
Citation: Taloni, A. Diffusion of an

Active Particle Bound to a Generalized

Elastic Model: Fractional Langevin

Equation. Fractal Fract. 2024, 8, 76.

https://doi.org/10.3390/

fractalfract8020076

Academic Editors: Jordan Hristov,

Ernesto Zambrano-Serrano, Miguel A.

Platas-Garza and Cornelio

Posadas-Castillo

Received: 23 November 2023

Revised: 3 January 2024

Accepted: 19 January 2024

Published: 24 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Diffusion of an Active Particle Bound to a Generalized Elastic
Model: Fractional Langevin Equation
Alessandro Taloni

Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Rome, Italy;
alessandro.taloni@isc.cnr.it

Abstract: We investigate the influence of a self-propelling, out-of-equilibrium active particle on
generalized elastic systems, including flexible and semi-flexible polymers, fluid membranes, and
fluctuating interfaces, while accounting for long-ranged hydrodynamic effects. We derive the frac-
tional Langevin equation governing the dynamics of the active particle, as well as that of any other
passive particle (or probe) bound to the elastic system. This equation analytically demonstrates
how the active particle dynamics is influenced by the interplay of both the non-equilibrium force
and of the viscoelastic environment. Our study explores the diffusional behavior emerging for both
the active particle and a distant probe. The active particle undergoes three different surprising and
counter-intuitive regimes identified by the distinct dynamical time-scales: a pseudo-ballistic initial
phase, a drastic decrease in the mobility, and an asymptotic subdiffusive regime.

Keywords: active Ornstein–Uhlenbeck; generalized elastic model; fractional Langevin equation

1. Introduction

Active matter refers to a class of materials or systems whose individual components
are active, meaning they can convert athermal energy from the environment or internal
sources into directed motion or mechanical forces. These systems are characterized by the
ability of their constituents to exhibit self-propelled motion, leading to collective behaviors
and dynamic patterns that distinguish them from traditional equilibrium systems [1–5].
Thus, by definition, active systems violate the fluctuation–dissipation theorem (FDT) and
encompass a wide range of phenomena observed in biological systems, such as swarm-
ing of birds [6–11] or schooling of fish [12–14], the run-and-tumble dynamics of micro
swimmers [15–19], and the molecular motors-driven transport phenomena inside the
cell [20–23]. Active matter can also originate synthetically, as seen in systems composed of
Janus particles that become active due to chemical reactions [24,25], magnetic [26–28], or
electrodynamical forces [29–32].

In the past decade, stochastic models have been devised to capture and reproduce
observed out-of-equilibrium scenarios and their properties [33–35], as well as the result-
ing collective dynamics [29,36,36–41]. These models encompass run-and-tumble particle
models [16,42,43], active Brownian particle (ABP) models [25,44,45], and active Ornstein–
Uhlenbeck particle (AOUP) models [1,18,46–50].

Particular attention has been dedicated to the investigation of active polymer sys-
tems, specifically polymeric chains composed of active particles [51–54] or immersed in
an active bath [50,53,55–58]. This interest has been partially motivated by the observed
out-of-equilibrium intracellular transport and collective phenomena, where biopolymers
and active elements coexist, as in the case of the chromatin inside the nucleus [59–64];
the acto-myosin [65–71], microtubule [72–74], or citoskeleton networks [75–82]; and mucin
on the epithelial cell surfaces [83–86]. Usually, simulations of active polymers are enforced
by either a self-propelling force tangential to the elastic chain [87–91], or by considering the
monomers as active particles, thus resorting to the aforementioned models [52,53,92,93].
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The phenomenology exhibited by active polymers is heterogeneous, ranging from transla-
tional [94,95] to reptation motion [88,89], swelling [52,53,96], looping [55], swirling [97], or
shrinkage [98,99], according to the different parameters characterizing the active polymer
model scrutinized.

As emphasized, the numerous numerical studies mentioned above primarily focus on
active polymers or polymers embedded in a thermal bath. Nevertheless, three notable stud-
ies, both numerical and analytical, specifically investigate the impact of an active particle (or
force) confined to a local portion of polymeric chains. In the works by Natali et al. [100] and
Joo et al. [101], the dynamics of flexible (Rouse) polymers were examined with the addition
of an active monomer, specifically an AOUP. In the first study [100], the head of the polymer
was permitted to exhibit active non-equilibrium motion. In the second [101], the AOUP was
positioned as the middle monomer, and the study extended to a flexible polymer network
with the central cross-linker being the AOUP. The third study [102], conceptualized and
conducted by part of the team from the second study, concentrated on investigating the im-
pact of an AOUP on a semi-flexible polymer network. These works exhibit several common
features: (i). they are primarily numerical studies, (ii) their analysis is rooted in discrete
polymer models, and (iii) they reveal intriguing and non-trivial physical scenarios, both
in the dynamics of the AOUP and in that of the other monomers. Particularly interesting
are the transition from globule to elongated conformational dynamics observed in [100],
the intermediate slowing down of the AOUP diffusional motion, in spite of the active
self-propelling force, in [101,102], and the fact that the AOUP dynamics can be described
by a fractional Langevin equation [103].

The analysis presented in this paper expands the scope of the applicability of the
reported models. Specifically, we explore how an AOUP influences the thermal dynamics
of a general viscoelastic system, whether it be a polymer, a membrane, a fluctuating
interface, or any other system falling under the category of a generalized elastic model
(GEM) [103,104]. The GEM is defined by its stochastic evolution equation:

∂

∂t
h(x⃗, t) =

∫
ddx′Λ

(
x⃗ − x⃗′

)
C

∂z

∂|⃗x′|z
h(x⃗′, t) + η(x⃗, t). (1)

It is formally defined for D-dimensional stochastic field h defined in the d-dimensional
infinite space x⃗. The GEM also encompasses the presence of hydrodynamic effects, as in
the case of a Zimm polymer model, by instance [105]. The hydrodynamic friction kernel is

Λ(⃗r) =
B

γ|⃗r|α
(2)

where d−1
2 < α < d, B is a constant with the dimensions of Lα−d and γ is the friction

constant. The Fourier transform of (2) is Λ(⃗q) = (4π)d/2

2α
Γ((d−α)/2)

Γ(α/2)
B
γ |⃗q|

α−d = A|⃗q|α−d.

In case of local hydrodynamic interactions, (2) simplifies to Λ(⃗r) = δ(⃗r)
γ , with δ the Dirac’s

delta function. The fractional derivative appearing in the right-hand side of (1) is commonly
defined as fractional Laplacian ( ∂z

∂|⃗x|z := −
(
−∇2)z/2 [106]), and is expressed in terms of

its Fourier transform Fq⃗

{
∂z

∂|⃗x|z
}
≡ −|⃗q|z [107]. Finally, the Gaussian random noise source

satisfies the fluctuation–dissipation (FD) relation

⟨ηj(x⃗, t)ηk
(
x⃗′, t′

)
⟩ = 2kBT ldΛ

(
x⃗ − x⃗′

)
δj kδ(t − t′), (3)

where j, k ∈ [1, D], l is the microscopical length scale of the model, kB is the Boltzmann
constant, and T is the temperature.

Although the GEM Equation (1) is continuous, it simplifies to the Rouse chain model
for z = 2, d = 1, the semi-flexible polymer model for z = 4, d = 1, and the Zimm polymer
model for z = 2, d = 1, and α = 1/2. The influence of an active non-equilibrium particle
on the elastic system described by (1) can be examined using the framework developed
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in [108–110], where the effect of a local external perturbation was investigated within
the context of the Kubo fluctuation relations. It is worth noting that this analysis can be
formally extended to the case of out-of-equilibrium stochastic forces.

Generalized Elastic Model with Active Brownian Particle

According to the theory outlined in [108–110], it is possible to include in the GEM
stochastic evolution (1) the action of an ABP at a given position x⃗⋆:

∂

∂t
h(x⃗, t) =

∫
ddx′Λ

(
x⃗ − x⃗′

)[
C

∂z

∂|⃗x′|z
h(x⃗′, t) +

γσd

γA
ξ(t)δ(x⃗′ − x⃗⋆)

]
+ η(x⃗, t). (4)

Here, the active noise ξ(t) is due to an athermal energy source, leading to the break-
down of the FDT [18,33,111]. It is governed by the Langevin equation [52,111]

∂ξ

∂t
= − ξ(t)

τA
+

√
2γAνp

3τA
λ(t) (5)

where σ, γA, νp, and τA are the characteristic length, the frictional coefficient, the propulsion
velocity, and the correlation times of the Brownian active particle. The zero-mean Gaussian
noise in Equation (5) satisfies the fluctuation–dissipation relation ⟨λµ(t)λν(t′)⟩ = δµ,νδ(t − t′)
(µ, ν ∈ [1, D]). The Langevin Equation (5) rules the dynamics of the active Ornstein–
Uhlenbeck (OU) noise [18,33,111] with ⟨ξ(t)⟩ = 0 and exponential decaying autocorrelation
function

⟨ξµ(t)ξν(t′)⟩ =
γ2ν2

p

3
δµ,νe−

|t−t′ |
τA . (6)

Hence, hereafter, we will refer to the self-propelling particle at x⃗⋆ as the AOUP.
The Equation (4) jibes with that furnished in [101], provided that C = kl2, where k is the
flexible polymer’s elastic constant. On the other side, the corresponding GEM equation
for AOUP in a semi-flexible chain is obtained by setting Λ(⃗r) = δ(⃗r)

γ , z = 4, d = 1 [104]. It
is possible to reconcile the evolution Equation (4) with that introduced in [102], assuming
that C = kBTlpl, where lp is the persistent length of the semi-flexible polymer.

