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Abstract: This paper introduces a new fast image encryption scheme based on a chaotic system
and cyclic shift in the integer wavelet domain. In order to increase the effectiveness and security of
encryption, we propose a new diffusion scheme by using bidirectional diffusion and cyclic shift and
apply it to our encryption scheme. First, a two-level integer wavelet transform is used to split the
plaintext picture into four low-frequency components. Second, we use random sequences generated
by Chen’s hyper-chaotic system to scramble four low-frequency components. The initial value
is determined by Secure Hash Algorithm 256-bit (SHA256) and user-defined parameters, which
increases the plaintext sensitivity. Then, the new diffusion scheme is applied to the matrix containing
most of the information and matrices are transformed by a one-level inverse integer wavelet. Finally,
to create the ciphertext image, the diffused matrices are subjected to the one-level inverse integer
wavelet transform. In the simulation part, we examine the suggested algorithm’s encryption impact.
The findings demonstrate that the suggested technique has a sufficient key space and can successfully
fend off common attacks.

Keywords: image encryption; integer wavelet transform; Chen’s hyper-chaotic map; cyclic shift

1. Introduction

Information security is becoming increasingly crucial as science and technology ad-
vance. The image encryption algorithm is an important technical means to protect user
privacy and image security. Many scholars have adopted various encryption techniques in
encryption algorithms to ensure image security [1–11]. Common encryption techniques
are optical transform [1–3], DNA operation [4,5,7,8], chaotic system [9,10], compressed
sensing [11], and so on. The great sensitivity, unpredictable nature, and ergodicity of these
systems to beginning conditions means that chaotic systems are the most commonly used
of these technologies [1,9,11].

Fridrich suggested a conventional encryption technique based on a chaotic map in
1998 [12]. It involves two diffusion and permutation processes that must be run numerous
times. A novel logistic map-based picture encryption technique was proposed by Munoz
and colleagues [13]. The deformed chaotic map can describe a parameter region for selecting
the key, thus expanding the key space and avoiding the nonchaotic region. An encryption
scheme has been presented using a spatiotemporal chaotic system [14]. However, the above
encryption algorithm is broken because it is vulnerable to plaintext attacks [15]. Later, high-
dimensional chaos was proposed and was applied more and more to encryption algorithms.
High-dimensional chaos has more complicated dynamic behavior than low-dimensional
chaos, as well as greater starting value sensitivity and improved protection [16–19]. For
example, a scale-invariant digital photo encryption approach based on a 3D modular
chaotic map with high levels of security capacity and effectiveness was proposed by
Hamed et al. [20]. A hyper-chaotic picture cryptography was proposed utilizing a pixel-
permutation and bit-confusion approach, which can endure typical attacks and overcome
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the disadvantages of low-dimensional chaotic map methods [17]. To sum up, the hyper-
chaotic system has many good properties, which makes the hyper-chaotic system very
suitable for image encryption [21].

Although the difficulty of the frequency domain computation is greater than the
spatial encryption scheme, it often has a better encryption effect [22–24]. Wavelet transform
is commonly used in frequency domain encryption algorithms because it can decompose
the low-frequency matrix containing the most information. Processing low-frequency
information can considerably increase the effectiveness of encryption [25–28]. Based on
DWT and QR decomposition technologies, Rakheja et al. devised an asymmetric picture
encryption technique. Through wavelet transform and matrix decomposition technology,
the small-size matrix contains most of the information so as to decrease the time required
for encryption [29]. A method for multiple-image encryption using the integer wavelet
transform (IWT) is presented [24]. The outcomes of the simulation demonstrate that IWT
has superior qualities to DWT. Refs. [30,31] proposes an adaptive chaotic, wavelet, and
cyclic algorithm for digital picture encryption.

