its multi-parameter advantages. The LCT of a transformable signal can be defined as [39]

LA
f (u) = LA[ f (t)](u) =

{ ∫
R f (t)KA(u, t)dt, b ̸= 0,√
d exp

(
i cdu2

2

)
f (du), b = 0,

(1)
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where KA(u, t) = CA exp
(

i at2

2b − i ut
b + i du2

2b

)
, CA = 1√

i2πb
, and constants a, b, c, d are related

by a parameter matrix A, which is also called unit-modular matrix and is represented as

A =

[
a
c

b
d

]
(2)

where ad − bc = 1. Consequently, the LCT has three independent parameters.
A function’s continuous 2D LCT can be expressed as

FA,B{ f (m, n)} = FC,D(x, y)

=
∫ +∞

−∞

∫ +∞

−∞
f (m, n)KC,D(m, n, x, y)dm dn

=



1
j2π

√
1

c1c2
e

(
d1x2

2c1
+

d2m2

2c2

)

×
∫ +∞
−∞

∫ +∞
−∞ e

−j
(

xm
c1

+
yn
c2

)
+
∫ ( a1x2

2c1
+

a2y2

2c2

)
f (m, n)dm dn

c1c2 ̸= 0, |C| = |D| = 1
√

d1d2e
∫
(a1d1u2+a2d2

2)
2 f (d1m, d2n) c2

1 + c2
2 = 0

(3)

where KC(m, x) =
√

1
j2πc1

e
j d1x2

2c1
−j xm

b1
+j a1m2

2c1 , KD(n, y) =
√

1
j2πc2

ej d2y2

2c2
−j yn

c2
+j a2x2

2c2 ,

C =

[
a1 b1
c1 d1

]
, and D =

[
a2 b2
c2 d2

]
are real matrices. C−1 =

[
d1 −b1
−c1 a1

]
, D−1 =[

d2 −b2
−c2 a2

]
. The constraint condition of the matrix C and D is |C | = |D | = 1.

2.2. Compressive Sensing

A unique method that can accomplish compression during the sampling process is
called compressive sensing (CS) [28]. One might refer to a plain picture, secret key, or
cipher image for the original image, the measurement matrix, and the image measured in
CS, in that order. In accordance with the CS theory, sparse signals can yield a small quantity
of observation data, and by resolving an optimization issue, we can roughly reconstruct
these signals.

Suppose that x ∈ RN is a signal and can be measured by

α = ΨTx (4)

where Φ is the sparse coefficient vector and Ψ is an orthonormal sparse basis. The measured
values can be obtained through the projection of a coefficient series on Φ. After that, the
following signal CS procedure can be stated:

Y = Φx = ΦΨα (5)

where y ∈ RM, Φ ∈ RM×N , Θ = ΦΨ. Similarly, 2D or high dimension (HD) signals can be
reduced to the 1D format by superimposing column vectors.

Reconstructing the original signal x from the measurements requires figuring out how
to solve the following l0 issue:

min ∥α∥0 s.t. Y = Θα (6)

where the l0-norm of a vector is indicated by ∥�∥0. Several popular reconstruction tech-
niques have been introduced [40–42].

In this work, we implement the discrete wavelet transform (DWT) to achieve sparsity
in the signals. A technique for signal processing called DWT breaks a signal down into
many signals with varying scales, temporal resolutions, and frequency resolutions. The next
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part will provide a detailed description of how the measurement matrix was constructed.
Eventually, x is restored by utilizing the orthogonal matching pursuit (OMP) method.

2.3. Lorenz’s Hyper-Chaotic System

Mathematically, Lorenz’s hyper-chaotic system is defined as
ẋ = d(y − x) + w
ẏ = f x − y − xz
ż = xy − ez
w = −yz + rw

(7)

where the hyper-chaotic system’s control parameters are d, e, f , and r, and d = 10, e = 8/3,
f = 28, r ∈ (−1.52,−0.06). Figure 1 displays the system’s attractors. The average exponen-
tial divergence of neighboring trajectories in phase space is numerically represented by the
Lyapunov exponent. This is one of the characteristics that helps distinguish chaotic motion.
A chaotic system is often characterized by a positive maximum Lyapunov exponent. As a
result, this hyper-chaotic system predicts events more quickly than a typical chaotic system
does. Simultaneously, this feature makes the encryption system more secure.