As anticipated, we demonstrate that Equation (4) constitutes the more general and
suitable framework to study the effect of a self-propelling AOUP on a system whose
interactions are non-local and linear, and possibly mediated by long-ranged hydrodynamics.
In Section 2, we derive the fractional Langevin equation for the AOUP and for any particle
belonging to the elastic system at a generic position x⃗, hereafter called probe. In Section 3,
we derive the position autocorrelation function within the FLE framework. In Section 4, we
furnish the analytical derivation of the mean squared displacement of the AOUP and of the
different regimes attained. Moreover, we qualitatively describe the effect of the OU noise
on the other regions (or probes) belonging to the elastic system and far from the AOUP.
In Section 5, we end with concluding remarks.

2. Fractional Langevin Equation

We firstly furnish the solution of the Equation (4) in the Fourier space. We first define
the Fourier transform in space and time as

h(⃗q, ω) =
∫ +∞

−∞
ddx

∫ +∞

−∞
dt h(x⃗, t) e−i(⃗q·⃗x−ωt) (7)

The solution of Equation (4) reads

h(⃗q, ω) =
Aσdγ

γA

ξ(ω)e−i⃗q·⃗x⋆

|⃗q|d−α
(
−iω + AC|⃗q|z+α−d

) +
η(⃗q, ω)

−iω + AC|⃗q|z+α−d . (8)
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We then multiply both sides of the former equation by K+(−iω)β where

β =
z − d

z + α − d
(9)

and

K+ = πd/2−1 sin(πβ)
Γ(d/2)

22−d
(z + α − d)

AβCβ−1 , (10)

achieving

K+(−iω)βh(⃗q, ω) =
σdγ

γA

ξ(ω)K+A(−iω)βe−i⃗q·⃗x⋆

|⃗q|d−α
(
−iω + AC|⃗q|z+α−d

) +
η(⃗q, ω)K+(−iω)β

−iω + AC|⃗q|z+α−d . (11)

In analogy to [108–110], we define the force-propagator in the Fourier space as

Θ(|⃗q|, ω) = K+A
(−iω)βe−i⃗q·⃗x⋆

|⃗q|d−α
(
−iω + AC|⃗q|z+α−d

) . (12)

Inverting in space and time, the force-propagator reads [109,110]

Θ(|⃗x − x⃗⋆|, t) =
AK+ |⃗x|1−d/2

(2π)d/2

∫ +∞

0
d|⃗q||⃗q|α−d/2 Jd/2−1(|⃗q||⃗x − x⃗⋆|)−∞Dβ

t

(
e−AC|⃗q|γ/2tθ(t)

)
, (13)

where θ(t) is the Heaviside step function, Jd/2−1 is the Bessel function of fractional order
d/2 − 1, and the pseudo-differential operator

aDβ
t ϕ(t) =

1
Γ(1 − β)

d
dt

∫ t

a
dt′

1

(t − t′)β
ϕ
(
t′
)
, 0 < β < 1, (14)

represents the left side Riemann–Liouville derivative with lower-bound a < t [106,112].
We also introduce the noise-propagator as

Φ(|⃗q|, ω) = K+ (−iω)β

−iω + AC|⃗q|z+α−d , (15)

which, once inverted, attains the following form in space and time:

Φ(|⃗x|, t) =
AK+ |⃗x|1−d/2

(2π)d/2

∫ +∞

0
d|⃗q||⃗q|d/2 Jd/2−1(|⃗q||⃗x|)−∞Dβ

t

(
e−AC|⃗q|γ/2tθ(t)

)
. (16)

Thanks to the definitions (12) and (15), we can formally invert the Equation (11):

K+
−∞Dβ

t h(x⃗, t) =
σdγ

γA

∫ t

−∞
dt′ξ(t′)Θ

(
|⃗x − x⃗⋆|, t − t′

)
+ ζ(x⃗, t), (17)

where the non-Markovian noise, defined as

ζ(x⃗, t) =
∫ +∞

−∞
dx⃗′

∫ t

−∞
dt′η

(
x⃗′, t′

)
Φ
(∣∣⃗x′ − x⃗

∣∣, t − t′
)
, (18)

fulfills the generalized fluctuation–dissipation relation

⟨ζµ(x⃗, t)ζν

(
x⃗, t′

)
⟩ = kBTδµ,ν

K+

Γ(1 − β)|t − t′|β
. (19)

Equation (17) is the fractional equation governing the dynamics of any probe placed
at the generic position x⃗. Upon close inspection, its structure unveils how the action of the
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AOUP in the position x⃗∗ affects the stochastic behavior of a distant point x⃗, through the
propagator (13). This is mirrored by the fGN definition (18), resulting from the convolution
of any stochastic Gaussian force η(x⃗′, t′), performing on the entire GEM, with the noise-
propagator (16). Notice that the Riemann–Liouville fractional derivative in (14) could be
safely replaced by the Caputo fractional derivative in the FLE (17), as both definitions
coincide when the lower bound tends to −∞ [106,112].

We now turn to the expression of the effective stochastic equation ruling out the
motion of the AOUP. For such a purpose, we first perform the Fourier inverse transform in
space of the expression (12):

Θ(|⃗x − x⃗∗|, ω) =
AK+(−iω)β |⃗x|1−d/2

(2π)d/2

∫ +∞

0
d|⃗q| |⃗q|

α−d/2 Jd/2−1(|⃗q||⃗x − x⃗∗|)
−iω + AC|⃗q|z+α−d , (20)

hence, we use the expansion of the Bessel function for small arguments as [113]

Jd/2−1(r) ∼
1

Γ(d/2)

(
2
r

)1−d/2
, (21)

obtaining

Θ(0, ω) ∼ AβK+21−d/2

(2π)d/2Γ
(

d
2

)
C1−β

∫ +∞

0
dy

yα−1

1 + yz+α−d . (22)

Solving the integral [114], we finally obtain that

Θ(0, ω) ∼ 1
2ld δ(t − t′). (23)

Therefore, Equation (17) reduces to the following fractional equation for the AOUP:

K+
−∞Dβ

t h(x⃗∗, t) =
σdγ

2ldγA
ξ(t) + ζ(x⃗∗, t). (24)

Thus, it is immediately seen how the active noise applies to the AOUP as a barestochas-
tic force. Similar equations were conjectured in Refs. [101,102], while analyzing the case
of flexible and semi-flexible polymers under the action of an ABP. We hereby offered
the rigorous derivation in the more general case represented by the GEM (1). Moreover,
we established the formal validity of the FLE framework for any particle, not only for
the AOUP.

Most importantly, Equations (17) and (24) highlight how the motion of any probe
in the elastic system, being the AOUP at x⃗∗ or another at a position x⃗, corresponds to a
fractional Brownian motion [115].

3. h-Autocorrelation Function

The MSD of any particle belonging to the GEM is affected by the presence of the active
noise ξ(t). As a matter of fact, the general expression for the MSD reads

⟨δ2h(x⃗, t)⟩ ≡ ⟨[h(x⃗, t)− h(x⃗, 0)]2⟩ = 2
[
⟨h2(x⃗, t)⟩ − ⟨h(x⃗, t)h(x⃗, 0)⟩

]
(25)

where h(x⃗, t) represents one of the components of the stochastic field h(x⃗, t). From the
definition (25), it turns out that the calculation of the MSD, as that of any other physi-
cal observable, needs the explicit expression of the two-times autocorrelation function
⟨h(x⃗, t)h(x⃗, t′)⟩.