The results of the research indicated above demonstrate that the employment of
wavelet technology considerably improves the efficiency of the encryption system. How-
ever, some common encryption stages, such as DNA coding and diffusion operations,
are often not improved. To ensure the effectiveness of encryption and enhance the algo-
rithm’s security, cyclic shift is introduced into the design of an encryption algorithm [30–33].
Because of the simple operation of cyclic shift, the combination with other encryption tech-
niques can ensure good encryption results with high efficiency. Initially, cyclic shift is often
combined with bit-plane encryption algorithms [32,33]. The encryption process is used by
expanding the bit plane of the image to carry out cyclic shift. Later, Wang et al. applied
cyclic shift to the DNA coding stage, which considerably enhanced the algorithm’s security
and encryption efficiency [30,32].

Using integer wavelet transform and cyclic shift, we suggest a quick encryption
algorithm in this paper. The four low-frequency sections of the plaintext image are jumbled
by random sequences produced by the Chen hyper-chaotic system using a two-level integer
wavelet. So as to make sure that the encryption’s efficiency is high, we introduce cyclic shift
operation in the bidirectional diffusion stage and apply this diffusion method to multiple
matrices after integer wavelet decomposition. The approach is highly resistant to different
plaintext attacks because the random sequence used in the scrambling step is created by
the Chen hyper-chaotic system, and the user-defined and plaintext image’s Secure Hash
Algorithm 256-bit (SHA256) values make up the system key. The key is created using a
piecewise linear chaotic map (PWLCM) during the diffusion phase. Inverse integer wavelet
transformation can be used to obtain corresponding ciphertext images from the image after
scrambling and diffusion.

The following are the primary contributions of the proposed algorithm:

(1) The encryption algorithm is proposed based on integer wavelet transform, chaotic
system, and cyclic shift. The use of integer wavelet transform and cyclic shift not only
guarantees the effect of encryption, but also improves the efficiency of encryption.

(2) The hyper-chaotic systems with high unpredictability are used for image scrambling
and diffusion, which make the algorithm resistant to various types of statistical attacks.

(3) The initial value of the hyper-chaotic system is generated by SHA256 and user defini-
tion, which greatly expands the key space and makes the algorithm very sensitive to
the key.

(4) Experimental results show that the proposed algorithm can resist statistical attacks and
differential attacks well, and has a large enough key space and strong key sensitivity
and security.

This essay’s remaining sections are organized as follows. Fundamental notions are
presented in Section 2. The suggested image encryption technique is further explained in
Section 3. Section 4 provides some simulations and conversations to illustrate performance
and security. In Section 5, a succinct conclusion is provided.
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2. Background Theory

Here is a brief introduction to some of the mathematical theories incorporated into the
suggested encryption scheme.

2.1. Integer Wavelet Transform

During the encryption and decryption procedure, reconstructed images after tradi-
tional wavelet transform may be distorted, especially after multilevel wavelet decomposi-
tion, which will cause a more serious quality degradation of decrypted images. The signifi-
cance of integer wavelet transform is that its wavelet coefficients are all integers, so even
after multistage wavelet decomposition there will be no distortion after inverse transforma-
tion [34]. Thus, in this paper, we apply integer wavelet transform for image encryption.

Integer wavelet transform is usually realized by a lifting scheme, and its process can be
divided into three steps including split, prediction, and update [35]. Taking Haar wavelet
base as an example, the concrete steps are explained.

Split is usually to divide the original signal Sj,k into an even sequence and an
odd sequence.

split(gj,k) =
(

gj,2k, gj,2k+1
)
=

(
gj+1,k, cj+1,k

)
(1)

In the above equation, P is the prediction operator, which predicts the odd sequence
by even sequence cj+1,k = P

(
gj+1,k

)
. The prediction operator based on Haar wavelet is

P
(

gj+1,k
)
= gj+1,k, so that:

cj+1,k = cj+1,k − P
(

gj+1,k
)
= cj+1,k − gj+1,k (2)

The updating operator of Haar wavelet lifting scheme is [35]:

U
(

cj+1,k

)
=

⌊ cj+1,k

2

⌋
+

⌊ cj+1,k+1 − cj+1,k

8

⌋
(3)

where ⌊·⌋ is the rounding operation.
Through the above process, it can be seen that the even sequence contains most of the

information of the signal, while the odd sequence mainly contains the details of the signal.
Figure 1 depicts the two-level wavelet decomposition of a picture. After decomposition,
four low-frequency matrices ALL, BLL, CLL, and DLL can be obtained, among which the
ALL matrix contains most of the original image’s information.
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Figure 1. Two-level Wavelet Decomposition.