(a) (b) (c)

(d) (e) (f)

Figure 1. Lorenz’s hyper-chaotic attractor: (a) x-y plane; (b) x-z plane; (c) x-w plane; (d) y-z plane;
(e) y-w plane; (f) x-w-z plane.

3. The Proposed Image Encryption and Decryption Algorithm
3.1. Encryption Process

Four steps make up the majority of the suggested encryption method. The image
must first be compressed and encrypted. Next, a prior image is jumbled using Lorenz’s
hyper-chaotic system. The encrypted image is then encrypted using a 2D LCT. The image
that was processed above is diffused the final stage. The suggested algorithm’s encryption
procedure is depicted in Figure 2. Here, we take an image of size M × N as an example to
discuss the four parts in detail.
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Figure 2. A flowchart of the procedure for encryption and decoding.

3.1.1. Key Generation

The cryptosystem’s secret key structure has two parts. The first part is given by the
encryption system user. Another part is obtained by SHA-256. Because SHA-256 is so
dependent on the initial values of the original picture, even a small change might provide
completely different secret keys. Therefore, we might use it to generate the keys for the
suggested encryption technique, which can withstand attacks with carefully selected and
well-known plaintext.

SHA-256 generates a 256-bit secret key as the hash value. This may be represented
as and split up into 8-bit chunks: k1, k2, k3..., k32 ( ki =

{
ki

0, ki
1, ki

2, . . . , ki
7
}

). It is simulta-
neously converted into 32 decimal numbers k1, k2, k3..., k32 for easier application. The
following can be used to obtain the starting values.

Step 1: The parameters of Lorenz’s hyper-chaotic system are follows:
x01 = mod(sum(k1, k2, k3, k4)/256, 1) + x′01
y01 = mod(sum(k5, k6, k7, k8)/256, 2) + y′01
z01 = mod(sum(k9, k10, k11, k12)/256, 3) + z′01
w01 = mod(sum(k13, k14, k15, k16)/256, 4) + w′

01

(8)


x02 = mod(sum(k17, k18, k19, k20)/256, 1) + x′02
y02 = mod(sum(k21, k22, k23, k24)/256, 2) + y′02
z02 = mod(sum(k25, k26, k27, k28)/256, 3) + z′02
w02 = mod(sum(k29, k30, k31, k32)/256, 4) + w′

02

(9)

where sum denotes the sum of k1, k2, k3, and k4; x01, y01, z01, w01 are the starting points of
permutation, and x02, y02, z02, w02 are the starting points of diffusion.

Step 2: The following are the starting values that are applied to chaotic random phase
masks (CRPMs):

x1 = mod

((
k1⊕···⊕k4+k5⊕···⊕k8

256
+ k9⊕···⊕k12+k13⊕···⊕k16

256

)
, 1

)
+ x′1 (10)

x2 = mod

((
k17⊕···⊕k20+k31⊕···⊕k24

256
+ k25⊕···⊕k28+k29⊕···⊕k32

256

)
, 1

)
+ x′2 (11)

where ⊕ is the bitxor operation. x1 and x2 are the starting values of the two CRPMs.
The starting numbers are x01, y01, z01, w01, x02, y02, z02, w02, x1, x2, which fluctuate in

tandem with the original image. x′01, y′01, z′01, w′
01,x′02, y′02, z′02, w′

02, and x′1, x′2 are supplied
by the encryption system’s user to increase security even more.
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3.1.2. The Compression–Encryption Steps

First, the original picture was made sparser by applying a discrete wavelet transform.
Then, to balance the sparsity of each row and improve the encryption performance, the
resultant image was permuted using the Arnold transform, and this was repeated 25 times
with starting values of a = 15 and b = 8. Lastly, the encrypted image was obtained by
using CS, which had the ability to both compress and encrypt images.

In CS, the measurement matrix was managed by the Mersenne Twister (MT) algorithm,
which is based on a twisted generalized feedback shift register and can produce high-quality
pseudo-random numbers. The random sequence was reshaped to generate a measurement
matrix. This was efficient and made up for the shortcomings of traditional pseudo-random
number generators. The initial conditions of MT were as follows:

key = round


M
∑

x=1

N
∑

y=1
I(x, y)

M × N

+ key0 (12)

where the closest integer to x is indicated by round(x), and
M
∑

x=1

N
∑

y=1
I(x, y) represents the

sum of the pixel values of image I.