Starting from the single component solution of the Equation (17) in the Fourier space

h(x⃗, ω) =
σdγ

γA

ξ(ω)Θ(|⃗x − x⃗⋆|, ω)

K+(−iω)β
+

ζ(x⃗, ω)

K+(−iω)β
, (26)
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we can write down

⟨h(x⃗, ω)h
(

x⃗, ω′)⟩ = (σdγ

γA

)2

|⃗x − x⃗⋆|2−d
∫ +∞

0
d|⃗q||⃗q|α−d/2 Jd/2−1(|⃗q||⃗x − x⃗∗|)×

∫ +∞

0
d
∣∣⃗q′∣∣∣∣⃗q′∣∣α−d/2 Jd/2−1

(∣∣⃗q′∣∣|⃗x − x⃗∗|
) ⟨ξ(ω)ξ(ω′)⟩(

−iω + AC|⃗q|z+α−d
)(

−iω′ + AC|⃗q′|z+α−d
)+

⟨ζ(x⃗, ω)ζ(x⃗, ω′)⟩
K+2(−iω)β(−iω′)β

, (27)

where we made use of the force-propagator Fourier transform (20). The first addendum on
the RHS of the previous equation can be further simplified by resorting to the active noise
correlation properties in Fourier space, i.e.,

⟨ξ(ω)ξ(ω′) =
4πν2

pγ2
A

3τA

δ(ω + ω′)(
1

τA

)2
+ ω2

.

The second addendum is the usual term accounting for the correlations inherent to
the GEM [104]. Therefore, the h-autocorrelation function obtains the final form

⟨h(x⃗, t)h
(
x⃗, t′

)
⟩ =

(σdγAνp)2 |⃗x − x⃗⋆|2−d

2d−1πd+13τA
×∫ +∞

0
d|⃗q||⃗q|α−d/2 Jd/2−1(|⃗q||⃗x − x⃗∗|)

∫ +∞

0
d
∣∣⃗q′∣∣∣∣⃗q′∣∣α−d/2 Jd/2−1

(∣∣⃗q′∣∣|⃗x − x⃗∗|
)
×∫ ∞

−∞
dω

e−iω(t−t′)[(
1

τA

)2
+ ω2

](
−iω + AC|⃗q|z+α−d

)(
−iω + AC|⃗q′|z+α−d

)+
22−dkBTld AβCβ−1

(z + α − d)πd/2Γ
(

d
2

)
cos
(

πβ
2

) ∫ ∞

0
dω

cos[ω(t − t′)]
ω1+β

, (28)

The two terms appearing on the RHS of the autocorrelation function have a different
origin and different behaviors. While in the first one it appears clear the dependence on the
internal coordinate x⃗ as well as the absence of any divergence in the ω space, the second
does not depend on the specific internal position but diverges as |ω|−(1+β) in the limit
of ω → 0 [104]. Therefore, any physically measurable quantity must be organized in a
manner that ensures the cancellation of this divergence.

The h-autocorrelation function of the AOUP is obtained from Equation (28) using the
property (21)

⟨h(x⃗∗, t)h
(

x⃗∗, t′
)
⟩ =

(
σdγνp

ldK+

)2
1

6πτA

∫ ∞

0
dω

cos[ω(t − t′)]

ω2β

[(
1

τA

)2
+ ω2

]+
22−dkBTld AβCβ−1

(z + α − d)πd/2Γ
(

d
2

)
cos
(

πβ
2

) ∫ ∞

0
dω

cos[ω(t − t′)]
ω1+β

(29)

The same expression is achievable from the solution of Equation (24) in Fourier space:

h(x⃗∗, ω) =
σdγ

2ldγA

ξ(ω)

K+(−iω)β
+

ζ(x⃗∗, ω)

K+(−iω)β
, (30)



Fractal Fract. 2024, 8, 76 7 of 17

4. Mean Square Displacement

By substituting the expression (28) by the MSD definition (25), it becomes evident that
the MSD is composed of the sum of two contributions:

⟨δ2h(x⃗, t)⟩ = ⟨δ2h(x⃗, t)⟩OUN + ⟨δ2h(x⃗, t)⟩ f GN . (31)

As noticed in Ref. [102], this superposition makes non-trivial the possible diffusive
scenario arising when we are considering both the AOUP and a generic probe. We consider
the case of high Péclet number where the active dynamics is definitely larger that the
thermal counterpart. Indeed, the first in Equation (31) arises from the action of the non-
equilibrium Ornstein–Uhlenbeck noise ruled by the Langevin equation (5), whereas the
second stems from the fractional Gaussian noise (18) and represents the typical subdiffusive
thermal dynamics exhibited by any element belonging to the GEM (1) [103,104]:

⟨δ2h(x⃗, t)⟩ f GN =
4kBTπd/2(AC)βΓ(1 − β)

(2π)dΓ(d/2)(z − d)C
tβ (32)

The first term on the RHS of (31) is formally defined as

⟨δ2h(x⃗, t)⟩OUN =
(σdγAνp)2 |⃗x − x⃗⋆|2−d

2d−1πd+13τA
×∫ +∞

0
d|⃗q||⃗q|α−d/2 Jd/2−1(|⃗q||⃗x − x⃗∗|)

∫ +∞

0
d
∣∣⃗q′∣∣∣∣⃗q′∣∣α−d/2 Jd/2−1

(∣∣⃗q′∣∣|⃗x − x⃗∗|
)
×∫ ∞

−∞
dω

1 − e−iωt[(
1

τA

)2
+ ω2

](
−iω + AC|⃗q|z+α−d

)(
−iω + AC|⃗q′|z+α−d

) . (33)

The equivalent term in case of the AOUP can be derived from (29)

⟨δ2h(x⃗∗, t)⟩OUN =

(
σdγνp

ldK+

)2
1

3πτA

∫ ∞

0
dω

1 − cos(ωt)

ω2β

[(
1

τA

)2
+ ω2

] (34)

and it is definitely easier to treat. Hence, in the following we develop our analysis starting
from the expression (34).

4.1. AOUP’s MSD

Firstly, we notice how, in the integral

I =
∫ ∞

0
dω

1 − cos(ωt)

ω2β

[(
1

τA

)2
+ ω2

]
there is no issue of divergence in the limit as ω → 0. In fact, the integrand function behaves
as ∼ ω2(1−β) for small frequencies. We then introduce a change in variable, y = ωτA,
so that

I = τ
1+2β
A

∫ ∞

0
dy

1 − cos
(

yt
τA

)
y2β(1 + y2)

. (35)

Its time behavior differs whether t ≪ τA or t ≫ τA and we will treat them separately.

4.1.1. t ≪ τA

The integral (35) must be handled differently in the three cases 0 < β < 1/2, β = 1/2,
and 1/2 < β < 1.

• 0 < β < 1/2.
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We can split the integral and solve the first one [114]:

I = τ
1+2β
A

π

2
cosec

[
(1 − 2β)π

2

]
−
∫ ∞

0
dy

cos
(

yt
τA

)
y2β(1 + y2)

. (36)

Hence, we integrate the second by parts and we expand the resulting trigonometric
functions for small arguments

I = τ
1+2β
A

{
π

2
cosec

[
(1 − 2β)π

2

]
−

1
1 − 2β

[(
t

τA

)2(∫ ∞

0
dy

y2−2β

1 + y2 −
∫ ∞

0
dy

y3−2β

(1 + y2)2

)
+ 2

∫ ∞

0
dy

y2−2β

(1 + y2)2

]}
. (37)

By evaluating the remaining integrals, we obtain the final result

I = τ
1+2β
A

π

2

(
t

τA

)2
 cosec

[
(2β−3)π

2

]
1 − 2β

+
cosec

[
(1−2β)π

2

]
2

+
π

 cosec
[
(1−2β)π

2

]
2

− β cosec[πβ]

1 − 2β

. (38)

• β = 1/2.
The integral (35) is in this case

I = τ2
A

∫ ∞

0
dy

1 − cos
(

yt
τA

)
y(1 + y2)

. (39)

Integrating by parts, we have

I = τ2
A

− t
τA

∫ ∞

0

ln(y) sin
(

yt
τA

)
1 + y2 + 2

∫ ∞

0
dy

ln(y)
[
1 − cos

(
yt
τA

)]
(1 + y2)2

. (40)

We can neglect the second and split the first into two contributions

I = τ2
A

− t
τA

∫ 1

0

ln(y) sin
(

yt
τA

)
1 + y2 +− t

τA

∫ ∞

1

ln(y) sin
(

yt
τA

)
1 + y2

. (41)

Then, we can retain only the first one, as the second is nearly zero, and expand the
sine for small arguments, obtaining [114]

I = τ2
A

{
−
(

t
τA

)2 ∫ 1

0

y ln(y)
1 + y2

}
= t2 π2

48
. (42)

• 1/2 < β < 1.
This case is the easier to be handled. Expanding the cosine for small arguments in (35)
yields

I =
t2

τ
1−2β
A

1
2

∫ ∞

0
dy

y2(1−β)

1 + y2 =
t2

τ
1−2β
A

π

4
cosec

[
(3 − 2β)π

2

]
(43)
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4.1.2. t ≫ τA

This time limit presents the same symmetry of the previous one; therefore, we study
the behavior of I in the three cases 0 < β < 1/2, β = 1/2, and 1/2 < β < 1.