Two-level integer wavelet transform may result in the loss of information due to the
reduced length of the signal. In some cases, this loss of information may be unacceptable,
especially for applications that require high-quality and precise restoration. Through the
two-level integer wavelet transform of the image, the image can be represented as the
approximation and detail coefficients of different frequencies, so it has a wide range of
applications in image compression, signal analysis, and data encryption.

2.2. Chen Hyper-Chaotic System

Numerous chaotic systems with good unpredictability have been defined in recent
years. In picture encryption, more and more chaotic methods are being used. Based on
Chen chaos, Li et al. suggested the Chen hyper-chaotic system [36]. Equation (4) defines
the Chen hyper-chaotic system.

.
r = a(s − r)
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.
s = dr − rt + cs − h (4)

.
t = rs − bt

.
u = r + h

where the Chen hyper-chaotic system’s control parameters are a, b, c, d, and h.
The Lyapunov exponent is a crucial metric for assessing how chaotic maps behave

dynamically when the following conditions are met: a = 36, b = 3, c = 28, d = −16, and
h ∈ (−0.7, 0.7). The Chen hyper-chaotic system’s attractors are depicted in Figure 2. The
chaotic system exhibits good ergodicity, as can be demonstrated. The Chen hyper-chaotic
system’s prediction time is quicker and more sensitive than that of low-dimensional chaotic
systems. Therefore, the use of random sequences generated by the Chen hyper-chaotic
system in the encryption scheme can improve security.

 
 

 

 
Fractal Fract. 2024, 8, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/fractalfract 

 

 

  

 
(a)     (b)   (c) 

 

(d) (e) (f) 

 
(g) (h) 
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Figure 2. Chen hyper-chaotic attractor. (a) (r–s); (b) (r–t); (c) (r–u); (d) (s–t); (e) (s–u); (f) (t–u);
(g) (r–s–t); (h) (r–s–u).

2.3. Piecewise Linear Chaotic Map (PWLCM)

yi = f (yi−1, µ) =


yi−1/µ, 0 ≤ yi−1 ≤ µ

(yi−1 − µ)/(0.5 − µ), µ ≤ yi−1 < 0.5
0, yi−1 = 0.5

f (1 − yi−1, µ), 0.5 < yi−1 < 1.0

(5)

where yi∈ (0,1) and µ ∈ (0,0.5), which is a parameter. The PWLCM system is well suited to
producing random sequences since it has an excellent ergodicity and uniform distribution.

3. Results

The three stages of the algorithm described in this paper are key generation, permuta-
tion, and dissemination. In the permutation stage, we primarily use the chaotic sequence
produced by Chen’s hyper-chaos to confuse the four low-frequency matrices acquired after
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second-order integer wavelet decomposition. We suggest a novel bidirectional diffusion
strategy based on cyclic displacement for the diffusion stage. PWLCM generates the dif-
fusion sequence during the diffusion step. The ALL matrix, which contains the majority
of the plaintext image’s information, and the matrix derived from the first-order inverse
integer wavelet are both subjected to this technique to increase the algorithm’s security.
Figure 3 depicts the encryption flowchart. Below, more information about these three
stages’ specifics will be provided.
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3.1. The Generation of Key

The key in both the scrambling phase and the diffusion phase includes two parts.
The user of the system supplies one component, while the plaintext image’s SHA256 hash
value determines the other. The SHA256 hash value is highly dependent on the original
information; therefore, if the image is altered a small amount, the related hash result will
vary dramatically. As a result, by employing the SHA256 hash value, the method may
successfully fend off a plaintext attack.