3.1.3. Permutation and Diffusion

To confuse and disperse pictures, Lorenz’s hyper-chaotic system generated pseudo-
random sequences using the starting values generated in Equation (8). The process of
permutation is given in detail:

Step 1: To create a one-dimensional vector in rows or columns, the original two-
dimensional image matrix P (in this paper, expanded by row), denoted as A, is expanded.

Step 2: A pseudo-random sequence Xi (i = 1, 2, · · · , MN) of length M× N is generated
with the aid of the Lorenz system.

Step 3: Only the first pseudo-random number that appears repeatedly in X is retained,
and, in order of smallest to greatest, the values in the set {1, 2, · · · , MN} that are absent
from X are appended to the end of X.

Step 4: The positions of A(Xi) and A(XMN−i+1) are swapped.
The diffusion algorithm in our proposed encryption based on addition and modulus

operations is represented by the following equation.

Di = (Di−1 + Si + Pi) mod 256 (13)

where Si is the pseudo-random sequence produced by Lorenz’s system, Di represents the
cypher vectors, and Pi is a vector that expands from the plaintext image. Equation (13)
is expanded:

Dn = (D0 + S1 + · · ·+ Sn + P1 + · · ·+ Pn) mod 256 (14)

It can be found in the Equation (14) that the information of the plaintext pixel Pi can
only be hidden in Di ∼ DN . In order to achieve the dispersion of each plaintext pixel
over the whole cipher-text picture, this approach must be run twice. The following is the
diffusion process.

Step 1: Using rows or columns, a one-dimensional vector is created by expanding the
two-dimensional original image matrix P, denoted as A.

Step 2: With the initial values x02, y02, z02, w02 of Lorenz’s hyper-chaotic system from
Equation (9) in the first part, we generate two pseudo-random sequences S1 and S2, which
are used for forward diffusion and reverse diffusion, respectively.
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Step 3: S1 is used to perform forward diffusion for the image to be encrypted using
Equation (13).

Step 4: S2 is used to perform reverse diffusion for the image to be encrypted. Reverse
diffusion is expressed as follows: Di = (Di+1 + Si + Pi) mod 256.

3.1.4. CRPMs and 2D LCT Encryption

The four phases involved in the encryption process utilizing the 2D LCT and CRPMs
are as follows:

Step 1: R1(m, n) is the first chaotic random phase mask generated with Equation (10)
using the logistic map with the starting value x1.

Step 2: To obtain the image I
′
(m, n), the previously encrypted complex image I(m, n)

is modulated with the first random phase mask R1(m, n) and encrypted using the 2D LCT.
Step 3: The logistic map with an initial value of m2 produced with Equation (11) is

used to generate the second chaotic random phase mask R2(m, n).
Step 4: After modulating R2(m, n), the inverse 2D LCT (I–LCT) operation on I

′′
(m, n)

yields a white-noise-like image I
′
(m, n).

The encryption process using the 2D LCT and CRPMs can be simplified as follows:

I′′(m, n) = I–LCT{{LCT[I(m, n) · exp[i2πR1(m, n)]]} · exp[i2πR2(m, n)} (15)

Figure 2 provides an illustration of the decryption procedure. It is evident that the
decryption process is the opposite of the encryption technique described above.

4. Simulation Results and Security Analysis
4.1. Results of Encryption and Decryption

To test the suggested encryption scheme, four grayscale pictures of 512 × 512 pixels
each—“Boat,” “Zelda,” “Gold hill,” and “Einstein”—were chosen. The following are the
parameters that we utilized in the simulation: key0 = 10, a = 15, b = 8, x