• 0 < β < 1/2.
From (36), after integrating by parts, it is obtained

I = τ
1+2β
A

π

2
cosec

[
(1 − 2β)π

2

]
− t

τA

1
1 − 2β

∫ ∞

0
dy

sin
(

yt
τA

)
y2β−1(1 + y2)

−

2
1 − 2β

∫ ∞

0
dy

cos
(

yt
τA

)
y2β−2(1 + y2)

. (44)

The major contributions to the integrals appearing in (44) come from y ∼ 0; hence, I
may be properly approximated to

I = τ
1+2β
A

{
π

2
cosec

[
(1 − 2β)π

2

]
− t

τA

1
1 − 2β

∫ ∞

0
dy y1−2β sin

(
yt
τA

)
−

2
1 − 2β

∫ ∞

0
dy y2−2β cos

(
yt
τA

)}
. (45)

We can thus use the method of summation of improper integrals [108,116] to finalize
the calculation

I = τ
1+2β
A

{
π

2
cosec

[
(1 − 2β)π

2

]
−
(

t
τA

)2β−1 Γ(2 − 2β) sin[π(1 − β)]

1 − 2β
−

(
t

τA

)2β−3 Γ(3 − 2β) cos
[

π(3−2β)
2

]
1 − 2β

. (46)

• β = 1/2.
We recap from the expression (40), neglecting the second integral on the RHS and
retaining only the contributions coming from y ∼ 0 in the first:

I = τ2
A

{
− t

τA

∫ ∞

0
ln(y) sin

(
yt
τA

)}
. (47)

Then, we can split the resulting integral into two terms

I = τ2
A

{
− t

τA

∫ 1

0
ln(y) sin

(
yt
τA

)
+− t

τA

∫ ∞

1
ln(y) sin

(
yt
τA

)}
. (48)

and consider only the first one as the second yields almost no contribution. Finally,
solving the integral [114],

I = τ2
A

{
γ + ln

(
t

τA

)
− Ci

(
t

τA

)}
, (49)

where γ is the Euler–Mascheroni constant and Ci is the cosine integral [113].
• 1/2 < β < 1.

As in the previous situations, the main contributions to the integral in (35) will arise
from y ∼ 0; hence,

I = τ
1+2β
A

∫ ∞

0
dy

1 − cos
(

yt
τA

)
y2β

. (50)
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By integration by parts, it becomes

I =
τ

1+2β
A

2β − 1

(
t

τA

) ∫ ∞

0
dy y1−2β sin

(
yt
τA

)
(51)

and, using the methods of improper integrals [116], the final result is

I = τ
1+2β
A

(
t

τA

)2β−1 Γ(2 − 2β)

2β − 1
sin[π(1 − β)] (52)

Now, collecting the expressions achieved in these subsections, we can wrap them up
in a unique compact formula:
when t ≪ τA:

⟨δ2h(x⃗∗, t)⟩OUN ≃
(

σdγνp

ldK+

)2
t2

3πτA


τ

2β−1
A

π
2

[
cosec

[
(2β−3)π

2

]
1−2β +

cosec
[
(1−2β)π

2

]
2

]
0 < β < 1/2

π2

48 β = 1/2
τ

2β−1
A

π
4 cosec

[
(3−2β)π

2

]
1/2 < β < 1;

(53)

when t ≫ τA:

⟨δ2h(x⃗∗, t)⟩OUN ≃
(

σdγνp

ldK+

)2
1

3πτA


τ

1+2β
A

π
2 cosec

[
(1−2β)π

2

]
0 < β < 1/2

τ2
A ln

(
t

τA

)
β = 1/2

t2β−1 τ2
A

Γ(2−2β)
2β−1 sin[π(1 − β)] 1/2 < β < 1;

(54)

Hence, we can infer that the impact of the OUN on the AOUP diffusive dynamics
exhibits pseudo-ballistic behavior for time intervals shorter than the active decorrela-
tion time (τA). However, this impact varies depending on whether β is less than, equal
to, or greater than 1/2. This result must be summed to the contribution arising from
the fGN according to the formula (31). It is clear that, in the long time limit, the term
⟨δ2h(x⃗∗, t)⟩ f GN will dominate. However, the transition from the dynamics dictated by
⟨δ2h(x⃗∗, t)⟩OUN to the asymptotic one will depend on the values of the parameters appear-
ing in (4). Defining this transition time as τsub and assuming τsub ≫ τA, a rough estimate
of τsub could be given by equating the contributions of the expression (54) with (32):
⟨δ2h(x⃗∗, τsub)⟩OUN = ⟨δ2h(x⃗∗, τsub)⟩ f GN . This is schematically shown in Figure 1.

Figure 1. MSD of the AOUP. The three situations described in the text, 0 < β < 1/2 (black
curve), β = 0 (red curve), and 1/2 < β < 1 (green curve) are qualitatively shown. Assuming
τsub ≫ τA the three regimes appear as distinct. After a pseudo-ballistic initial phase, the behaviors
in (54) represent a considerable slowing down of the diffusive dynamics, which is followed by the
asymptotic subdiffusive GEM usual behavior (32).
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However, it is essential to emphasize that, when we relax the assumption of τsub ≫ τA,
the dynamics become less straightforward. Although the asymptotic behavior remains
unchanged, the intermediate ultra-slow dynamics can be significantly compressed or reduced.

4.2. MSD at a Generic Position x⃗

The expression (33) is not straightforward to manipulate, making it challenging to
deduce the impact of the AOUP dynamics on a tracer positioned at a distance of |⃗x − x⃗∗|.
The reason is the appearance of a correlation time

τ(|⃗x − x⃗∗|) = |⃗x − x⃗∗|z+α−d

CA
, (55)

which can be seen as the time up to which the dynamics of two distinct probes in x⃗ and x⃗∗

is uncorrelated [108–110,117]. As a matter of fact, both the force- and the noise-correlators
are expressed as Θ

(
t

τ(|⃗x|)

)
and Φ

(
t

τ(|⃗x|)

)
. The dependence of (31) and, in particular, the de-

pendence of the ⟨δ2h(x⃗, t)⟩ on the correlation time (55) can be achieved by the following

changes in variable in the integrals of (33): y =
(

CA
−iω

)1/(z+α−d)
|⃗q|, y′ =

(
CA
−iω

)1/(z+α−d)
|⃗q′|

and λ = ωt:

⟨δ2h(x⃗, t)⟩OUN =
(σdγAνp)2

2d−1πd+13τA

|⃗x − x⃗⋆|−α

(CA)
α

z+α−d

(
t

τ(|⃗x − x⃗⋆|)

) 2+α−d
z+α−d

∫ ∞

−∞
dλ

1 − e−iλ(
1

τA

)2
+
(

λ
t

)2 ×

∫ +∞

0
dy

yα−d/2

1 + yz+α−d Jd/2−1

((
−iλτ(|⃗x − x⃗⋆|)

t

) 1
z+α−d

y

)
×

∫ +∞

0
dy′

y′α−d/2

1 + y′z+α−d Jd/2−1

((
−iλτ(|⃗x − x⃗⋆|)

t

) 1
z+α−d

y′
)

. (56)

As previously mentioned, the formal analysis of (33) is not straightforward, and it will
be the focus of an upcoming investigation. Nonetheless, we can qualitatively examine the
limiting behaviors of the equivalent expression (56).

In the regime where t ≪ τ(|⃗x − x⃗∗|), the Bessel functions exhibit high oscillations.
As a result, the major contributions to the integrals come from values where y ≃ 0, y′ ≃ 0,
and λ ≃ 0. Surprisingly, these contributions are almost negligible, leading to

⟨δ2h(x⃗, t)⟩ ≃ ⟨δ2h(x⃗, t)⟩ f GN . (57)

In the opposite limit, where t ≫ τ(|⃗x − x⃗∗|), we can employ the expansion of the
Bessel functions for small arguments (21). This results in the same expression (34) as that
valid for the AOUP. Consequently, we obtain

⟨δ2h(x⃗, t)⟩ ≃ ⟨δ2h(x⃗∗, t)⟩OUN + ⟨δ2h(x⃗∗, t)⟩ f GN . (58)

Given these limiting situations, we can provide an approximate study of the possible
scenarios:

• τ(|⃗x − x⃗∗|) ≪ τA.
Probes very close to the AOUP exhibit an initial thermal subdiffusive behavior ∝ tβ.
Subsequently, the probe at x⃗ behaves identically to the AOUP.