SHA256 is a hash function in the SHA-2 (Secure Hash Algorithm 2) family that
produces a 256-bit (32 byte) hash value, usually in the form of 64 hexadecimal characters.
SHA256 is widely used in cryptography, digital signature, data integrity verification, and
other fields to provide the secure hashing of data. We put every 8 bits of binary into a
block and represent them as k1, k2, k3. . . k32 (ki =

{
ki

0, ki
1, ki

2, . . . , ki
7
}

). k1, k2, k3. . ., k32 can
be expressed in decimal notation. Next, we use the keys generated by SHA256 and the
user-defined keys x′0, y′0, z′0, w′

0, xx′1, and yy′1 to create the PWLCM and Chen’s hyper-chaotic
system’s initial values.

The Chen hyper-chaotic system’s starting values are as follows:

x0 = mod[(k1 + k2 + k3)⊕ (k1 + k2 + k3), 1] + x′0 (6)

y0 = mod[(k7 + k8 + k9)⊕ (k10 + k11 + k12), 2] + y′0 (7)

w0 = mod[(k13 + k14 + k15)⊕ (k16 + k17 + k18), 3] + w′
0 (8)

z0 = mod[(k19 + k20 + k21)⊕ (k22 + k23 + k24), 4] + z′0 (9)

These are PWLCM’s initial values and parameters: xx1 = mod
[
(k25+k26)⊕(k27+k28)

256 + xx′1, 1
]

yy1 = mod
[
(k29+k30)⊕(k31+k32)

256 + yy′1, 0.5
] (10)

3.2. The Process of Permutation

These are the precise steps:
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Step 1: the initial values produced by Equation (6) are entered into Chen’s hyper-
chaotic system to produce four random sequences of length MN/16: X, Y, Z, and W.

Step 2: The coefficients of the four low-frequency matrices are summed separately,
and the random sequence for scrambling is determined by the following formula:

a = mod(sum, 4) + 1 (11)

where sum is the sum of the wavelet coefficients. When a = 1, this low-frequency part
uses random sequence X to permutate. When a = 2, this low-frequency part uses random
sequence Y to permutate and so on.

Step 3: Assume that current matrix is ALL and the chaotic sequence X is used for
scrambling. We round X and map it modulo to integers from 1 to MN/16.

Step 4: X is extended by the values from the set {1, 2, ···, MN/16} that do not occur in
X. Repeat numbers in X are reserved only for the first occurrence. Swap the positions of
ALL(Xi) and ALL(XMN/16−i+1).

3.3. The Process of Diffusion Based on Cyclic Shift

In this section, we introduce traditional diffusion operations and propose a diffusion
scheme based on bidirectional diffusion and cyclic shift. The proposed scheme is applied to
the scrambled matrices, and the detailed steps are given below. The principle of traditional
diffusion based on addition and modulus operation is:

Ci = (Ci−1 + Si + Pi) mod 256 (12)

where Pi is the vector that expands from the plaintext image, Si is random sequence, and Ci
is the encryption vector obtained. By circularly expanding Equation (9) we can obtain:

Cn = (C0 + S1 + ··· + Sn + P1 + ··· + Pn) mod 256 (13)

It can be obtained from Equation (10) that the information of the plaintext pixel Pi
can only be hidden in Ci∼CN. This is due to the fact that the above operation is for-
ward diffusion. Therefore, if we want to hide the plaintext information Pi in the whole
ciphertext sequence, diffusion operation needs to be looped twice: forward diffusion and
backward diffusion.

Because cyclic shift operates on binary bit, it has high efficiency. We introduce
cyclic shift into the diffusion process. It can significantly increase the algorithm’s security.
Equation (10) contains the proposed diffusion operation.

Ci = (Ci−1 + Mi + Ni) mod 256 <<< LSB3 (Ci−1) (14)

where LSB3 stands for moving the data’s three lowest bits. Based on the proposed scheme
above, the following steps can be attained.

Step 1: expanded into a one-dimensional vector with rows and columns, the original,
two-dimensional picture matrix p is given the name N.

Step 2: using the initial values xx1 and yy1 of the PWLCM from Equation (7), we
generate two diffusion sequences: S1 and S2.

Step 3: S1 and S2 are used for forward and backward diffusion of P according to the
proposed diffusion operation.