′
01 = 0.1, y

′
01 = 1.2,

z
′
01 = 2.3, w

′
01 = 3.4, x

′
02 = 1.1, y

′
02 = 2.2, z

′
02 = 3.3, w

′
02 = 4.4, a1 = 0.5, b1 = 1, c1 = 1,

a2 = 0.5, b2 = 2, c2 = 1.5, x
′
1 = 0.23, and x

′
2 = 0.72. Figure 3 presents the validation results

for the encryption and decryption algorithms at CR = 0.5. The encrypted images are, as
we can see, smaller than those with plaintext. This denotes a compression of the original
image. In this case, the encrypted images were half the size of the original images, which
allowed the encryption effect to be accomplished, in addition to lowering the quantity
of data transmitted throughout the process. Furthermore, the encrypted images had a
noise-like quality, indicating that the encryption technique effectively concealed the original
images’ content. The decoded images were about the same as the plaintext images. In order
to conduct a quantitative assessment of the quality of the reconstructed picture, the peak
signal-to-noise ratio (PSNR) was introduced:

PSNR = 10 log10
2552

1
MN

M
∑

j=1

N
∑

k=1
[I ′(j, k)− I(j, k)]2

(16)

where the pixel values of the restored picture I
′

and the original image I are denoted by
I
′
(j, k) and I(j, k), respectively. The four reconstructed pictures had PSNRs of 32.1021 dB,

34.0968 dB, 31.8867 dB, and 33.5572 dB. This demonstrated the algorithm’s strong decryp-
tion performance and great accuracy in image reconstruction.

The compression ratio (CR) is defined by

CR =
I
′
_h × I

′
_w

I_h × I_w
(17)
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where I
′
_h,I_h and I

′
_w, I_w indicate the height and width of the image, respectively.

The encrypted and decrypted results for Zelda with various CRs are listed in Figure 4.
Figure 4 illustrates that, despite the modest CR, the reconstructed images exhibited re-
markable similarity to the original images. When CR = 0.2, the cypher image’s PSNR was
30.9034 dB. Table 1 displays the PSNRs for Lena for comparison with those of other tech-
niques [26,32,43]. It is evident that the suggested method’s reconstruction outperformed
that of other approaches when the CR was higher than 0.5. Moreover, at CR = 0.4, the
decrypted image’s PSNR might have been higher than 30 dB. Optimizing sparsity prior to
compression could enhance the effect of reconstruction. In summary, our method was able
to produce better results with a smaller sample size of data.

We tested the complexity of encryption and decryption algorithms when CR = 0.5, and
the results are shown in Table 2. As can be seen from the results, the encryption time is very
short, and the decryption time takes a few seconds. This is because the measurement matrix
is easily generated during the encryption process, and during the decryption process, we
used the OMP algorithm to iteratively solve it.

The mean square error (MSE) below the division sign of Equation (16) can be used to
reflect the difference between the two images before and after encryption. The greater the
MSE, the greater the difference between the two images. We calculated the MSE of the four
images before and after encryption and summarized them in Table 3. In combination with
Figure 3, the difference between the images before and after encryption is huge, indicating
that our algorithm can hide image information well.

Table 1. PSNRs (256 × 256) for Lena with various CRs.

CR Ref. [43] Ref. [32] Ref. [26] Ours

0.25 22.62 26.06 26.52 24.76

0.5 26.87 29.82 29.23 33.10

0.75 30.82 29.56 29.22 33.44

Table 2. The encryption and decryption times for different images at CR = 0.5 (unit: seconds).

Image Encryption Time Decryption Time

Boat 0.2301 8.7842

Zelda 0.2057 9.8499

Gold hill 0.2257 7.8853

Einstein 0.2156 8.7155

4.2. Security Evaluation

We assessed the encryption system’s effectiveness from many angles based on the
image properties in order to confirm the security of the suggested encryption system.

4.2.1. Analysis of Key Spaces

The key space is a crucial metric for assessing a cryptosystem’s quality. Furthermore, it
needs to be large enough to withstand brute-force attacks [44]. The suggested algorithm’s
secret key, which was mostly generated via SHA-265 of the plaintext image, is explained in
Section 3.1.1. The encryption method involved 19 parameters and initial keys, which were
key0 for the measurement matrix and a, b for the Arnold map in CS, x