• τA ≪ τ(|⃗x − x⃗∗|) ≪ τsub.
In this case, the probe’s diffusion is primarily governed by thermal noise. The non-
equilibrium dynamics becomes significant only for τ(|⃗x − x⃗∗|) ≪ t ≪ τsub, leading to
the results in (54). For longer times, i.e., t ≫ τsub, the thermal MSD (32) is recovered.

• τsub ≪ τ(|⃗x − x⃗∗|).
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Probes that satisfy this condition, i.e., probes far away from the AOUP, are not influ-
enced by the action of the active force.

5. Concluding Remarks

In this paper, we examined the diffusional dynamics of an AOUP connected to an
elastic system such as a (semi)flexible polymer, a membrane, or a fluctuating interface,
including hydrodynamic fluid-mediated interactions. Moreover, we investigated the action
of the non-equilibrium OU force on the other element belonging to the elastic system. We
have demonstrated that the FLE constitutes the correct description of the AOUP dynamics,
where the thermal contributions deriving from the rest of the elastic system are incorporated
into the fGN, in addition to a renormalized OUN (24). We also derived the FLE for any
other probe placed at an arbitrary distance from the AOUP |⃗x − x⃗∗|. Here, the effect of the
non-equilibrium force is delayed in time, propagating through the medium thanks to the
force-propagator Θ(|⃗x − x⃗∗|, t) (17).

Our analytical theory constitutes a significant improvement over the arguments pre-
sented in previous works on this subject. In Ref. [101], the FLE for the AOUP was inferred
from the numerical evidence of the velocity autocorrelation function’s time behavior and
from that of the MSD. In other words, it was proposed as an effective equation supported
by analytical calculations drawn from a normal mode expansion [87,118–120]. However,
a formal derivation of the FLE, based on the analysis by Panja [121,122], was not attempted.

In Ref. [102], the mesoscopic FLE for the AOUP attached to a (semi)flexible chain was
introduced to reproduce its stochastic non-equilibrium dynamics. The fractional equation,
namely the damping kernel, was derived by resorting to the tension propagation theory
in the absence of active noise. However, even in this case, a formal derivation from the
semi-flexible evolution equation was not provided.

In this article, we offered such an analytical derivation, significantly expanding the
domain of its applicability to any elastic system, including hydrodynamics. This became
possible because the framework of the FLE with a localized applied potential [108] could
be entirely shifted to the case of the AOUP particle bound to an elastic system. Moreover,
this framework entails the derivation of the FLE for any other probe belonging to the GEM,
different from the AOUP.

The FLE framework provides a crucial additional value through the formally easy calcu-
lation of any observable composed as a function of the elementary correlation function (28).
In particular, we examined the MSD of AOUP, uncovering some unexpected diffusional
scenarios, which include, as special cases, those found in the simulations and theoretical
analyses of Refs. [101,102].

Firstly, we observed how three different types of diffusion arise depending on the
value of β. This is not immediately apparent in the early time regime, i.e., t ≪ τA, when
the action of the non-equilibrium OU noise drives the directional motion of the AOUP.
In this regime, a super-diffusive pseudo-ballistic dynamics emerges, analogous to the result
in [101] where the Rouse model yields β = 1/2 [103,104]. However, although the ∼t2

behavior is maintained for any value of β, the prefactors change significantly, as shown in
Equation (53). Moreover, we observe that the ballistic regime may not distinctly emerge
from simulations. Specifically, at low Péclet numbers, the contribution to the MSD from
the thermal part, attributed to the action of the fractional Gaussian noise in (31), cannot
be entirely neglected. This observation may underlie the ∼t3/2 behavior exhibited by the
AOUP connected to semi-flexible polymers [102]. Simultaneously, this discrepancy could
be attributed to the fact that, in the presented simulation results, the AOUP was attached to
a network of four semi-flexible arms. Regardless, as highlighted by the same authors, in the
simulations, “the superdiffusion for t ≪ τA occurs with an anomalous exponent slightly
greater than 3/2”.

For times t ≫ τA and for high Péclet numbers, the diffusion is still dictated by the non-
equilibrium active force, and the diffusional scenarios are different according to the values
of β, as seen in Equation (54). For example, we both recover the logarithmic dependence
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of the Rouse chains, obtained analytically in [101], and the t1/2 behavior observed in the
numerical simulations of Ref. [102]. In the case of the Zimm polymers model instead, we
predict ∼t1/3 in this regime, being β = 2

3 . Importantly, we anticipate that for β in the range
0 < β < 1/2, the diffusion tends to slow down until reaching a constant value, as seen in
Equation (54).

The asymptotic diffusion requires special attention. The FLEs (17) and (24) involve
the superposition of both non-equilibrium and thermal contributions, resulting in the
expression (31). This implies that, for a high Péclet number, there is a crossover between
the active subdiffusive motion and the long-time thermal subdiffusive dynamics. The time
scale on which this crossover occurs, denoted as τsub, is not easily determined and crucially
depends on the microscopic parameters of the model, as illustrated in Figure 1. Situations
may arise in which τsub ≃ τA, causing the contribution in (54) to become less apparent.
For the sake of clarity in our analysis, we focus on cases where τsub ≫ τA.

The transition to thermal motion was also observed in the analysis presented in
Refs. [101,102]. This crossover time was defined as τR, signifying Rouse’s time in [101]
and the relaxation time in the case of semi-flexible chains [102]. Both interpretations could
be seen as thresholds marking the transition to the Brownian linear regime.As we are
working with infinite systems, τR → ∞ in our context. Consequently, as the influence of the
non-equilibrium OU active drive diminishes (t ≫ τA), the thermal dynamics predominates
(t ≫ τsub).

The analysis of the MSD of probes other than AOUP is complex and will be addressed
elsewhere. However, even without a detailed analytical derivation, some important con-
clusions can be drawn. As discussed in Section 4.2, the dynamics of regions in the elastic
system close to the AOUP are primarily influenced by the active non-equilibrium force up
to τsub, with an initial thermal subdiffusive motion. For t ≫ τsub, the MSD of the probes is
still governed by fractional Gaussian noise (fGN).

The initial thermal regime becomes more pronounced as one considers regions pro-
gressively farther from the AOUP. Consequently, the non-equilibrium component of the
MSD, denoted as ⟨δ2h(x⃗, t)⟩OUN , diminishes. In the limit of very distant regions satisfying
τ(|⃗x − x⃗|) ≫ τsub, the diffusion of the probes is entirely dictated by thermal fluctuations,
rendering the impact of any non-equilibrium driving force negligible. It is worth high-
lighting that this diffusional scenario precisely aligns with the findings from the numerical
simulations in Ref. [101].

The numerical implementation of GEM with an active particle can be pursued by the
numerical integration of the entire system governing Equation (4). Alternatively, one could
just simulate the AOUP FLE (24) or the distant probe FLE (17). As stated in [103], both
descriptions offer the same level of complexity, although the FLE framework provides a
simpler and faster way to delve into the dynamical regimes of a single particle. Furthermore,
the universal nature of the FLE equation allows for the definition of universality classes,
categorized by the value of β. The most effective method to simulate the FLE is to utilize
the (k, ω) solution, as given in Equation (11), and then invert it. Overall, these results may
help to elucidate in vivo dynamics observed in experiments [63,76].
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17. Matthäus, F.; Jagodič, M.; Dobnikar, J. E. coli superdiffusion and chemotaxis—Search strategy, precision, and motility. Biophys. J.

2009, 97, 946–957. [CrossRef] [PubMed]
18. Wu, X.L.; Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 2000, 84, 3017. [CrossRef]

[PubMed]
19. Leptos, K.C.; Guasto, J.S.; Gollub, J.P.; Pesci, A.I.; Goldstein, R.E. Dynamics of enhanced tracer diffusion in suspensions of

swimming eukaryotic microorganisms. Phys. Rev. Lett. 2009, 103, 198103. [CrossRef]
20. Gal, N.; Weihs, D. Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 2010, 81, 20903. [CrossRef]
21. Chen, K.; Wang, B.; Granick, S. Memoryless self-reinforcing directionality in endosomal active transport within living cells. Nat.

Mater. 2015, 14, 589–593. [CrossRef]
22. Gal, N.; Lechtman-Goldstein, D.; Weihs, D. Particle tracking in living cells: A review of the mean square displacement method

and beyond. Rheol. Acta 2013, 52, 425–443. [CrossRef]
23. Weber, C.A.; Suzuki, R.; Schaller, V.; Aranson, I.S.; Bausch, A.R.; Frey, E. Random bursts determine dynamics of active filaments.

Proc. Natl. Acad. Sci. USA 2015, 112, 10703–10707. [CrossRef] [PubMed]
24. Palacci, J.; Cottin-Bizonne, C.; Ybert, C.; Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions.