4. Simulation Results and Security Analysis

Here, we simulate the suggested algorithm and examine the outcomes of its encryption
and decryption effects. We contrast the suggested method with the related algorithms in
each area.
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4.1. Encryption and Decryption Results

We use 512 × 512 images including “Man”, “Zelda”, “Mandrill”, “Einstein”, “House”,
and “Building”. Figure 4 displays their original photos as well as the accompanying
encrypted and decrypted images. The parameter values used by the proposed encryption
algorithm are x′0 = 1.1, y′0 = 2.2, z′0 = 3.3, w′

0 = 4.4, xx′1 = 0.1, and yy′1 = 0.1.
As observed in Figure 4, the encrypted image resembles noise, demonstrating the

effectiveness of the encryption technique in concealing the contents of the plaintext image.
Consequently, the suggested algorithm can enact effective encryption and decryption.

4.2. Key Space Analysis

Key space is a significant indicator of how secure an encryption technique is [37,38].
The proposed encryption algorithm’s key space must be sufficiently large to withstand
strong attacks. In the suggested cryptographic algorithm, there are six parameters in
the encryption process, which are x0, y0, z0, and w0 for Chen’s hyper-chaotic system in
permutation stage and xx1 and yy1 for PWLCM in the diffusion stage. Given a computer

with a computing precision of 10−14, the key space is about
(
1014)6= 1084 ≈ 2280. This

shows that the key space of our method is sufficiently large—much larger than that of
2100—to withstand powerful attacks.

4.3. Statistical Analysis

This subsection focuses mostly on how well the algorithm can withstand statistical
analysis.
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4.3.1. Histogram Analysis

When analyzing a grayscale image, the histogram typically counts the frequency of
each pixel between 0 and 225. Plaintext images generally have a specific meaning, so the
pixel values are generally concentrated in one or more pixel segments. The encrypted
image’s pixel distribution needs to be more evenly distributed in order for the encryption
technique to withstand statistical attacks. Figure 5 displays the histogram statistics of
the photos “Boat”, “Flinstones”, “Goldhill”, and “Lena” both before and after encryp-
tion. Histogram statistical findings of encrypted images are evenly distributed, as can be
observed from (b), (d), (f), and (h) in Figure 5, whereas those of plaintext images have
specific features. This demonstrates how effectively the suggested technique may conceal
the image’s content and how challenging it would be for an attacker to decrypt the image
and obtain relevant information.

4.3.2. Correlation Coefficient Analysis

There is frequently a strong correlation between neighboring pairs of pixels in a
plaintext image. This feature will probably be used by the attacker to break the encryption
scheme. Through the use of encryption algorithms, the correlation between adjacent pixel
pairs must be reduced. Typically, correlation is calculated using the correlation coefficient,
which is defined as [39]:

rxy =
cov(x, y)√

D(x)− D(y)
(15)

cov(x,y) = E[x − E(x)][y − E(y)] (16)

x and y usually refer to the pixel values of horizontal or vertical or diagonal pairs of
pixels. The correlation is stronger and smaller, respectively, depending on how near the
correlation coefficient’s absolute value is to 1.
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We choose 5000 adjacent pixel pairs from the plaintext images “Einstein” and “Boat”
in three directions. Their pixel values are counted, and the results are displayed in Figure 6.
It is evident from Figure 6 that the adjacent pixel pairs before encryption are concentrated
in a diagonal direction, demonstrating how closely the pixel values of the subsequent pixel
pairs are spaced, while the encrypted neighboring pixel pairs’ pixel values are uniformly
distributed, indicating that the distribution of pixel values is very random.

We determined the correlation of nearby pixel pairs in 10 images using the same
procedure as described above for choosing adjacent pixel pairs. The findings are displayed
in Table 1. Table 2 makes it evident that the correlation is relatively small after encryption
because it is close to 1 in absolute value before encryption, whereas, after encryption, the
correlation coefficient’s absolute value is near to 0. There is very little association between
adjacent pixels. The ability of various encryption techniques to lessen pixel correlation is
also compared in Table 2 [39–41]. Table 1 demonstrates that our approach performs better
in lowering the correlation between adjacent pixels. In summary, the suggested technique
can withstand statistical attacks effectively.
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Figure 6. Analysis of correlation coefficients. The Einstein correlations from the three directions
are shown in (a–c), respectively. The equivalent Einstein correlations following encryption are (g–i).
(d–f) are the correlations of Boat from three directions respectively. (j–l) are the corresponding
correlations of Boat after encryption.