′
01, y

′
01, z

′
01, w

′
01 and

x
′
02, y

′
02, z

′
02, w

′
02 for Lorenz’s hyper-chaotic system in confusion and diffusion, a1, b1, c1, a2, b2, c2

for the 2D LCT, and x
′
1, x

′
2 for CRPM. We used the 2D LCT and Arnold map parameters as the

public key. Presuming that the precision of the computer was 10−14, the key space was large

compared to 2100, as it was about (1014)
11

= 10154 ≈ 2511. As a result, the suggested method
was immune to all types of brute-force assaults. Furthermore, a comparison is made between
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the key spaces of four encryption techniques [26,32,45]. Table 4 illustrates that our scheme
had the greatest key space.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. The results of encryption and decryption: (a,d,g,j) Unencrypted images; (b,e,h,k) the
corresponding encrypted images at CR = 0.5; (c,f,i,l) the decrypted images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Results of encryption and decryption for Zelda with various CRs: (a–d) the cypher pictures
for CR values of 0.2, 0.4, 0.6, and 0.8, respectively; (e–h) the corresponding decrypted images.

Table 3. MSE between plaintext images and cipher-text images at CR = 0.5.

Image MSE

Boat 48,196.2

Zelda 43,602.8

Gold hill 47,532.0

Einstein 45,190.7

Table 4. Comparison of several approaches’ key spaces.

Algorithms Ref. [26] Ref. [32] Ref. [45] Ours

Key Space 2299 2232 10102 2511

4.2.2. Histogram Analysis

A histogram provides statistical information in addition to displaying the distribu-
tion of pixels in an image. The even and smooth distribution of a cipher-text histogram
can prevent attackers from breaking the image with statistical pixel value analysis. The
histograms of the four images—“Boat”, “Zelda”, “Gold hill”, and “Einstein”—at CR = 0.75,
each with 512 × 512 pixels, are provided in Figure 5. As can be seen in Figure 5a–d, the
histograms were often unevenly distributed and carried certain features of plaintext images.
Figure 5e–h shows that the probability of pixels in the cipher-text image appearing in any
value in the range of 0–255 was basically the same, and the height was approximately
a straight line. After decrypting the cipher-text image with a decryption algorithm, the
calculated histogram was similar to that of the plaintext image, indicating that our image
decryption method recoverde the image information well.

More precisely, the distance of the histogram represents the similarity between a
plaintext image and an encrypted image. For grayscale images, this is defined as the sum
of the minimum heights of any pixel of the two histograms from 0 to 255, divided by the
sum of the heights of all pixels of one of the histograms. The distance of the histogram
is between 0 and 1, and the closer to 1, the more similar the two are. We calculated the
histogram distance in the four selected graphs, and the results are shown in Table 5 and
compared with those in the relevant literature. Although our algorithm was slightly worse
than that in Ref. [26], the distance value was able to reach more than 0.9, indicating that
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our algorithm could also recover the original image well. In addition, according to Figure 5,
our algorithm was able to resist statistical attacks well.

Table 5. The histogram distance between a plaintext image and a decrypted image.

Image Ref. [30] Ours

Boat 0.9520 0.9522

Zelda - 0.9586

Gold hill 0.9634 0.9625

Einstein 0.9578 0.9552
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Figure 5. Histogram analysis: The histograms of the plaintext images are shown in (a–d); the ground
histograms of the cipher-text images are shown in (e–h); the histograms of the decrypted images are
shown in (i–l).

4.2.3. Analysis of Correlation Coefficients

Plaintext images can be attacked because of the significant correlations between their
neighboring pixels. A strong method for image encryption can completely destroy the
correlations. The measurement of correlation coefficients between plaintext and cipher-text
images is a commonly used method for the qualitative assessment of encryption algorithms.
This can be defined as [34]

rij =
cov(i, j)√
D(i)D(j)

(18)

cov(i, j) = E[i − E(i)][j − E(j)] (19)
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where the standard variances of the values are represented by D(·), and the average values
of the image pixels are indicated by E(·). There are 0 to 1 correlation coefficients. The link
is greater the closer it gets to 1.