Phys. Rev. Lett. 2010, 105, 88304. [CrossRef] [PubMed]
25. Howse, J.R.; Jones, R.A.; Ryan, A.J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-motile colloidal particles: From directed

propulsion to random walk. Phys. Rev. Lett. 2007, 99, 48102. [CrossRef]
26. Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers. Nature 2005,

437, 862–865. [CrossRef] [PubMed]
27. Tierno, P.; Golestanian, R.; Pagonabarraga, I.; Sagués, F. Controlled swimming in confined fluids of magnetically actuated

colloidal rotors. Phys. Rev. Lett. 2008, 101, 218304. [CrossRef] [PubMed]
28. Ghosh, A.; Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 2009, 9, 2243–2245.

[CrossRef]
29. Bricard, A.; Caussin, J.B.; Desreumaux, N.; Dauchot, O.; Bartolo, D. Emergence of macroscopic directed motion in populations of

motile colloids. Nature 2013, 503, 95–98. [CrossRef]
30. Di Leonardo, R. Controlled collective motions. Nat. Mater. 2016, 15, 1057–1058. [CrossRef]
31. Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater.

2016, 15, 1095–1099. [CrossRef]
32. Nishiguchi, D.; Iwasawa, J.; Jiang, H.R.; Sano, M. Flagellar dynamics of chains of active Janus particles fueled by an AC electric

field. New J. Phys. 2018, 20, 15002. [CrossRef]
33. Maggi, C.; Paoluzzi, M.; Angelani, L.; Di Leonardo, R. Memory-less response and violation of the fluctuation-dissipation theorem

in colloids suspended in an active bath. Sci. Rep. 2017, 7, 17588. [CrossRef] [PubMed]
34. Fodor, É.; Nardini, C.; Cates, M.E.; Tailleur, J.; Visco, P.; Van Wijland, F. How far from equilibrium is active matter? Phys. Rev. Lett.

2016, 117, 38103. [CrossRef]
35. Maggi, C.; Paoluzzi, M.; Pellicciotta, N.; Lepore, A.; Angelani, L.; Di Leonardo, R. Generalized energy equipartition in harmonic

oscillators driven by active baths. Phys. Rev. Lett. 2014, 113, 238303. [CrossRef]
36. Cates, M.E.; Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 2015, 6, 219–244. [CrossRef]

http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104101
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1103/PhysRevLett.82.209
http://dx.doi.org/10.1073/pnas.1118633109
http://dx.doi.org/10.1073/pnas.1005766107
http://dx.doi.org/10.1038/nphys3035
http://dx.doi.org/10.1126/science.1210280
http://www.ncbi.nlm.nih.gov/pubmed/22174256
http://dx.doi.org/10.1063/PT.3.1715
http://dx.doi.org/10.1016/j.bpj.2009.04.065
http://www.ncbi.nlm.nih.gov/pubmed/19686641
http://dx.doi.org/10.1103/PhysRevLett.84.3017
http://www.ncbi.nlm.nih.gov/pubmed/11019000
http://dx.doi.org/10.1103/PhysRevLett.103.198103
http://dx.doi.org/10.1103/PhysRevE.81.020903
http://dx.doi.org/10.1038/nmat4239
http://dx.doi.org/10.1007/s00397-013-0694-6
http://dx.doi.org/10.1073/pnas.1421322112
http://www.ncbi.nlm.nih.gov/pubmed/26261319
http://dx.doi.org/10.1103/PhysRevLett.105.088304
http://www.ncbi.nlm.nih.gov/pubmed/20868136
http://dx.doi.org/10.1103/PhysRevLett.99.048102
http://dx.doi.org/10.1038/nature04090
http://www.ncbi.nlm.nih.gov/pubmed/16208366
http://dx.doi.org/10.1103/PhysRevLett.101.218304
http://www.ncbi.nlm.nih.gov/pubmed/19113458
http://dx.doi.org/10.1021/nl900186w
http://dx.doi.org/10.1038/nature12673
http://dx.doi.org/10.1038/nmat4761
http://dx.doi.org/10.1038/nmat4696
http://dx.doi.org/10.1088/1367-2630/aa9b48
http://dx.doi.org/10.1038/s41598-017-17900-2
http://www.ncbi.nlm.nih.gov/pubmed/29242505
http://dx.doi.org/10.1103/PhysRevLett.117.038103
http://dx.doi.org/10.1103/PhysRevLett.113.238303
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014710


Fractal Fract. 2024, 8, 76 15 of 17

37. Reverey, J.F.; Jeon, J.H.; Bao, H.; Leippe, M.; Metzler, R.; Selhuber-Unkel, C. Superdiffusion dominates intracellular particle
motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep. 2015, 5, 11690. [CrossRef] [PubMed]

38. Budrene, E.O.; Berg, H.C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 1995, 376, 49–53.
[CrossRef]

39. Brenner, M.P.; Levitov, L.S.; Budrene, E.O. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 1998,
74, 1677–1693. [CrossRef]

40. Omar, A.K.; Klymko, K.; GrandPre, T.; Geissler, P.L. Phase diagram of active Brownian spheres: Crystallization and the
metastability of motility-induced phase separation. Phys. Rev. Lett. 2021, 126, 188002. [CrossRef]

41. Alert, R.; Casademunt, J.; Joanny, J.F. Active turbulence. Annu. Rev. Condens. Matter Phys. 2022, 13, 143–170. [CrossRef]
42. Kafri, Y.; da Silveira, R.A. Steady-state chemotaxis in Escherichia coli. Phys. Rev. Lett. 2008, 100, 238101. [CrossRef]
43. Tailleur, J.; Cates, M. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 2008, 100, 218103. [CrossRef]

[PubMed]
44. Ben-Isaac, E.; Fodor, É.; Visco, P.; Van Wijland, F.; Gov, N.S. Modeling the dynamics of a tracer particle in an elastic active gel.

Phys. Rev. E 2015, 92, 12716. [CrossRef]
45. Zheng, X.; Ten Hagen, B.; Kaiser, A.; Wu, M.; Cui, H.; Silber-Li, Z.; Löwen, H. Non-Gaussian statistics for the motion of

self-propelled Janus particles: Experiment versus theory. Phys. Rev. E 2013, 88, 32304. [CrossRef] [PubMed]
46. Nguyen, G.P.; Wittmann, R.; Löwen, H. Active Ornstein–Uhlenbeck model for self-propelled particles with inertia. J. Phys.

Condens. Matter 2021, 34, 35101. [CrossRef] [PubMed]
47. Caprini, L.; Marconi, U.M.B.; Wittmann, R.; Löwen, H. Dynamics of active particles with space-dependent swim velocity. Soft

Matter 2022, 18, 1412–1422. [CrossRef]
48. Sprenger, A.R.; Caprini, L.; Löwen, H.; Wittmann, R. Dynamics of active particles with translational and rotational inertia. J. Phys.

Condens. Matter 2023, 35, 305101. [CrossRef] [PubMed]
49. Caprini, L.; Bettolo Marconi, U.M.; Wittmann, R.; Löwen, H. Active particles driven by competing spatially dependent self-

propulsion and external force. SciPost Phys. 2022, 13, 065. [CrossRef]
50. Samanta, N.; Chakrabarti, R. Chain reconfiguration in active noise. J. Phys. Math. Theor. 2016, 49, 195601. [CrossRef]
51. MacKintosh, F.C.; Janmey, P.A. Actin gels. Curr. Opin. Solid State Mater. Sci. 1997, 2, 350–357. [CrossRef]
52. Eisenstecken, T.; Gompper, G.; Winkler, R.G. Conformational properties of active semiflexible polymers. Polymers 2016, 8, 304.

[CrossRef]
53. Kaiser, A.; Babel, S.; ten Hagen, B.; von Ferber, C.; Löwen, H. How does a flexible chain of active particles swell? J. Chem. Phys.

2015, 142, 124905. [CrossRef] [PubMed]
54. Anand, S.K.; Singh, S.P. Behavior of active filaments near solid-boundary under linear shear flow. Soft Matter 2019, 15, 4008–4018.

[CrossRef] [PubMed]
55. Shin, J.; Cherstvy, A.G.; Kim, W.K.; Metzler, R. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions

of active particles. New J. Phys. 2015, 17, 113008. [CrossRef]
56. Chaki, S.; Chakrabarti, R. Enhanced diffusion, swelling, and slow reconfiguration of a single chain in non-Gaussian active bath.

J. Chem. Phys. 2019, 150, 94902. [CrossRef] [PubMed]
57. Nikola, N.; Solon, A.P.; Kafri, Y.; Kardar, M.; Tailleur, J.; Voituriez, R. Active particles with soft and curved walls: Equation of

state, ratchets, and instabilities. Phys. Rev. Lett. 2016, 117, 98001. [CrossRef]
58. Harder, J.; Valeriani, C.; Cacciuto, A. Activity-induced collapse and reexpansion of rigid polymers. Phys. Rev. E 2014, 90, 62312.