Table 1. Correlation coefficients of different images.

Images Horizontal Vertical Diagonal

Man 0.9592
−0.0001

0.9682
−0.0059

0.9402
0.0302

Zelda 0.9827
0.0107

0.9921
0.0032

0.9788
−0.0149

Einstein 0.9718
−0.0101

0.9804
0.0045

0.9571
−0.0013

Lena 0.9734
0.0171

0.9854
0.0081

0.9611
−0.0119

Mandrill 0.8746
−0.0081

0.7950
0.0042

0.7518
−0.01544

Gold hill 0.9717
0.0310

0.9739
−0.0220

0.9535
0.0060
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Table 1. Cont.

Images Horizontal Vertical Diagonal

Flintstones 0.9491
0.0139

0.9427
-0.0053

0.9069
−0.0210

Bridge 0.9412
−0.0008

0.9305
0.0063

0.9012
−0.0021

Crowd 0.9068
0.0213

0.9095
0.0090

0.8479
−0.0059

Boat 0.9406
−0.0040

0.9707
0.0209

0.9239
−0.0151

Table 2. Correlation coefficients of different methods.

Direction Zhou et al. [39] Zhou et al. [40] Zhou et al. [41] Ours

Horizontal 0.0846 0.0198 0.0104 −0.00467
Vertical 0.0583 0.0141 0.0299 0.0135

Diagonal 0.0931 0.0026 0.0062 −0.0055

4.3.3. Information Entropy Analysis

The information entropy of gray image I can be defined as [42]:

H(I) = −∑2k−1
i=0 P(I(x, y) = i)log2P(I(x, y) = i) (17)

where the probability of an element is denoted by P(·). For the gray image encryption
approach, the information entropy should be as close to 8 as possible. Ten images are
chosen, and the corresponding information entropy prior to and following encryption
are determined using the algorithm above, as shown in Table 3. As can be observed, the
picture’s information entropy was lower than 7.5 before encryption, with an average of
roughly 7.1. After encryption, the information entropy can reach 7.9993. This indicates that
the probability of the encrypted image appearing in each pixel is very close, and the value
of pixel is very random. We determine the average information entropy value and choose
pertinent algorithms for comparison in terms of information entropy [17,18,43], in order to
further highlight the benefits of the proposed approach. Table 4 presents the outcomes. Our
algorithms all rank higher than the pertinent algorithms, demonstrating the algorithm’s
high degree of unpredictability.

Table 3. Different image information entropy.

Image Entropy

Plaintext Ciphertext

Man 7.1926 7.9992

Zelda 7.2668 7.9992

Einstein 6.8667 7.9992

Lena 7.4455 7.9994

Mandrill 7.3899 7.9991

Bridge 5.7056 7.9993

Crowd 7.4842 7.9994

Boat 7.1914 7.9994

Peppers 7.5936 7.9993
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Table 4. Comparison with other schemes.

Algorithms Li et al. [17] Xu et al. [18] Zhou et al. [43] Ours

Cipher 7.9935 7.9972 7.9973 7.9994

4.4. Key Sensitivity Analysis

Key sensitivity analysis is the process of recovering the original image and assessing
how small key changes can impact the encrypted image. Usually, changes are made to the
encryption key and decryption key that are used during the encryption and decryption
procedures. It is preferable to completely omit any plaintext data when using a strong
key sensitivity encryption algorithm. So, we add 10−14 to x0 and xx0, respectively, in the
encryption stage, and the encryption results are displayed in Figure 7a,b. You can see that
a tiny change in the key has a significant impact on the encryption outcome. Similarly,
we increase xx1 and yy1 by 0.01 when decrypting, and (c) and (d) of Figure 7 display
the encryption results. The wrong key cannot decrypt any plaintext information. This is
because the encryption technique was designed using SHA-256 and chaotic systems, both
of which have a high degree of unpredictability and are particularly sensitive to beginning
values. The proposed algorithm has great security as a result.
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We also assess the algorithm’s primary sensitivity from a different perspective. The
ratio of two photographs with identical pixel values in the same position is known as the
number of pixel change (NPCR). But, this indicator has some flaws. If the pixel values in
the same position of two images are not equal but the difference is very small, human eyes
have trouble distinguishing the differences. Unified average changing intensity (UACI)
is used to assess how much two photographs’ pixel values differ from one another. The
following are NPCR and UACI [44]:

D(x, y) =
{

0, C1(x, y) ̸= C2(x, y)
1, C1(x, y) = C2(x, y)

(18)

NPCR =
1

M × N ∑M
x=1 ∑N

y=1 D(x, y)× 100 (19)

UACI =
1

MN ∑M
x=1 ∑N

y=1
C1(x, y)− C2(x, y)

2b − 1
× 100 (20)
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where M,N are the image’s height and breadth, respectively. A pixel from two photos is
represented by C1(x, y) and C2(x, y). The effectiveness of the encryption algorithm to fend
off differential attacks increases as the algorithm gets closer to its theoretical value. To
compute the NPCR and UACI values throughout the encryption process, we employ the
key change methodology mentioned above. To create two cipher pictures for the encryption
process, the values x0, xx0, and yy1 are multiplied by 10−14. Table 5 displays the NPCR and
UACI values before and after each parameter adjustment for the two encrypted images.
The NPCR and UACI values are close to the predicted values. In conclusion, Table 5 and
Figure 7 demonstrate the great key sensitivity of the picture encryption method.

Table 5. The UACIs and NPCRs between cipher pictures produced by the right ciphers and slightly
different keys.

Images Man Peppers Bridge Ideal

xx0 + 10−14 NPCR
UACI

99.6213
33.3946

99.5983
33.5314

99.6342
33.5106

99.6094
33.4635

x0 + 10−14 NPCR
UACI

99.6007
33.3146

99.5918
33.6196

99.6455
33.4489

99.6094
33.4635

yy1 + 10−14 NPCR
UACI

99.6512
33.5102

99.5392
33.3393

99.6411
33.5161

99.6094
33.4635

4.5. Differential Attack Analysis

The simulation changes the plaintext image at random, after which the two images are
encrypted to produce the equivalent ciphertext image. Finally, using Equations (16) and (17),
the NPCR and UACI values between the two photos were determined. The findings are
shown in Table 5. Therefore, the method may successfully fend off differential assaults,
selected plaintext assaults, and well-known plaintext assaults. This is due to the fact that we
employ a number of strategies to enhance the correlation. The starting parameters of chaotic
systems, which are extremely sensitive to initial values, are calculated using the SHA-256
hash value.

5. Conclusions

An effective encryption technique based on integer wavelet transform and cyclic
shift is suggested in this research. Only four low-frequency matrices that contain a sig-
nificant amount of information are jumbled when the plaintext image is modified by a
two-level integer wavelet, significantly reducing the amount of information. In order to
guarantee high efficiency and boost the algorithm’s security, the cyclic shift is also added
to the bidirectional diffusion stage. In the permutation phase and diffusion phase, many
chaotic systems are used, and the user definition and SHA256 are used to establish the
beginning values. We evaluate the proposed algorithm’s performance across a range of
metrics and contrast it with related algorithms. Our scheme offers excellent security, strong
plaintext sensitivity, and the capacity to withstand statistical attacks and differential attacks,
according to simulation findings.

In some scenarios, it is sometimes necessary to transfer multiple images at the same
time. Therefore, it is worthwhile to propose a multi-graph encryption algorithm to ensure
its security. We hope to propose multi-graph encryption algorithms with high encryp-
tion efficiency. In addition, transform domains and hyper-chaos systems are the main
techniques we will focus on. We also hope to use better performance transform domains
and chaotic systems in future studies. Alternatively, we can improve the existing trans-
form or chaotic system and apply it to the encryption algorithm to further improve the
algorithm performance.
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