In this study, we computed the correlations from three directions at random locations.
Table 6 and Figure 6 present the correlation coefficient performance on several images that
were encrypted using the suggested approach. The plaintext images’ pixel coordinates
were clearly clustered close to the diagonal, indicating a strong correlation coefficient.
Nevertheless, the cipher-text images’ pixel locations filled the whole coordinate space, and
the correlation coefficient dropped to almost zero. Additionally, using various encryption
techniques, Table 7 contrasts Lena’s correlation coefficients with 256 × 256 pixels [31,34,43].
In the cipher-text images, there was essentially no connection between neighboring pixels,
suggesting that the suggested approach may entirely eliminate pixel correlation and fend
off statistical assaults.
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Figure 6. Cont.
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Figure 6. Correlation coefficient analysis: (a–c) Einstein’s correlations from three directions; (g–i) the
corresponding encrypted image correlations; (d–f) Boat’s correlations from three directions; (j–l) the
corresponding encrypted image correlations.

Table 6. Correlation between neighboring pixels in various images.

Images Horizontal Vertical Diagonal

Boat
0.9383 0.9729 0.9250
0.0175 −0.0022 −0.0089

Zelda
0.9829 0.9917 0.9783
−0.0061 0.01533 0.0035

Einstein
0.9750 0.9801 0.9588
0.0142 0.0182 −0.005

Peppers
0.9803 0.9811 0.9699
−0.0101 0.0011 −0.0094

Man
0.9631 0.9700 0.9453
0.0094 0.0103 −0.0037

Gold hill
0.9718 0.9729 0.9525
0.0056 −0.0093 −0.0282

Couple
0.9480 0.9511 0.9124
−0.0027 0.0081 0.0097

Table 7. Correlation between neighboring Lena pixels using several techniques.

Direction Horizontal Vertical Diagonal

Lena (256 × 256) 0.9706 0.9853 0.9588

Ref. [34] 0.0846 0.0583 0.0931

Ref. [43] 0.0198 0.0141 0.0026

Ref. [31] 0.0104 0.0299 0.0062

Ours 0.0071 0.0121 −0.0073

4.2.4. Analysis of Information Entropy

An image I’s information entropy is described as [46]

H(I) = −
2k−1

∑
i=0

P(I(x,y)=i)log2P(I(x,y)=i) (20)

where P(·) represents an element’s chance of occurring. The information entropies of
several images are shown in Table 8. The entropy in the encrypted Lena image was
compared with those in Refs. [25,26,47], as displayed in Table 9. It appears that the entropy
values for several hidden images were around 8. From this, we may infer that the encrypted
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image data had a high degree of unpredictability and that the suggested approach could
fend off statistical assaults.

Table 8. Entropy of information for several images.

Image
Entropy

Plaintext Ciphertext

Boat 7.1914 7.9971

Zelda 7.2668 7.9973

Einstein 6.8667 7.9974

Peppers 7.5936 7.9968

Man 7.1926 7.9972

Gold hill 7.4778 7.9971

Couple 7.0581 7.9973

Table 9. Comparison the information entropy.

Methods Ref. [26] Ref. [25] Ref. [47] Ours

Cipher 7.9935 7.9972 7.9973 7.9974

4.2.5. Analysis of Cropping Attacks

During the image transfer procedure, data loss frequently occurs. A restored image
can be significantly impacted by the loss of encrypted image data. Cropping attacks should
be thwarted by a strong cryptosystem. Figure 7 displays a cypher image cropped at various
sizes and places, whereas Figure 7 illustrates the matching reconstructed images. We
conclude that while cropping affects the restoration of an image, the original image may still
be recognized. Additionally, the quality of the recovered image deteriorates as the cropping
area increases. As a result, our technique is resistant to a variety of cropping assaults.

Figure 7. Cropping attack analysis: (a–d) are encrypted images with data loss in different size and
position; (e–h) are corresponding decrypted images.
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4.2.6. Crucial Sensitivity Testing

A safe cryptosystem is extremely sensitive to private keys. Changes in the cypher
image and recovered image can be significant even with a small modification in the secret
key. To subjectively assess the decryption process’s key sensitivity, we changed each of
x
′
01,y

′
01 for permutation, x

′
02,y

′
02 for diffusion, x

′
0 for CRPM, and a1 for the 2D LCT by

adding 10−14. Figure 8 displays the findings on key sensitivity during the decryption
procedure. As Figure 8 illustrates, minor changes in the keys would not allow the original
image to be accurately reconstructed, and we did not get any original information from the
plaintext images.