[CrossRef] [PubMed]
59. Weber, S.C.; Spakowitz, A.J.; Theriot, J.A. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromoso-

mal loci. Proc. Natl. Acad. Sci. USA 2012, 109, 7338–7343. [CrossRef]
60. Bronshtein, I.; Kepten, E.; Kanter, I.; Berezin, S.; Lindner, M.; Redwood, A.B.; Mai, S.; Gonzalo, S.; Foisner, R.; Shav-Tal, Y.; et al.

Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 2015, 6, 8044. [CrossRef]
61. Bronstein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shav-Tal, Y.; Barkai, E.; Garini, Y. Transient anomalous diffusion of telomeres in the

nucleus of mammalian cells. Phys. Rev. Lett. 2009, 103, 18102. [CrossRef]
62. Wang, X.; Kam, Z.; Carlton, P.M.; Xu, L.; Sedat, J.W.; Blackburn, E.H. Rapid telomere motions in live human cells analyzed by

highly time-resolved microscopy. Epigenetics Chromatin 2008, 1, 4. [CrossRef]
63. Stadler, L.; Weiss, M. Non-equilibrium forces drive the anomalous diffusion of telomeres in the nucleus of mammalian cells. New

J. Phys. 2017, 19, 113048. [CrossRef]
64. Ku, H.; Park, G.; Goo, J.; Lee, J.; Park, T.L.; Shim, H.; Kim, J.H.; Cho, W.K.; Jeong, C. Effects of transcription-dependent physical

perturbations on the chromosome dynamics in living cells. Front. Cell Dev. Biol. 2022, 10, 822026. [CrossRef] [PubMed]
65. Colin, A.; Singaravelu, P.; Théry, M.; Blanchoin, L.; Gueroui, Z. Actin-network architecture regulates microtubule dynamics. Curr.

Biol. 2018, 28, 2647–2656. [CrossRef]
66. Sonn-Segev, A.; Bernheim-Groswasser, A.; Roichman, Y. Dynamics in steady state in vitro acto-myosin networks. J. Phys. Condens.

Matter 2017, 29, 163002. [CrossRef] [PubMed]
67. Köster, D.V.; Husain, K.; Iljazi, E.; Bhat, A.; Bieling, P.; Mullins, R.D.; Rao, M.; Mayor, S. Actomyosin dynamics drive local

membrane component organization in an in vitro active composite layer. Proc. Natl. Acad. Sci. USA 2016, 113, E1645–E1654.
[CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep11690
http://www.ncbi.nlm.nih.gov/pubmed/26123798
http://dx.doi.org/10.1038/376049a0
http://dx.doi.org/10.1016/S0006-3495(98)77880-4
http://dx.doi.org/10.1103/PhysRevLett.126.188002
http://dx.doi.org/10.1146/annurev-conmatphys-082321-035957
http://dx.doi.org/10.1103/PhysRevLett.100.238101
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://www.ncbi.nlm.nih.gov/pubmed/18518641
http://dx.doi.org/10.1103/PhysRevE.92.012716
http://dx.doi.org/10.1103/PhysRevE.88.032304
http://www.ncbi.nlm.nih.gov/pubmed/24125265
http://dx.doi.org/10.1088/1361-648X/ac2c3f
http://www.ncbi.nlm.nih.gov/pubmed/34598179
http://dx.doi.org/10.1039/D1SM01648B
http://dx.doi.org/10.1088/1361-648X/accd36
http://www.ncbi.nlm.nih.gov/pubmed/37059111
http://dx.doi.org/10.21468/SciPostPhys.13.3.065
http://dx.doi.org/10.1088/1751-8113/49/19/195601
http://dx.doi.org/10.1016/S1359-0286(97)80127-1
http://dx.doi.org/10.3390/polym8080304
http://dx.doi.org/10.1063/1.4916134
http://www.ncbi.nlm.nih.gov/pubmed/25833607
http://dx.doi.org/10.1039/C9SM00027E
http://www.ncbi.nlm.nih.gov/pubmed/31041980
http://dx.doi.org/10.1088/1367-2630/17/11/113008
http://dx.doi.org/10.1063/1.5086152
http://www.ncbi.nlm.nih.gov/pubmed/30849884
http://dx.doi.org/10.1103/PhysRevLett.117.098001
http://dx.doi.org/10.1103/PhysRevE.90.062312
http://www.ncbi.nlm.nih.gov/pubmed/25615098
http://dx.doi.org/10.1073/pnas.1119505109
http://dx.doi.org/10.1038/ncomms9044
http://dx.doi.org/10.1103/PhysRevLett.103.018102
http://dx.doi.org/10.1186/1756-8935-1-4
http://dx.doi.org/10.1088/1367-2630/aa8fe1
http://dx.doi.org/10.3389/fcell.2022.822026
http://www.ncbi.nlm.nih.gov/pubmed/35874812
http://dx.doi.org/10.1016/j.cub.2018.06.028
http://dx.doi.org/10.1088/1361-648X/aa62ca
http://www.ncbi.nlm.nih.gov/pubmed/28234236
http://dx.doi.org/10.1073/pnas.1514030113
http://www.ncbi.nlm.nih.gov/pubmed/26929326


Fractal Fract. 2024, 8, 76 16 of 17

68. Harada, Y.; Noguchi, A.; Kishino, A.; Yanagida, T. Sliding movement of single actin filaments on one-headed myosin filaments.
Nature 1987, 326, 805–808. [CrossRef]

69. Amblard, F.; Maggs, A.C.; Yurke, B.; Pargellis, A.N.; Leibler, S. Subdiffusion and anomalous local viscoelasticity in actin networks.
Phys. Rev. Lett. 1996, 77, 4470. [CrossRef]

70. Wong, I.; Gardel, M.; Reichman, D.; Weeks, E.R.; Valentine, M.; Bausch, A.; Weitz, D.A. Anomalous diffusion probes microstructure
dynamics of entangled F-actin networks. Phys. Rev. Lett. 2004, 92, 178101. [CrossRef]

71. Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science 2009, 326, 1208–1212. [CrossRef]
72. Henkin, G.; DeCamp, S.J.; Chen, D.T.; Sanchez, T.; Dogic, Z. Tunable dynamics of microtubule-based active isotropic gels. Philos.

Trans. R. Soc. Math. Phys. Eng. Sci. 2014, 372, 20140142. [CrossRef]
73. Kahana, A.; Kenan, G.; Feingold, M.; Elbaum, M.; Granek, R. Active transport on disordered microtubule networks: The

generalized random velocity model. Phys. Rev. E 2008, 78, 51912. [CrossRef] [PubMed]
74. Vale, R.D.; Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 1988,

107, 2233–2241. [CrossRef] [PubMed]
75. Sanchez, T.; Chen, D.T.; DeCamp, S.J.; Heymann, M.; Dogic, Z. Spontaneous motion in hierarchically assembled active matter.

Nature 2012, 491, 431–434. [CrossRef] [PubMed]
76. Speckner, K.; Stadler, L.; Weiss, M. Anomalous dynamics of the endoplasmic reticulum network. Phys. Rev. E 2018, 98, 12406.

[CrossRef] [PubMed]
77. Lin, C.; Zhang, Y.; Sparkes, I.; Ashwin, P. Structure and dynamics of ER: Minimal networks and biophysical constraints. Biophys.

J. 2014, 107, 763–772. [CrossRef]
78. Mizuno, D.; Tardin, C.; Schmidt, C.F.; MacKintosh, F.C. Nonequilibrium mechanics of active cytoskeletal networks. Science 2007,

315, 370–373. [CrossRef] [PubMed]
79. Sonn-Segev, A.; Bernheim-Groswasser, A.; Roichman, Y. Scale dependence of the mechanics of active gels with increasing motor

concentration. Soft Matter 2017, 13, 7352–7359. [CrossRef]
80. Jeon, J.H.; Tejedor, V.; Burov, S.; Barkai, E.; Selhuber-Unkel, C.; Berg-Sørensen, K.; Oddershede, L.; Metzler, R. In vivo anomalous

diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 2011, 106, 048103. [CrossRef]
81. Toyota, T.; Head, D.A.; Schmidt, C.F.; Mizuno, D. Non-Gaussian athermal fluctuations in active gels. Soft Matter 2011, 7, 3234–3239.

[CrossRef]
82. Wilhelm, C. Out-of-equilibrium microrheology inside living cells. Phys. Rev. Lett. 2008, 101, 28101. [CrossRef]
83. Celli, J.; Gregor, B.; Turner, B.; Afdhal, N.H.; Bansil, R.; Erramilli, S. Viscoelastic properties and dynamics of porcine gastric mucin.