Figure 8. Key sensitivity analysis. A decrypted image was obtained by slightly changing the keys:
x
′
01, y

′
01 for permutation, x

′
02, y

′
02 for diffusion, and x

′
0, a1 for CRPM and the 2D LCT.

Furthermore, the difference between two images is frequently measured by using
the unified average change intensity (UACI) and number of pixels changed (NPCR). The
following are the definitions of the NPCR and UACI between two distinct images [48]:

D(m, n) =
{

0, L1(m, n) = L2(m, n)
1, L1(m, n) ̸= L2(m, n)

(21)

NPCR =
1

M × N

M

∑
m=1

N

∑
n=1

P(m, n)× 100 (22)

UACI =
1

MN

M

∑
m=1

N

∑
n=1

L1(m, n)− L2(m, n)
2b − 1

× 100 (23)

One pixel each of the two images is represented by L1(m, n) and L2(m, n). We used
the key change method proposed above to calculate NPCR and UACI in the encryption
process. For the encryption process, two cipher images were obtained by changing x

′
01, y

′
02,

and x
′
0 by adding 10−14. The NPCR and UACI of the images during the encryption process

are displayed in Table 10. The ideal values of the NPCR and UACI were NPCR = 99.6094%
and UACI = 33.4635%. It was evident that the NPCR and UACI values closely resembled
their theoretical counterparts. In conclusion, Table 10 and Figure 8 demonstrate that the
suggested method had significant key sensitivity and can resist known cipher-text attacks.

Table 10. The NPCRs and UACIs between cipher images created with slightly different keys.

Images Zelda Einstein Boat Ideal

x
′
01 + 10−14

NPCR 99.5995 99.6323 99.5842 99.6094
UACI 33.5848 33.4644 33.5536 33.4635

y
′
02 + 10−14

NPCR 99.6117 99.6307 99.6155 99.6094
UACI 33.4146 33.5056 33.3489 33.4635

x
′
0 + 10−14

NPCR 99.5544 99.6002 99.5979 99.6094
UACI 33.4352 33.4323 33.4231 33.4635



Fractal Fract. 2024, 8, 92 16 of 18

4.2.7. Analysis of Differential Attacks

Creating a connection between a plaintext picture and its matching cipher-text image
is the fundamental idea behind a differential attack. The sensitivity of a plaintext images
determines whether or not the method can withstand differential assaults. Similarly, we
encrypted a plaintext image by slightly changing the value of one of the pixels and using
the same encryption process. The values of NRCR and UACI of the images before and
after the change were calculated, and the results are shown in Table 11. It can be seen that
the NRCR and UACI values of the proposed algorithm were still close to the theoretical
values with different images. This was because in this work, we used highly sensitive SHA-
256 and hyper-chaotic systems to generate a series of parameters. The data compression
capabilities in CS and the multi-parameter properties of the 2D LCT were able to improve
the effectiveness of the algorithm against differential attacks.

Table 11. The UACIs and NPCRs of various encrypted images.

Images NPCR UACI

Ideal 99.6094 33.4635

Zelda 99.6071 33.3957

Einstein 99.5941 33.7801

Boat 99.6300 33.8602

Couple 99.6506 33.9060

Crowded 99.5529 33.0163

Goldhill 99.6452 33.7717

Flinstones 99.6132 33.6949

Bridge 99.5651 32.9519

5. Conclusions

In this study, we illustrated a novel approach to image encryption in 2D LCT domains
by utilizing CS, Lorenz’s hyper-chaotic system, and chaotic random phase encoding. SHA-
256 helps strengthen defenses against specific plaintext attacks. The measurement matrix in
CS is connected to the total of an image’s pixels, which may further increase the sensitivity
to plaintext. CS can also efficiently minimize the size of encrypted images. Two positive
Lyapunov exponents and a vast parameter space characterize Lorenz’s hyper-chaotic
system. It is, therefore, ideal for applications involving image encryption. Additionally,
the image is re-encrypted using the 2D LCT based on chaotic random phase masks. The
suggested approach has a wide key space and high key sensitivity, and it is especially
sensitive to plaintext, according to the simulation findings and security assessments. As
such, it is resistant to well-known attacks, such as chosen-plaintext, known-plaintext, and
brute-force attacks.
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