Biomacromolecules 2005, 6, 1329–1333. [CrossRef] [PubMed]
84. Wagner, C.E.; Turner, B.S.; Rubinstein, M.; McKinley, G.H.; Ribbeck, K. A rheological study of the association and dynamics of

MUC5AC gels. Biomacromolecules 2017, 18, 3654–3664. [CrossRef] [PubMed]
85. Gan, D.; Xu, T.; Xing, W.; Ge, X.; Fang, L.; Wang, K.; Ren, F.; Lu, X. Mussel-inspired contact-active antibacterial hydrogel with

high cell affinity, toughness, and recoverability. Adv. Funct. Mater. 2019, 29, 1805964. [CrossRef]
86. Cherstvy, A.G.; Thapa, S.; Wagner, C.E.; Metzler, R. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin

hydrogels. Soft Matter 2019, 15, 2526–2551. [CrossRef] [PubMed]
87. Ghosh, A.; Gov, N. Dynamics of active semiflexible polymers. Biophys. J. 2014, 107, 1065–1073. [CrossRef]
88. Isele-Holder, R.E.; Elgeti, J.; Gompper, G. Self-propelled worm-like filaments: Spontaneous spiral formation, structure, and

dynamics. Soft Matter 2015, 11, 7181–7190. [CrossRef]
89. Isele-Holder, R.E.; Jäger, J.; Saggiorato, G.; Elgeti, J.; Gompper, G. Dynamics of self-propelled filaments pushing a load. Soft

Matter 2016, 12, 8495–8505. [CrossRef]
90. Laskar, A.; Adhikari, R. Filament actuation by an active colloid at low Reynolds number. New J. Phys. 2017, 19, 33021. [CrossRef]
91. Chelakkot, R.; Winkler, R.G.; Gompper, G. Flow-induced helical coiling of semiflexible polymers in structured microchannels.

Phys. Rev. Lett. 2012, 109, 178101. [CrossRef]
92. Kaiser, A.; Löwen, H. Unusual swelling of a polymer in a bacterial bath. J. Chem. Phys. 2014, 141, 044903. [CrossRef]
93. Liu, X.; Jiang, H.; Hou, Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J. Chem. Phys.

2019, 151, 174904. [CrossRef]
94. Jiang, H.; Hou, Z. Motion transition of active filaments: Rotation without hydrodynamic interactions. Soft Matter 2014,

10, 1012–1017. [CrossRef] [PubMed]
95. Sarkar, D.; Thakur, S. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient. Phys. Rev. E

2016, 93, 32508. [CrossRef] [PubMed]
96. Cao, X.; Zhang, B.; Zhao, N. Crowding-activity coupling effect on conformational change of a semi-flexible polymer. Polymers

2019, 11, 1021. [CrossRef] [PubMed]
97. Prathyusha, K.; Henkes, S.; Sknepnek, R. Dynamically generated patterns in dense suspensions of active filaments. Phys. Rev. E

2018, 97, 22606. [CrossRef]
98. Bianco, V.; Locatelli, E.; Malgaretti, P. Globulelike conformation and enhanced diffusion of active polymers. Phys. Rev. Lett. 2018,

121, 217802. [CrossRef] [PubMed]
99. Duman, Ö.; Isele-Holder, R.E.; Elgeti, J.; Gompper, G. Collective dynamics of self-propelled semiflexible filaments. Soft Matter

2018, 14, 4483–4494. [CrossRef]

http://dx.doi.org/10.1038/326805a0
http://dx.doi.org/10.1103/PhysRevLett.77.4470
http://dx.doi.org/10.1103/PhysRevLett.92.178101
http://dx.doi.org/10.1126/science.1175862
http://dx.doi.org/10.1098/rsta.2014.0142
http://dx.doi.org/10.1103/PhysRevE.78.051912
http://www.ncbi.nlm.nih.gov/pubmed/19113160
http://dx.doi.org/10.1083/jcb.107.6.2233
http://www.ncbi.nlm.nih.gov/pubmed/3143735
http://dx.doi.org/10.1038/nature11591
http://www.ncbi.nlm.nih.gov/pubmed/23135402
http://dx.doi.org/10.1103/PhysRevE.98.012406
http://www.ncbi.nlm.nih.gov/pubmed/30110830
http://dx.doi.org/10.1016/j.bpj.2014.06.032
http://dx.doi.org/10.1126/science.1134404
http://www.ncbi.nlm.nih.gov/pubmed/17234946
http://dx.doi.org/10.1039/C7SM01391D
http://dx.doi.org/10.1103/PhysRevLett.106.048103
http://dx.doi.org/10.1039/c0sm00925c
http://dx.doi.org/10.1103/PhysRevLett.101.028101
http://dx.doi.org/10.1021/bm0493990
http://www.ncbi.nlm.nih.gov/pubmed/15877349
http://dx.doi.org/10.1021/acs.biomac.7b00809
http://www.ncbi.nlm.nih.gov/pubmed/28903557
http://dx.doi.org/10.1002/adfm.201805964
http://dx.doi.org/10.1039/C8SM02096E
http://www.ncbi.nlm.nih.gov/pubmed/30734041
http://dx.doi.org/10.1016/j.bpj.2014.07.034
http://dx.doi.org/10.1039/C5SM01683E
http://dx.doi.org/10.1039/C6SM01094F
http://dx.doi.org/10.1088/1367-2630/aa5f80
http://dx.doi.org/10.1103/PhysRevLett.109.178101
http://dx.doi.org/10.1063/1.4891095
http://dx.doi.org/10.1063/1.5125607
http://dx.doi.org/10.1039/c3sm52291a
http://www.ncbi.nlm.nih.gov/pubmed/24983114
http://dx.doi.org/10.1103/PhysRevE.93.032508
http://www.ncbi.nlm.nih.gov/pubmed/27078406
http://dx.doi.org/10.3390/polym11061021
http://www.ncbi.nlm.nih.gov/pubmed/31185626
http://dx.doi.org/10.1103/PhysRevE.97.022606
http://dx.doi.org/10.1103/PhysRevLett.121.217802
http://www.ncbi.nlm.nih.gov/pubmed/30517801
http://dx.doi.org/10.1039/C8SM00282G


Fractal Fract. 2024, 8, 76 17 of 17

100. Natali, L.; Caprini, L.; Cecconi, F. How a local active force modifies the structural properties of polymers. Soft Matter 2020,
16, 2594–2604. [CrossRef]

101. Joo, S.; Durang, X.; Lee, O.c.; Jeon, J.H. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer:
Langevin dynamics simulation and theory. Soft Matter 2020, 16, 9188–9201. [CrossRef]

102. Han, H.; Joo, S.; Sakaue, T.; Jeon, J.H. Nonequilibrium diffusion of active particles bound to a semi-flexible polymer network:
Simulations and fractional Langevin equation. arXiv 2023, arXiv:2303.05851.

103. Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model yields a fractional Langevin equation description. Phys. Rev. Lett.
2010, 104, 160602. [CrossRef] [PubMed]

104. Taloni, A.; Chechkin, A.; Klafter, J. Correlations in a generalized elastic model: Fractional Langevin equation approach. Phys. Rev.
E 2010, 82, 061104. [CrossRef] [PubMed]

105. Zimm, B.H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem.
Phys. 1956, 24, 269–278. [CrossRef]

106. Kilbas, A.A.; Marichev, O.I.; Samko, S.G. Fractional Integrals and Derivatives (Theory and Applications); Gordon and Breach Science
Publishers: Philadelphia, PA, USA, 1993.

107. Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 1997,
7, 753–764. [CrossRef] [PubMed]

108. Taloni, A.; Chechkin, A.; Klafter, J. Unusual response to a localized perturbation in a generalized elastic model. Phys. Rev. E 2011,
84, 21101. [CrossRef] [PubMed]

109. Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model: Fractional Langevin description, fluctuation relation and linear
response. Math. Model. Nat. Phenom. 2013, 8, 127–143. [CrossRef]

110. Taloni, A. Kubo fluctuation relations in the generalized elastic model. Adv. Math. Phys. 2016, 2016, 7502472. [CrossRef]
111. Um, J.; Song, T.; Jeon, J.H. Langevin dynamics driven by a telegraphic active noise. Front. Phys. 2019, 7, 143. [CrossRef]
112. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of

Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998.
113. Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables;

Dover Publications: Mineola, NY, USA, 1988.
114. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014.
115. Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437.

[CrossRef]
116. Hardy, G.H. Divergent Series; American Mathematical Society: Providence, RI, USA, 2000; Volume 334.
117. Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model: Thermal vs. non-thermal initial conditions—Universal scaling,

roughening, ageing and ergodicity. Europhys. Lett. 2012, 97, 30001. [CrossRef]
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